Home // DBKDA 2013, The Fifth International Conference on Advances in Databases, Knowledge, and Data Applications // View article
Geometric Mean based Boosting Algorithm
Authors:
Myoung Jong Kim
Keywords: data imbalance; GM-Boost; bankruptcy prediction
Abstract:
Abstract-Data imbalance problem has received a lot of attention in machine learning community because it is one of the causes that degrade the performance of classifiers or predictors. In this paper, we propose geometric mean based boosting algorithm (GM-Boost) to resolve the data imbalance problem. GM-Boost enables learning with consideration of both majority and minority classes because it uses the geometric mean of both classes in error rate and accuracy calculation. We have applied GM-Boost to bankruptcy prediction task. The results indicate that GM-Boost has the advantages of high prediction power and robust learning capability in imbalanced data as well as balanced data distribution.
Pages: 15 to 20
Copyright: Copyright (c) IARIA, 2013
Publication date: January 27, 2013
Published in: conference
ISSN: 2308-4332
ISBN: 978-1-61208-247-9
Location: Seville, Spain
Dates: from January 27, 2013 to February 1, 2013