Home // ICCGI 2013, The Eighth International Multi-Conference on Computing in the Global Information Technology // View article


Quantum Key Distribution over Collective Amplitude Damping Quantum Channels

Authors:
Elloa B. Guedes
Francisco M. de Assis

Keywords: Quantum Key Distribution; One-Time Pad; Decoherence-Free Subspaces and Subsystems.

Abstract:
One of the most mature quantum information techniques nowadays is Quantum Key Distribution (QKD) in which two legitimate parties make use of a protocol to create a symmetric private key using a quantum channel. The quantum channel is not secure, since there may be an eavesdropper intercepting and re-sending the quantum states that are sent through it. One of the main problems in using QKD protocols is the existence of noise which can make difficult the task of eavesdropping checking. Considering these issues, this paper presents a QKD protocol over a collective amplitude damping quantum channel that makes use of decoherence-free subspaces and subsystems. The QKD protocol proposed is noiseless despite the errors existing in the quantum channel. Moreover, it makes the probability of the eavesdropper's retrieve the secret message negligible asymptotically. Besides, the probability of eavesdropper detection is stable during the whole communication which eases the eavesdropping checking procedures.

Pages: 271 to 276

Copyright: Copyright (c) IARIA, 2013

Publication date: July 21, 2013

Published in: conference

ISSN: 2308-4529

ISBN: 978-1-61208-283-7

Location: Nice, France

Dates: from July 21, 2013 to July 26, 2013