AFIN 2025 : The Seventeenth International Conference on Advances in Future Internet

Detailed Analysis of TCP BBR Implementation in Ns-3 Network Simulator
under Heavy Traffic Loads

Toshihiko Katot, Takahiko Katof, Ryo YamamotoT, and Satoshi Ohzahataf

T University of Electro-Communications
Tokyo, Japan

¥ University of Fukui
Fukui, Japan

e-mail: kato@net.lab.uec.ac.jp, t-kato@u-fukui.ac.jp, ryo-yamamoto@uec.ac.jp, ohzahata@uec.ac.jp

Abstract— TCP Bottleneck Bandwidth and Round-trip
propagation time (BBR) is a congestion control algorithm that
was introduced by Google relatively recently, and it is widely
used currently. BBR is based on the congestion-based
congestion control which is different from the conventional
algorithms. So, a lot of researches have been reported on the
performance evaluation. In the early stage, it is done using the
BBR code in the Linux operating system over a physical
network or a network emulator. Nowadays, a network
simulator, such as ns-3 is used for the evaluation. Actually, BBR
was introduced in ns-3 version 3.34 released in 2021. However,
the BBR code is different from that in Linux, and so it may be
possible it behaves differently. This paper reports some results
of BBR performance evaluation where sixteen flows share one 1
Gbps bottleneck link with a limited router buffer. The results
were different when we used ns-3 version 3.40 and 3.44. We
analyzed the BBR source codes in those versions and executed
3.44 BBR code over 3.40 ns-3. This paper also discusses this
analysis.

Keywords- TCP; Congestion Control; BBR; Ns-3 Network
Simulator.

. INTRODUCTION

Along with the proliferation of various types of networks
and applications, a lot of TCP variants with different
congestion control algorithms are designed, implemented, and
widely spread [1]. The congestion control manages the
congestion window size, called cwnd according to a network
congestion situation. The conventional algorithms are
categorized into the loss-based, the delay-based and the hybrid
approaches. The loss-based algorithm detects a network
congestion by packet losses, and this category includes TCP
NewReno [2], HighSpeed TCP [3], CUBIC TCP [4], and
Hamilton TCP [5]. The delay-based algorithm detects a
congestion by an increase of the Round-Trip Time (RTT), and
an example of this category is TCP Vegas [6]. The hybrid
algorithm combines the loss-based and delay-based
approaches. In TCP Veno [7], the congestion is detected by
packet losses and the change of cwnd is controlled according
to RTT. In Compound TCP [8], cwnd is the sum of a window
size following HighSpeed TCP and one following TCP Vegas,
and it behaves in a way such that the former is effective when
RTT is small and vice versa.

TCP BBR (Bottleneck Bandwidth and Round-trip
propagation time) [9] was recently proposed by Google. Itis
a new type of congestion control algorithm called congestion-
based congestion control. A data sender tries to send data
segments according to the Bandwidth Delay Product (BDP)

of the TCP connection. A sender measures the bottleneck
bandwidth and the minimum RTT independently and
estimates the BDP. It does not take care of retransmissions
for the congestion control. Another feature of TCP BBR is
that it follows the rate-based data transmission. Most of TCP
variants adopt the window-based data transmission, where a
sender sends out data segments as a burst within the limitation
of window size (congestion window and advertised window).
Instead, TCP BBR sends data segments in the pace
determined by the estimated BDP and the segment size. As a
result, data segments are transmitted sparsely and it is highly
possible to avoid congestions in multiple TCP flows.

TCP BBR came to be used widely since its proposal.
Sawada et al reported that in 2020 TCP BBR was used by 30%
of the major web servers. There are a lot of study results on
the performance of TCP BBR [10-17]. In early stages, the
performance evaluation was done using the BBR code
implemented in the Linux kernel over a physical network or a
network emulator, such as Mininet [18]. Recently, TCP BBR
was introduced in the network simulator, such as ns-3 [19].
Actually, the TCP BBR code was implemented in ns-3 at
version 3.34 released in 2021. Some studies performed
experiments using ns-3 [14][16][17]. However, TCP BBR in
ns-3 is implemented by its original code, and so it may be
possible that the code behaves differently from that in Linux.

We performed the TCP BBR throughput test under the
condition that sixteen BBR flows share a 1Gbps bottleneck
link. When the output buffer of the router connected to the
bottleneck link is limited, the throughput of some BBR flows
becomes extremely low. Although Hock et al reported the
intra-protocol unfairness of TCP BBR due to small bottleneck
buffer [10], the results of our experiment are much worse than
that. We conducted this experiment using ns-3 whose version
is 3.40. We performed the same experiment using ns-3
version 3.44, which is the newest as of writing this paper. The
experimental results were different from that of using ns-3
version 3.40, and all of the sixteen BBR flows provided
similar throughput. This paper describes the details on these
experiments and discusses the difference between ns-3
version 3.40 and 3.44.

The rest of this paper is organized as follows. Section 2
gives some background information including the overview of
TCP BBR and the performance evaluation studies reported so
far. Section 3 describes the details of the performance
evaluation experiments. Section 4 compares the BBR codes
implemented in ns-3 version 3.40 and 3.44 in detail. In the
end, Section 5 concludes this paper.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-307-1

AFIN 2025 : The Seventeenth International Conference on Advances in Future Internet

Il. BACKGROUNDS

A. Overview of TCP BBR

TCP BBR uses estimates for the available bottleneck
bandwidth, BtIBw, and the minimal round-trip propagation
time, RTprop, to calculate a path’s available BDP. A BBR
sender data segments with the pacing rate given by
pacing_gain X BItBw X RTprop with the help of pacing. The
parameter pacing_gain, which is set to 1 most of the time, is
used to control the actual pacing rate.

The BBR algorithm has four different phases: Startup,
Drain, Probe Bandwidth, and Probe RTT.

The first phase adapts the exponential Startup behavior
where the pacing_gain is set to 2 / In2 (2.885). Once the
measured bandwidth does not increase further, BBR assumes
to have reached the bottleneck bandwidth, and shifts to the
Drain phase. Here, BBR reduces the pacing_gain to In2 / 2.
Afterwards, BBR enters the Probe Bandwidth phase in which
it probes for more available bandwidth. This is performed in
eight cycles, each of which takes RTprop. The pacing_gain
of each cycleis5/4,3/4,1,1,1,1,1,1and 1. This phase BBR
continuously samples the bandwidth and uses the maximum
as the BtIBw estimator, whereby values are valid for the
timespan of ten RTprop. After not measuring a new RTprop
value for ten seconds, BBR stops probing for bandwidth and
enters the Probe RTT phase. During this phase the bandwidth
is reduced to four packets to drain any possible queue and get
a real estimation of the RTT. This phase is kept for 200 ms
plus one RTT. If a new minimum value is measured, RTprop
is updated and valid for time window Wrg (typically, ten
seconds).

B. Studies on Performance Evaluation of TCP BBR

Table | summarizes the performance evaluation studies of
TCP BBR. It shows the BBR codes and the network
environment used by the evaluation, the target TCP
congestion control algorithms, and the maximum numbers of
TCP flows examined in the experiment. TCP BBR was
proposed in 2017, and introduced to the Linux operating

TABLE |. PERFORMANCE EVALUATION STUDIES OF TCP BBR.

reference | BBRcode | network | evaluation target | max number of flows
[10] Linux physical |BBR, BBR+ CUBIC |6 BBRs, 1 BBR+1
CUBIC
[11] Linux physical |BBR + CUBIC 10 BBRs + 10 CUBICs
[12] Linux Mininet |BBR, BBR + CUBIC |6 BBRs, 10 BBRs + 10
CUBICs
[13] Linux physical |BBR, BBR+ CUBIC |8 BBRs, 3 BBRs + 3
CUBICs
[14] ns-3 (Vivek ns-3 BBR, BBR + BIC, 2 BBRs, 2 BBRs + 2
Jain’s BBR + BIC + BIC,1BBR+1BIC+1
version) NewReno + Vegas | NewReno + 1 Vegas
[15] Linux Mininet |BBR, (Delay- 2 BBRs
aware BBR)
[16] ns-3 (Vivek ns-3 BBR, (other BBR |4 BBRs
Jain’s variants including
version) BBRv2)
[17] ns-3 ns-3 BBR, BBR+ CUBIC | 8 BBRs, 2 BBRs + 2
CUBICs

1Gbps, Smsec

1Gbps,
50msec

output buffer:
100packets ~
5000packets

Figure 1. Performance evaluation network.

system. So the evaluations in the early stage used the BBR
code in Linux [10-13][15]. The BBR software was introduced
to the ns-3 network simulator by Vivek Jain et al [20] in 2018.
This software was implemented over ns-3 version 3.27, which
was released in 2017. [14] and [16] used this version of TCP
BBR. TCP BBR was introduced into ns-3 officially in the
version 3.34 released in 2021. It is considered that [17] used
this or later version of ns-3.

The performance evaluation experiments were done for
single BBR, multiple BBRs and mixture of multiple BBRs
and other congestion control algorithms. However, the
number of flows were limited, ten BBR flows at the maximum.
In contrast with them, our performance evaluation used
sixteen BBR flows when the bottleneck buffer is limited.

I1l. PERFORMANCE EVALUATION

A. Experimental Setup

Figure 1 shows the network configuration used in this
evaluation, which is a dumbbell configuration where sixteen
data senders (S1 through S16) and the corresponding receivers
(R1 through R16) are connected through two routers (N1 and
N2). The bandwidth and transmission delay are specified in
the figure, where the backbone link between N1 and N2 has a
longer delay, 50 msec, than the other links. The output buffer
in N1 is set to 100 packets through 5,000 packets. The
maximum segment size is 1,420 bytes. Since RTT is 120
msec and the bottleneck bandwidth is 1 Gbps, the BDP in this
experiment is 15 MB, i.e., around 10,000 packets.

The details of ns-3 parameters are as follows.

Queue discipline: First-In First-Out queue discipline

following the drop tail policy [21].

TCP loss recovery algorithm: TCP classic recovery [22].

DelAckCount (Number of packets to wait before sending

aTCP Ack): 1.

Explicit congestion notification functionality: not used.

SACK: used.

In the evaluation, all data senders start data transfer at the
same time and continue the communication until time 50 sec.

We used the ns-3 version 3.40, released on Sep. 27, 2023,
and version 3.44 released Mar. 9, 2025.

B. Evaluation Results Using Ns-3 Version 3.40

This subsection describes the results using ns-3 version
3.40. In the configuration shown in Figure 1, we set the
output buffer of N1, 100, 500, 1,000, 2,000, and 5,000
packets. As described above, the BDP in this configuration
is around 10,000 packets, and so the buffer is not large
enough, especially the value of 100 packets is extremely
small.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-307-1

AFIN 2025 : The Seventeenth International Conference on Advances in Future Internet

H100p m500p ®m 1000p = 2000p m 5000p

Z 50
s
S a0
p
=]
Q.
< 30
=]
e
£ 20
10
0 I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Figure 2. Throughput of individual BBR flows.
70
60
.|
= 50
o
s J— W 100
%— 40 P
a W s00p
=
w 30
§ M 1000p
£
= 20 I 2000p
10 W 5000p

Figure 3. Box-and-whisker plots of BBR flow throughput.

TABLE Il. AVERAGE, STANDARD DEVIATION, AND TOTAL OF
THROUGHPUT OF BBR FLOWS (MBPS).

buffer size | average std. dev. total
100 pkts. 39.5 31.0 632.0
500 pkts. 35.9 32.0 574.8
1000 pkts. 36.1 28.5 577.9
2000 pkts. 53.1 12.7 850.3
5000 pkts. 56.3 33 900.2

Figure 2 shows the throughput of individual TCP BBR
flows for five cases of the N1 output buffer. The bars are
sorted in the descending order of throughput.

When the N1 output buffer is 100 packets, ten BBR flows
provided high throughput more than 50 Mbps, and on the
other hand, the other six flows provided very low throughput
less than 1 Mbps. When the N1 output buffer is 500 and
1,000 packets, the results were similar. Nine or ten BBR
flows out of the sixteen provided high throughput but the
throughput of the rest was extremely low. But, for the cases
that the N1 output buffer is 2,000 and 5,000 packets, the
results were different, and almost all BBR flows provided
high performance. Figure 3 shows the box-and-whisker plots
where the whiskers show the minimum and maximum values,

and the boxes give the first quartile, median and third quartile.

The cross marks in the figure give the average. Table Il
shows the average, standard deviation, and total of sixteen
flows’ throughput. For the cases that the N1 output buffer is

250
= flow6 - flow 12

200 ®
=
Qo
2
2 150 I
[
2
©
w 100
=
G
©
(-9

[]
.
50

0 o=
0 10 20 30 40 50
Time (sec)

ooooooooooooooo

Figure 4. Pacing rate vs. time for flow #6 and #12 when the N1 output
buffer is 100 packets.

100, 500, and 1,000 packets, the distribution of the
throughput is large, and the total throughput is around 600
Mbps. Since the transmission rate of the bottleneck link is 1
Gbps, the efficiency is around 60 %. In contrast, in the cases
that the N1 output buffer is 2,000 and 5,000 packets, the
distribution becomes small and the efficiency is as high as
85 % or 90%.

Figure 4 shows the time variant of the pacing rate of 6th
BBR flow and 12th BBR flow when the N1 output buffer is
100 packets. In the beginning, the pacing rate increases
similarly and some packet losses and timeout retransmissions
occur. After that, the pacing rate of 12th flow keeps a very
low value, such as 0.1 and 0.01 Mbps. In contrast, that of 6th
flow recovers to the value of 87 Mbps. This situation
continues to the end of experiment. Other flows showed
similar behaviors. This is the reason for the high and low
throughput.

C. Evaluation Results Using Ns-3 Version 3.44

Next, we performed the same experiment using ns-3
version 3.44. Actually, we used the same script file as that
used for ns-3 version 3.40. Figure 5 shows the results for the
case that the N1 output buffer is 100 packets. Figure 5(a)
gives the individual throughput of sixteen BBR flows and
Figure 5(b) is its box-and-whisker plot. The distribution
becomes small and all flows give high performance, between

50 50
45 45
40 40
235
_Eg- 35
30
75' , 30
= s 25 average: 39.9 Mbps
220 20 std. dev.: 4.7 Mbps
[=] .
255 total: 638.9 Mbps
= 15
10
10
5
0 5
1 3 5 7 9 111315 0

(a) Individual throughput (b) Box-and-whisker plots

Figure 5. Results by ns-3 3.44 for 100 packet N1 output buffer.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-307-1

AFIN 2025 : The Seventeenth International Conference on Advances in Future Internet

250

200 -
2 |
2
2 150
2
e
oo 100
£ o @ o 9000000000090
] 1
© ..
a L)

50 “f...........-.-..o......... 200 s000y e vasncesy

o
0 10 20 30 40 50

Time (sec)

Figure 6. Pacing rate vs. time for flow #5 by ns-3 3.44 when the N1 output
buffer is 100 packets.

32 Mbps and 47 Mbps. It should be noted that the total
throughput is similar to that in ns-3 version 3.40. This means
that the behaviors of flows is fair compared with the former
experiment.

Figure 6 shows the time variance of the pacing rate of 5th
BBR flow. The behavior in the first 10 seconds is similar to
that of ns-3 version 3.40 depicted in Figure 4. But after that,
the pacing rate changes among 50 Mbps, 70 Mbps, and 85
Mbps. For other flows, the behavior of pacing rate is similar,
and as a result, the throughput of individual flows provided
similar value in the experiment using ns-3 version 3.44.

Both results seem to be explainable. As mentioned above,
it is possible that TCP BBR shows the intra-protocol
unfairness when the bottleneck buffer is limited [10]. So, the
results by using ns-3 version 3.40 are not necessarily wrong.
The problem is that the behavior changed for ns-3 version
3.40 and 3.44. The next section discusses this issue in more

detail.
UpdateAckAggregation() I

SetPacingRate()

SetSendQuantum()
SetCwnd()

Figure 7. Function calls in TCP BBR Code in ns-3 version 3.40.

UpdateModel
AndState()

CongControl()

UpdateControl
Parameters()

IV. DETAILED ANALYSIS OF Ns-3 BBR CoDE

A. Program Strucsture of Ns-3 BBR Code

In ns-3, the main procedures of TCP are implemented in
the tcp-socket-base.{h, cc} files. They give the functions for
handling data send requests from the upper layer and for
handling TCP segments received from the remote node. The
control variables, such as m nextTxSequence and
m_cWnd are implemented in tcp-socket-state.h. The
congestion control algorithms are implemented in other files
independently. TCP BBR is implemented in the tcp-bbr.{h,
cc} files.

Figure 7 depicts the function call graph of the TCP BBR
congestion control (function CongControl ()). It calls
two main functions, UpdateModelAndState () and
UpdateControlParameters (). The former calls the
functions changing the states corresponding to BtIBw and
RTprop. The latter calls the functions updating the related
parameters, such as m_pacingRate and m_cWnd. The
overviews of those functions are listed in Table Il1.

Figure 8 depicts the function call graph in tcp-socket-
base.cc when an ACK segment is received. First,
ReceivedAck () iscalled. As for the ACK processing, it
callsProcessAck (),and CongControl () intcp-bbr.cc.
ProcessAck () manages the ACK related parameters, and
if the received ACK is a duplicate ACK, DupAck () iscalled
and the retransmission is processed if necessary. After

TABLE I1l. OVERVIEW OF BBR FUNCTIONS IN FIG. 7.

function behavior
UpdateBtIBw() Updates maxBweFilter if a new delivery rate is larger than prior value.
UpdateAck Takes account of delayed ACK.

Aggregation()

CheckCyclePhase() | If in ProbeBW phase and a RTT elapsed, advance cycle.

CheckFullPipe() If delivery rate becomes large enough, set m_isPipeFilled = true

CheckDrain()

If in Startup phase and m_isPipeFilled is true, enter Drain phase.
If in Drain phase and inflight data decreased, enter ProbeBW phase.

UpdateRTprop() If RTT didn’t increase or Wy (10 sec) elapsed (m_rtPropExpired =
true), update m_rtProp.
CheckProbeRTT() |If not in ProbeRTT phase and m_rtPropExpierd, enter ProbeRTT

phase and save cwnd.
If in ProbeRTT phase and 200 msec elapsed, enter ProbeBW if
m_isPipeFilled or Startup otherwise.

SetPacingRate() | Set rate = Max value in maxBwFilter X pacing_gain.

If m_isPipeFilled or rate > m_pacingRate, set m_pacingRate = rate.

SetSendQuantum() | Set m_sendQuantum = MSS.

SetCwnd()

Determine cwnd considering targetCwnd and packet losses.
If in ProbeRTT phase, set cwnd to 4 MSS.

ProcessAck() l—bl DupAck() |

EnterRecovery()

ReceivedAck(

TcpBbr::CongControl()

DoRetransmit()

 Use m_pacingTimer, scheduled to expire at the time to |

! send next packet according to m_pacingRate. |

1 When the timer expires, SendPendingData() is called. !

[V g X P

1 While m_pacingTimer is running, it does not call '
I
i

SendDataPacket().

'
'
g

Figure 8. Function calls in TCP when receiving ACK in ns-3 version 3.40.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-307-1

AFIN 2025 : The Seventeenth International Conference on Advances in Future Internet

CongControl (), SendPendingData () is called to
send the following data when the received ACK opens a
window. In BBR, the rate-based data transfer is adopted and
this is implemented by the TCP Pacing mechanism [23]. A
timer called m pacingTimer is used which expires
according to a rate to send data segments according to
m_pacingRate, calculated in SetPacingRate ().
These are described based on the program structure of ns-

3 version 3.40. The structure itself is the same in version 3.44.

B. Analysis on Difference of Ns-3 3.40 and 3.44

We analyzed the BBR codes in version 3.40 and 3.44 to
clarify why the results are different in these two versions.
From the homepage of ns-3 [24], the changes related to TCP
from version 3.40 to 3.44 are as follows.

1) TCP Cubic now supports TCP-friendliness by default,
making the congestion window growth somewhat more
aggressive. (from 3.40 to 3.41)

2) TcpCubic and TepLinuxReno will no longer grow their
cwnd when application-limited. (from 3.41 to 3.42)

3) Deprecated Eventld::IsRunning(). It has been replaced
with Eventld::IsPending(). (from 3.41 to 3.42)

4) TCP Proportional Rate Reduction (PRR) recovery has
been aligned to the updates in draft-ietf-tcpm-prr-
rfc6937bis. (from 3.42 to 3.43)

5) A new trace source TcpSocketBase::LastRtt has been
added for tracing the last RTT sample observed. The
existing trace source TcpSocketBase::Rtt is still
providing the smoothed RTT, although it had been
incorrectly documented as providing the last RTT. (from
3.42 10 3.43)

Among them, 1), 2), and 4) do not give any impacts to our

experiment, because we do not use TCP Cubic, NewReno, nor

PRR recovery.

Then we compared the source codes of tcp-bbr.{h, cc} and
tcp-socket-base.{h, cc}. The followings are differences that
are considered to give some impacts to the BBR behaviors.
tcp-bbr.cc:

m_rtProp in 3.40 is changed to m minRtt in 3.44.

This seems to be just a text-level modification.

After rate is calculated in SetPacingRate () asshown

in Table I11, the following modification is added.

rate *= (1.f - m pacingMargin)

m_pacingMargin issetto 0.01

This needs to be considered.

One i f sentence is modified in UpdateB1tBw ().

3.40:1if (rs.m deliveryRate == 0)

344:1if (rs.m delivered < 0 ||

rs/<_interval.IsZero())

This needs to be considered.

m rtProp (m minRtt)issettom lastRtt in 3.40,

buttom srtt in 3.44. This is related to item 5) in the

change history. This may need to be considered.
tcp-socket-base.cc

One else if sentence is modified in DupAck () :

340:else if (m txBuffer->IsLost(m high

RxAckMark + m_tcb->m segmentSize)
344:else if (m txBuffer->IsLost(m high

70 70
60 0
Z 50 s0
s
= “0 40
£ 30
'é" 30
£ 20 average: 35.6 Mbps
. 20 std. dev.: 31.8 Mbps
10 total: 569.9 Mbps
10
o HIRNNIRRNN... ...,
13 5 7 9 1113 15 0

(a) Individual throughput (b) Box-and-whisker plots

Figure 9. Results of Approach 2 porting 3.44 BBR code to 3.40 for 100
packet N1 output buffer.

RxAckMark)
This needs to be considered.
Related to item 5) in the change history, Estimate
Rtt () is largely modified. This needs to be considered.

Based on these considerations, we took the following two
approaches.
Approach 1: Modify tcp-bbr.cc and tep-socket-base.cc for the
points we decided to be considered.
Approach 2: Use tcp-bbr.cc and tcp-socket-base.cc of version
3.44 in ns-3 version 3.44.
Approach 2 required the following modification in the
BBR source code,
tcp-socket-base.cc to be ported:
Change IsPending () for EventId variables back to
IsRunning (). This is related to item 3) in the change
history.
tcp-socket-state.h in version 3.40:
Define Tracevalue<Time>
m_isCwndLimited.

m_srtt and bool

We performed both examination for the case that the
bottleneck buffer is 100 packet. The results were similar and
did not improve the performance of ns-3 version 3.40. Figure
9 shows the result of Approach 2. Out of sixteen BBR flows,
nine provided high throughput, but the throughput of the other
seven flows was extremely low. The average and total
throughput was even worse than that of the original version
3.40. This result says that the difference of BBR behaviors in
ns-3 version 3.40 and 3.44 may come from some part of other
than TCP and BBR in the simulator. In the current stage, we
do not clarify the details, but it can be said that the
performance evaluation using ns-3 needs to be carefully done.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented some results of TCP BBR
performance evaluation where sixteen BBR flows share a 1
Gbps bottleneck link whose output router has a limited output
buffer. We used 100, 500, 1,000, 2,000, and 5000 packets as
the output buffer size. For, small buffer size, 100/500/1,000
packets, some flows provided high throughput, but the
performance of the others were extremely low. Although the
BBR intra-protocol unfairness is mentioned in [10], the

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-307-1

AFIN 2025 : The Seventeenth International Conference on Advances in Future Internet

degree of unfairness is much larger in this result. This
experiment was done using ns-3 version 3.40. We also
performed the same experiment using ns-3 version 3.44,
which was the highest as of writing this paper. The result was
completely different from that by version 3.40. All of the
sixteen BBR flows provided high throughput, and the
fairness was high.

We examined the BBR source codes of version 3.40 and
3.44. We analyzed the source codes in detail, and decided
that there are not large differences between them. Next, we
ported the version 3.44 BBR source code into ns-3 version
3.40, and conducted the same experiment using 100 packet
output buffer. The result was similar with that in original
version 3.40 case. This means that the difference between
version 3.40 and 3.44 does not depend on the TCP related
source code.

Although this paper could not point out the reason for the
performance difference, we showed the details on TCP BBR
behaviors over ns-3 network simulator. When using ns-3 for
network performance evaluation, much care needs to be paid.
We are planning to examine the ns-3 TCP BBR source code
in more detail.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number JP25K15075.

REFERENCES

[1] T. Sawada, R. Yamamoto, S. Ohzahata, and T. Kato, “Congestion
Control Algorithm Estimation by Deep Recurrent Neural Network and
Its Application to Web Servers on Internet,” International Journal on
Advances in Networks and Services, vol. 16, no. 1&2, pp. 27-35, 2023.

[2] S. Floyd, T. Henderson, A. Gurtov, and Y. Nishida, “The NewReno
Modification to TCP’s Fast Recovery Algorithm,” IETF RFC 6582,
2012.

[3] S.Floyd, “HghSpeed TCP for Large Congestion Windows,” IETF RFC
3649, 2003.

[4] S.Ha,L.Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no.
5, pp. 64-74, 2008.

[5] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long
distance networks,” Proc. Int. Workshop on PFLDnet, pp. 1-16, 2004.

[6] L. Brakmo and L. Perterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE J. Selected Areas in Commun.,
vol. 13, no. 8, pp. 1465-1480, 1995.

[71 C.Fuand S. Liew, “TCP Veno: TCP Enhancement for Transmission
Over Wireless Access Networks,” IEEE J. Sel. Areas in Commun., vol.
21, no. 2, pp. 216-228, 2003.

[8] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A Compound TCP
Approach for High-Speed and Long Distance Networks," In Proc.
IEEE INFOCOM 2006, pp. 1-12, 2006.

[91 N. Cardwell, Y. Cheng, C. S. Gumm, S. H. Yeganeh, and V. Jacobson,
V., “BBR: Congestion-Based Congestion Control,” ACM Queue vol.
14 no. 5, pp. 20-53, 2016.

[10] M. Hock, R. Bless, and M. Zitterbart, “Experimental Evaluation of
BBR Congestion Control,” In Proc. IEEE 25th ICNP, pp. 1-10, 2017.

[11] K. Miyazawa, K. Sasaki, N. Oda, and S. Yamaguchi, “Cycle and
Divergence of Performance on TCP BBR,” In Proc. IEEE 7th
CloudNet, pp. 1-6, 2018.

[12] D. Scholz, et al., “Towards a Deeper Understanding of TCP BBR
Congestion Control,” In Proc. 2018 IFIP Networking, pp. 1-9, 2018.

[13] S. Claypool, M. Claypool, J. Chung, and F. Li, “Sharing but not Caring
— Performance of TCP BBR and TCP CUBIC at the Network
Bottleneck,” In Proc. IARIA AICT 2019, pp. 74-81, 2019.

[14] H. Zhang, et al., “Performance Analysis of BBR Congestion Control
Protocol Based on NS3,” In Proc. 7th Int. Conf. on Advanced Cloud
and Big Data, pp. 363-368, 2019.

[15] G. Kim and Y. Cho, “Delay-Aware BBR Congestion Control
Algorithm for RTT Fairness Improvement,” IEEE Access, vol. 8, pp.
4099-4109, 2020.

[16] K. Lanigan, “An Evaluation of BBRv2 Congestion Control Using NS-
37 Trinity College Dublin, 2020, availabe at
https://publications.scss.tcd.ie/theses/diss/2020/TCD-SCSS-
DISSERTATION-2020-046.pdf, accessed Jul. 2025.

[17] L. Tang, “BBR Fairness Evaluation Using NS-3,” arXiv:2410.22560v1
[cs.NI], 2024, available at https://arxiv.org/html/2410.22560v1,
accessed Jul. 2025.

[18] “Mininet An Instant Virtual Network on your Laptop (or other PC),”
https://mininet.org/, accessed Jul. 2025.

[19] “ns-3 Network Simulator,” https://www.nsnam.org/, accessed Jul.
2025.

[20] V. Jain, V. Mittal, ad M. P. Tahiliani, “Design and Implementation of
TCP BBR in ns-3,” In Proc. Workshp on ns-3, pp. 16-22, 2018.

[21] “ns-3 document, 32.3. Fifo queue disc,”
https://www.nsnam.org/docs/models/html/fifo.html, accessed Jul.
2025.

[22] “ns-3 document, 16.5.2.10. Loss Recovery Algorithm,”

https://www.nsnam.org/docs/models/html/tcp.html#loss-recovery-
algorithms, accessed Jul. 2025.

[23] A. Aggarwal, S. Savage, and T. Anderson, “Understanding the
Performance of TCP Pacing,” In Proc. INFOCOM 2000, pp. 1157-
1165, 2000.

[24] “ns-3: APl and model change history,” https://gitlab.com/nsnam/ns-3-
dev/blob/ns-3.44/CHANGES.md, accessed Jul. 2025.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-307-1

