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Abstract—Deep neural networks are playing increasing roles in
machine learning and artificial intelligence to handle complicated
data. The performance of deep neural networks depends highly
on the network architecture and the loss function. While the
most common choice for loss function is the squared loss for
regression analysis it is known to be sensitive to outliers and
adversarial samples. To improve the robustness, we introduce
the use of the correntropy loss to the implementation of deep
neural networks. We further split the neural network architecture
into a feature extraction component and function evaluation
component and design four two-stage algorithms to study which
component is more impacted by the use of the robust loss. The
applications in several real data sets indicates that the robust deep
neural networks can efficiently generate robust representations
of complicated data and the two-stage algorithms are consistently
more powerful than their one-stage counterparts.

Index Terms—deep neural network, LSTM, correntropy loss,
robustness

I. INTRODUCTION

The history of artificial neural network dates back at least to
the perceptron invented by Rosenblatt [1]. After more than half
a century’s development, artificial neural networks are playing
increasing roles in modern machine learning and artificial
intelligence applications. Although it has been proved that the
feed-forward neural network with a single hidden layer and
sigmoid activation function can approximate any arbitrarily
complex continuous mapping with arbitrary precision [2]–
[4], more and more evidence shows that deep neural net-
works could more powerful [5]–[7]. In the past decade, along
with the fast development of hardwares and computational
power, deep neural networks have been successfully applied
to computer vision, speech and audio recognition, language
processing,customer relationship management, and many other
fields.

The performance of deep neural networks highly depends on
the network architecture and the loss function. In the context
of supervised learning, three main neural network architectures
are popularly used. The fully connected neural networks,
the convolutional neural networks, and the recurrent neural
networks. While the fully connected neural networks could be
more widely applied to any structured data set, convolutional
neural networks have been shown powerful for image analysis
and computer vision, and recurrent neural networks have
been successfully used in time series data, such as speech
recognition and natural language processing. Regarding the

loss functions, the least square loss and cross-entropy loss are
commonly used for regression analysis and classification tasks,
respectively.

Robustness concerns may arise in practice when the data
is contaminated by outliers. For instance, Rare body poses in
human pose estimation, unlikely facial point position in facial
landmark detection, imprecise ground-truth annotations,and
label misspecification all may result abnormal samples in
image processing, outliers may present in financial data due
to heavy tailed distributions, and system shock could produce
extreme and erratic values in signal processing. In these
situations, there are needs to develop deep learning robust
approaches because least square loss and cross entropy are
well known to be unrobust and sensitive to outliers. Some
efforts have been done in the literature, e.g., [8]–[10]. While
there are multiple ways to promote algorithm robustness, the
most common approach is to adopt a robust loss to train the
neural networks and typical examples include the Huber’s loss,
the Tukey’s biweight loss, the truncated least square loss, the
Cauchy loss, and the correntropy loss.

In this paper, we propose to build robust deep neural
networks by the correntropy loss. We will not only verify its
effectiveness, but also thoroughly explore where robustness
comes from. To be precise, we recall that a deep neural
network is usually regarded as the combination of two com-
ponents, the feature extraction component and the function
evaluation component. We are particularly interested in the
impact of the robust loss on these two components and will
evaluate if both components are impacted or one is more
impacted than the other. In order to make fair comparisons,
we design two-stage algorithms and conduct a comparative
study on several real world applications. The results indicate
two surprising findings: (1) While the robust loss may impact
both components, it seems the feature extraction part is more
impacted. In other words, robust deep neural networks incline
to produce more robust feature representations. (2) The two
stage implementation of deep neural networks are always more
powerful than the one stage approaches, regardless of the loss
functions used.

The rest of the paper is organized as follows. In Section II,
we introduce the deep neural networks. In Section III, we
introduce the two stage algorithms to build deep neural net-
works. In Section IV, we apply the proposed algorithms to
real world applications and present the results. We close with

27Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-056-8

DBKDA 2023 : The Fifteenth International Conference on Advances in Databases, Knowledge, and Data Applications



conclusions and discussions in Section V.

II. ROBUST DEEP NEURAL NETWORKS

In this section, we introduce two robust deep neural net-
works, the robust deep feed-forward neural network and the
robust long short-term memory neural network.

A. The correntropy loss

Outliers are abnormal or extreme values in the data that
significantly deviate from the rest of the observations. The ap-
pearance of a small amount of outliers may reduce the ability
of statistical inference and hurt the predictive performance of
machine learning models. While outlier detection and removal
are used sometimes [11] [12], a more common approach for
supervised learning is to adopt a robust loss function.

Given a data set (xi, yi), i = 1, . . . , n with xi ∈ Rd

representing the vector of d explanatory variables and yi
the response, the well-known least square method aims to
minimize the the mean square error

min
f

1

n

n∑
i=1

(yi − ŷi)
2

where ŷi = f(xi) is the prediction of the response variable
yi by a hypothetical function f . The minimization process is
conducted over a set of hypothesis functions which could be
the set of linear functions in the traditional multiple linear
regression or the set of nonlinear functions represented by a
neural network architecture. A main advantage of the least
square method is its optimality when the noise follows a
Gaussian distribution while the main criticism is the lack of
robustness when the Gaussianity is violated by outliers of
heavy tailed distributions.

The use of correntropy loss for robustness has a long
history. Its variant forms have been proposed as goodness-
of-fit measures in the literature under different terminologies,
such as the Welsch’s loss [13], the inverted Gaussian loss [14],
the exponential squared loss [15], the reflected normal loss
[16], and the maximum correntropy criterion [17] [18]. In this
paper we adot the form proposed in [19]:

L(yi, ŷi) = σ2

(
1− exp

(
(yi − ŷi)

2

σ2

))
,

where σ > 0 is a tunable parameter that trades off the
robustness and fitting errors. A robust regression approach
minimizes the mean correntropy loss

min
f

1

n

n∑
i=1

L(yi, ŷi).

There exist not only numerous empirical evidences in the
literature to show the ability of correntropy loss to promote
robustness, the theoretical guarantees were also investigated in
recent studies [20]–[23].

B. Robust Deep Feed-forward Neural Network

A fully connected feed-forward neural network (FNN) con-
sists of three parts: the input layer, the hidden layers, and the
out put layer. The input layer has d neurons, representing the d
features of the input data. Mathematically, for an input vector
x = (x1, x2, . . . , xd) ∈ Rd, the jth node of the input layer is
given by h0

j = xj . A FNN can have one or multiple hidden
layers. It is called a shallow neural network if there is only
one hidden layer and a deep neural network if there are two
or more hidden layers. As we have already mentioned above,
although a shallow neural network has the ability to well
approximate arbitrarily complicated functions, there are both
empirical and theoretical evidence that deep neural networks
are more powerful in real applications. For hidden layers, the
value of each neuron is computed from all neurons of the
precedent layer by an affine linear mapping and an activation
function: let hl,j denote the j-th node of the l-th layer and dl
be the number of neurons in the l-the layer. Then

hk,j = a

dl−1∑
j=1

wl,j,khl−1,j + bl,j

 ,

where wl,j,k ∈ R, bl,j ∈ R, and a is an activation function.
The most popular choices for the activation function include
the sigmoid function, the hyperbolic tangent function, and the
rectified linear activation function (ReLU). The output layer of
an FNN will produce predicted values for the response vari-
able. For a regression analysis with a scalar response variable,
the output layer contains one neuron by linear function of the
last hidden layer:

ŷ =

dL∑
j=1

wL,jhL,j + bL,

where L denotes the number of hidden layers. Figure 1 shows
an example of FNN with two hidden layers and a single output.
The number of output neurons can be more than one for vector
valued regression analysis or classification problems.

Fig. 1. A deep Feed-forward neural network with two hidden layers

The training of the weight and bias parameters of FNN
requires a loss function to measure the error when ŷi is used
to predict the true response value yi for each observation xi. In
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this paper, we implement the robust deep feed-forward neural
network (RFNN) by minimizing the mean correntropy loss.

C. Robust Long Short-Term Memory Neural Network

Long Short-Term Memory Neural Network (LSTM) was
first introduced by Hochreiter and Schmidhuber [24]. In 1999,
Felix et al. [25] introduced a forget gate mechanism based on
Hochreiter and Schmidhuber’s work, which enables LSTM to
reset its own state to avoid network crashes. Several variant
models were proposed since then. LSTM is a special kind
of recurrent neural network and has been shown effective for
time series analysis, speech recognition, language translation,
and natural language processing due to its ability to memorize
long and short term information.

Fig. 2. LSTM network structure

Figure 2 shows the core structure of LSTM. The long term
information is stored in the cell states and pass through the
entire chain system of LSTM from beginning to end. Three
layers will used to decide what information will be removed
and what information will be added. The forget gate layer
generate f t of a vector of values between 0 and 1 based on
the current input xt and previous moment output ht−1 via
affine linear transforms and sigmoid activation function:

f t = a (Wfxt + Ufht−1 + bf )

where Wf is a matrix of weight coefficients and bf a sequence
of biases. The values of f t determine the percentage of
information in Ct−1 that are allowed to pass through, in
other words, the information (1−f t) ∗Ct−1 will be removed
or “forgotten”, where ∗ denotes element wise multiplication
operator . A tanh layer will produce values representing
candidate information :

C̃t = tanh (WCxt + UCht−1 + bi) ,

and the input gate layer produced it, again a vector of values
between 0 and 1, by

it = a (Wixt + Uiht−1 + bi)

to decide the percentage of candidate information C̃t to be
added to the cell state. The cell state is then updated by

Ct = f t ∗ Ct−1 + it ∗ C̃t.

After the cell state is updated, LSTM will use the output
gate will first compute

ot = a(Woxt + Uoht−1 + bo)

and then use tanh(Ct) as weight coefficients to generate the
output

ht = ot ∗ tanh(Ct),

which will be further used to produce the prediction of the
response variable. In this paper a linear function

ŷt = w⊤ht + b

is used. Given a sequence of time series x1,x2, . . . ,xT and
corresponding response series y1, y2, . . . , yT , the robust LSTM
will minimize the mean correntropy loss

1

T

T∑
i=1

L(yt, ŷt)

over the historical period to estimate the network parameters.

III. TWO STAGE ALGORITHMS

When the data are contaminated by outliers or are skewed
and have heavy tails, robust algorithms are supposed to per-
form better. As we will see in Section IV below, our robust
deep learning algorithms are indeed superior as expected when
they are applied to real applications with robustness concerns.

The success of deep neural networks have been largely
attributed to its ability to extract information from the compli-
cated data. Therefore, it is commonly recognized that a deep
neural network can be split into two parts: a feature extraction
part and a function evaluation part, where the first part extract
relevant features from the input data and second part use the
features to build a decision function. As we are able to show
the superiority of robust deep learning algorithms, we want to
explore further and answer the questions that (1)“whether the
robust deep learning algorithms promote robustness of feature
extraction and lead to robust representation?” and (2) “which
part of the network is more impacted by the use of robust
loss?” To answer these questions, we propose a series of two
stage algorithms.

For FNN and RFNN, we regard the part from the input to the
last hidden layer as the feature extraction process and from the
last hidden layer to output as the function evaluation part. We
first run FNN and robust FNN to build two neural networks.
Then we extract the features and run the linear regression with
either least square (LS) approach or the robust regression (RR)
with correntropy loss. This leads to four two-stage algorithms:
FNN+LS, FNN+RR, RFNN+LS, and RFNN+RR, where the
FNN+LS uses the features extracted from FNN and least
square regression to predict the response variable, FNN+RR
uses the features extracted from FNN and robust regression,
RFNN+LS uses the features extracted from RFNN and least
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square regression, and RFNN+LS uses the features extracted
from RFNN and robust regression. If RFNN+LS outperforms
FNN+LS, we are able to conclude that the feature extraction
process by RFNN is robust. Otherwise the correntropy loss
does not robustify the feature extraction process. On the other
hand, if RFNN+RR outperforms RFNN+RR, the correntropy
loss plays a role in the function evaluation process.

In LSTM we regards the values in output ht are the features
extracted from the input xt and previous information. We can
similarly design four two-stage algorithms to study the robust
representation ability of RLSTM.

IV. APPLICATIONS

In this section, we apply our algorithms to real-world
applications and illustrate their effectiveness.

A. Airfoil Data Set

Airfoil Self-Noise Data [26] is a NASA data set which
obtained from a series of aerodynamic and acoustic tests of
two and three-dimensional airfoil blade sections conducted
in an anechoic wind tunnel. It is a multivariate data set
with 5 attributes (Frequency, Angle of attack, Chord length,
Free-stream velocity and Suction side displacement thickness)
measuring scaled sound pressure level. The data set contains
1503 instances. Figure 3 shows the histogram of the response
variable. It is clearly left skewed.

Fig. 3. Histogram of response variable for airfoil data

We randomly sampled 50% (Different split ratios do not
significantly affect the final results) of the data as training set
and remaining data as test set. We apply FNN, RFNN, and all
four two-stage algorithms to build models and predict on the
test set. The neural network contains two hidden layers with
each hidden layer containing 64 hidden neurons. Tensorflow
in Python is used to train the neural network with both the
epoch and batch sizes selected as 50. The parameter σ is not
sensitive and a value of σ = 10 is used. The experiments are
repeated 50 times. The average mean absolute error (MAE)
and the standard error (SE) of all six approaches are reported
in Table I.

Firstly, we see that RFNN outperforms FNN, indicating the
use of correntropy loss improves the robustness of the neural

network estimation. Next, RFNN+LS outperforms FNN+LS
and RFNN+RR outperforms FNN+RR, that is, when the
same regression approach is used, using features from RFNN
is always better. This means that the features extracted by
RFNN is more informative and therefore we can claim that
the RFNN helps to extract features more robustly. Thirdly,
FNN+RR outperforms FNN+LS and RFNN+RR also outper-
forms RFNN+LS, but the improvement is not significant. This
means that once the features have been extracted, further use of
robust loss in the regression step does not help much. Lastly,
it is surprising to see that FNN+LS outperforms FNN and
RFNN+RR outperforms RFNN, indicating that when the same
loss function is used, the two-stage algorithms are consistently
better than traing the neural network directly. Further more,
if we change the loss function in the second regression stage,
the two-stage algorithms are still better.

B. Boston Housing Data Set

Boston Housing Data Set contains information collected
by the U.S Census Service concerning housing in the area
of Boston Massachusetts. It is a multivariate data set with
13 attributes measuring the median value of owner-occupied
homes. It contains 506 instances. Figure 4 show the histogram
of the home values. We can see outliers on the right end.

Fig. 4. Histogram of home values in Boston housing data

This data has been build in the sklearn module in Python
where the training set and test set have been automatically sep-
arated. We merged them together and then randomly sampled
50% as training set and put the remaining data into the test set.
The hyperparameters and analysis process are the same as the
experiment for Airfoil data. The results are shown in Table I.
The findings are very similar to the application in Airfoil data:
RFNN is more robust than FNN. The use of correntropy seems
play more roles in robust feature extraction while less roles in
function evaluation. A follow-up regression stage helps further
improve the performance.

C. Agroecosystem Data

This data is collected by Dr. Song Cui at the MTSU
Department of Agriculture. It contains carbon, water and
energy fluxes of a cool-season dominated pasture ecosystem
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for 159 days from September 2, 2016 to May 3, 2017. For each
day, there are 48 data points with each data point a summary of
the relevant information in half an hour. If the data is complete,
there should be 7632 data points in total. But due to power
outage or system failure, a small number of data points are
missing and the data actually contains 7265 data points. In
this analysis, 12 driver variables that measure the radiation,
humidity, temperature, wind, and some other features, were
used to predict evapotranspiration flux. Outliers due to system
shocks can be clearly seen from plot in Figure 5.

Fig. 5. Plot of evapotranspiration flux

The deep neural network with two hidden layers and 64
hidden neurons for each layer is again used for the analysis.
A 50%-50% split is again used for training and test data
split. The RFNN used σ = 50. The experiments are repeated
50 times and the average MAEs are reported for all six
approaches in Table I. Similarly, we find the RFNN is able
to lead to robust representation of the data and two-stage
algorithms are more powerful.

D. CSI 300 Data

Per Wikipedia [27], the CSI 300 is a capitalization-weighted
stock market index designed to replicate the performance of
the top 300 stocks traded on the Shanghai Stock Exchange and
the Shenzhen Stock Exchange. it is a gauge of Chinese stock
market. In this experiment, the trading information (opening
price, closing price, highest price, lowest price and volume)
of CSI 300 from January 3, 2017 to December 29, 2018
(excluding weekends and holidays) used. Figure 6 show the
closing prices. Stock prices are typical examples of time series
involving sudden changes and abnormal values due to the
reaction to government policies, economical indicators, and
sentiments.

The analysis aims to predict the closing price based on
the opening price, the previous day’s opening price, closing
price, highest price, lowest price and volume. As the price
data can be viewed as time series, LSTM is appropriate. The
results by six approaches are reported in Table II. Although
a different network architecture is used in this experiment,
the findings are still consistent with previous applications.
The only difference is that the use of robust regression in

Fig. 6. Histogram of closing prices in CSI 300

TABLE I
MAE ON AIRFOIL AND BOSTON HOUSING DATA

Method Airfoil Boston Housing Agroecosystem
FNN 0.2366 (0.0023) 0.2761 (0.0045) 0.1877 (0.0026)
FNN+LS 0.2235 (0.0016) 0.2719 (0.0040) 0.1720 (0.0007)
FNN+RR 0.2223 (0.0016) 0.2702 (0.0040) 0.1719 (0.0007)
RFNN 0.2279 (0.0018) 0.2706 (0.0035) 0.1779 (0.0014)
RFNN+LS 0.2173 (0.0014) 0.2681 (0.0035) 0.1714 (0.0009)
RFNN+RR 0.2161 (0.0014) 0.2669 (0.0035) 0.1713 (0.0008)

the second stage play more roles, as is evidenced the better
performance of LSTM+RR and RLSTM+RR than that of
LSTM+LS and RLSTM+LS, respectively.

TABLE II
MAE ON AIU AND CSI300 DATA

Method CSI300
LSTM 0.2221 (0.0007)
LSTM+LS 0.2133 (0.0007)
LSTM+RR 0.2016 (0.0006)
RLSTM 0.2197 (0.0008)
RLSTM+LS 0.2116 (0.0007)
RLSTM+RR 0.2012 (0.0007)

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed to implement robust deep neural
networks by using the correntropy loss and four two-stage
algorithms. Simulation studies on four real data applications
show that the robust deep neural networks are more efficient to
handle data with outliers or skewed. Moreover, the robust deep
neural networks are able to efficiently extract more informative
features, indicating the entropy loss plays more roles in robust
representation of the data.

The superiority of two-stage algorithms is a serendipity. The
original motivation of these algorithms is to study how the
robust loss plays roles in the network construction process,
not for better performance. The simulations surprisingly show
that all two-stage algorithms are consistently better than their
one-stage counterparts, regardless the loss function used.

In this paper we have focused on the fully connected deep
feed-forward neural networks and the LSTM for regression
analysis. Convolutional Neural Network (CNN) is another
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representative algorithms of deep learning is particularly con-
fidential for its excellent performance in image processing
and computer vision. We can similarly develop robust con-
volutional neural network. However, it seems CNN is more
widely used in classification problems while the correntropy
loss is more appropriate for regression analysis. So, we have
omitted the study of robust CNN in this paper. But the idea
of two-stage training is promising and it would be interesting
to develop two-stage CNN algorithms with appropriate clas-
sification loss functions, such as the cross entropy loss.
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