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Abstract —Distributed control plane solutions are adopted 

in large SDN-controlled networks, to improve control plane 

scalability. Many studies exist, on Controller Placement or 

Selection Problem (CPP/CSP) using different optimization 

criteria. Most of them consider static solutions to optimize 

controller placement. However,   in a dynamic context, (i.e., 

traffic flows variation, possible failures of links, nodes, or 

controllers, etc.) the initial controller placement and 

controller-to-forwarders mapping could be no more optimum. 

Additionally, in practice, the controllers have limited 

processing capacity so, their overload is possible. A solution for 

the above problems could be a partial dynamic switch 

migration, e.g., when detecting some controllers’ overload. The 

contribution of this work-in-progress paper is an enhancement 

proposal of a dynamic migration solution (recently proposed in 

the literature), by introducing a multiple condition-aware 

migration complex decision. The proposed approach could 

solve the trade-offs between different optimization objectives 

of the network operator. 

Keywords — Software Defined Networking; Controller 

placement; Multi-condition-aware switch migration; Multi-

criteria optimization; Forwarder nodes assignment; Reliability.  

I. INTRODUCTION 

The usual solution to assure the scalability of the 

Software Defined Networking SDN control plane is a 

distributed multi-controller implementation (flat or 

hierarchical organization), e.g., in [1][2]. 

Basically, a SDN controller (SDN-C) is placed in a 

geographically distinct location, i.e., physical network node. 

However, the recent Network Function Virtualization 

technologies [3] allow that SDN-Cs virtualization (notation 

for such a controller will be vSDN-C); several vSDN-Cs can 

be collocated in the same physical node. In the following 

text we suppose the basic approach, but the models 

developed in this paper can be as well applied to a 

virtualized environment.  

A major issue in SDN large networks is the Controller 

Placement Problem (CPP). A lot of studies already exist 

dedicated to this problem [4-12]. Recent works are still 

elaborated, given that many associated issues exist together 

with CPP itself. Some examples are: network topology - flat 

or clustered; what are the criteria used to solve the CPP; 

number of controllers; failure-free or failure-aware metrics 

(controllers and/or node/link failures); controller- 

forwarder/switch mapping (in a static or dynamic way, i.e., 

depending on actual network conditions and network 

provider policies), etc. The optimality of the   different 

solutions can be studied on some simplified topologies – in 

order to compare the approaches or, on real specific network 

topologies. The CPP is a non-polynomial NP-hard problem 

[4]; therefore, many pragmatic static/dynamic solutions 

have been proposed, using specific optimization criteria, 

targeting good performance in failure-free or failure-aware 

approaches.  
Given the complexity of a real network environment, 

there is no unique best placement rule for CPP. Many of the 
current existing CPP solutions consider static mapping 
switches-controllers, thus having no capability of adaptation 
to dynamic load. However, during the network run-time, 
dynamic nodes addition and deletion can happen, or traffic 
variation (consequently, controller loads fluctuation appear), 
link/node/controller failures can appear, etc. In such cases, 
one can apply dynamic switch migration from the current 
controller to a new more appropriate controller, if enough 
pertinent and updated information exist at run-time [13-17]. 
This migration can be included in a more general Controller 
Selection Problem (CSP) and can be considered as an 
extension of the CPP [5]. 

The main parameter to be taken into account when 

deciding on switch migration is the current load of the 

controllers, dynamically evaluated by a monitoring system 

[13-17]. The switching objective is to achieve better load 

balancing and avoid controllers’ overload. However, other 

individual parameters might be important, like controller-

switch communication latency, inter-controller 

communication throughput, reliability-related properties, etc. 

Other specific optimization goals could be added to the 

above list, depending on specific network context (wire-line,   

wireless/cellular, cloud computing and data center 

networks) and on some specific business targets of the 

SDN-controlled network owner. A major problem is that 

different optimization criteria could naturally lead to non-

convergent solutions; therefore, a multi-criteria global 

optimization could be a useful approach.  

The contribution of this paper is a proposal to enhance a 

single criterion dynamic switch migration algorithm, 

recently proposed in the literature, [13][14], by introducing 

a multiple condition-aware migration complex decision. The 

procedure used is an extension of the method developed in 

[18] based on multi-criteria decision algorithms (MCDA) 
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[20]. Therefore, the goal here is not to develop some new 

optimization algorithm based on a single criterion, but to 

prove the value of multi-criteria CPP/CSP optimization 

approach, both statically, or performed during run-time. The 

input of MCDA is the set of candidates (e.g., an instance of 

controller placement and implicit a switch-controller 

mapping is called a candidate solution).  Examples have 

been illustrated in the paper, on some simple network 

topologies, proving the usefulness of the approach. This 

work is still in progress; a simulation model is currently in 

development and its results will be reported in a future 

paper. 
The paper structure is described here. Section II is a short 

overview of related work. Section III presents a flow-aware 
dynamic switching algorithm recently proposed [13][14]. 
Section IV shortly recalls the framework for MCDA-RL (the 
“reference level”). Section V contains the main paper 
contribution i.e., an   enhancement proposal of the dynamic 
migration solution (described in Section III), by introducing 
a multiple condition-aware switch migration complex 
decision which could solve the trade-offs between different 
objectives of such optimization. Simple examples are given 
to prove the value of multi-criteria optimization. Section VI 
presents conclusions and future work. 

II. RELATED WORK 

This short section is included mainly for references. In 
works [4-8][19], specific optimizations based generally on a 
single criterion are proposed, while comprehensive surveys 
on CPP/CSP are overviewed in [9-12].  The general goal is 
to find those controller placements that provide high 
performance (e.g., low delay for controller-switch 
communications) and also create robustness to controllers 
and/or network failures. The studies [13-17] are oriented on 
CSP issues i.e., switch migration and load balancing 
algorithms. The work [18] applies MCDA [20] in order to 
consider several criteria in a static CPP approach. 

An early work of Heller et al. [4], has found optimal CPP 
solutions for realistic network instances, in failure-free 
scenarios, by analyzing the entire solution space, with off-
line computations (the metric is switch-to-controller latency). 
The works [6-8][19] additionally considered the resilience as 
being important with respect to events like: controller 
failures, network links/paths/nodes failures, controller 
overload, load imbalance. The inter-controller latency is 
also important; generally, it cannot be minimized while 
simultaneously minimizing controller-switch latency- 
therefore - a tradeoff solution could be the answer. 

K.Sood and Y.Siang [5] propose to transform the CPP 
problem into Controller Selection Problem (CSP), i.e., 
consider the dynamics of the network and make controller 
selection for group of forwarders. They explore the 
relationship between traffic intensity, resources requirement, 
and QoS requirements. They search solutions which are 
topology-independent and adaptive to the needs of the 
underlying network behaviour. The optimal number of 
controllers is calculated, to reduce the individual workload, 
of a controller; the paper investigates the placement/location 

of the controllers. However, the first declared objective in [5] 
has been to motivate the CSP and not to determine the 
optimal placement of controllers in the network. 

The work [6] they developed several algorithms for real 
topologies, considering the reliability of SDN control, but 
still looking for keeping acceptable latencies. The controller 
instances are chosen as to minimize connectivity losses; 
connections are defined according to the shortest path 
between controllers and forwarding devices.  

Hock et.al. [7] adopted a multi-criteria approach for some 
combinations of the metrics (e.g., max. latency and controller 
load imbalance for failure-free and respectively failure use 
cases). Muller et.al. [8] eliminate some restrictions of 
previous studies, like: single paths, on-demand only 
processing (in controllers) of the forwarders requests, and 
some constraints imposed on failover mechanisms.  

Yang Xu, Marco Cello et al., [13]14] recently developed 
a comprehensive solution for dynamic switch migration, 
based on run-time information delivered by a monitoring 
system. This approach will be further described in Section III 
as the starting point for work presented in this paper. 

The paper [15] proposes a switch migration method, 
where switch migration is seen as a signature matching 
problem and is formulated as a 3-D earth mover's distance 
model to protect strategically important controllers in the 
network. A heuristic method is proposed, time-efficient and 
suitable to large-scale networks. Simulation results show that 
one can disguise strategically important controllers by 
diminishing the difference of traffic load between controllers. 
The proposed methods can relieve the traffic pressure of 
controllers and prevent saturation attacks.  

In [18] a multi-criteria based algorithm is used 
(applicable for an arbitrary number of decision criteria) to 
solve the CPP. 

This paper extends the solution of [13][14] and is  based 

on [18] work. A multiple condition-aware switch migration 

complex decision is introduced which could solve the trade-

offs between different objectives (thus solving a dynamic 

selection problem - CSP).  

III. A FLOW-AWARE SDN DYNAMIC  SWITCH 

MIGRATION ALGORITHM 

This section will shortly present (as a starting point) a 

recent solution developed by Yang Xu, Marco Cello et al.  
in [13][14], for dynamic SDN switch migration, to avoid 

controller overload. Then, in the next section we will 

propose an enrichment of the decision for SDN switch 

migration, considering that in practice multiple conditions 

could actually exist, to influence the switch-to-controller 

assignment, i.e., not only the controller overload.  Other 

criteria to take a decision can also be important, like switch-

controller communication delay, reliability capabilities, etc. 

A multiple criteria optimization algorithm could offer a 

better trade-off solution. 

A. The SDN switches migration problem   

In [13][14], the switch migration scenario is analyzed, 

starting from a given switch-to-controller assignment and 
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partition (based on some criteria) of the network, in 

domains; each one is controlled by a single controller. Also, 

a realistic assumption is considered, i.e., limited processing 

capacity of the controllers. During run-time, if some 

controllers are overloaded (such events are dynamically 

observed by a monitoring system), then a heuristic 

algorithm is applied, to optimally move (re-assign) a 

number of the switches coordinated by the overloaded 

controller to another controller less loaded. In order to 

reduce the control plane signaling (needed to govern the 

migration) between controllers, the migration is cluster-

based. In other words, not a single switch is migrated, but a 

cluster of switches are moved from an overloaded 

controller, e.g., CTi, to another less loaded controller CTj. 

Thus, the algorithm realizes a controller load balancing (the 

name BalCon is coined for this algorithm [13]). The 

[13][14] works do not assume a predictable traffic or  well-

known traffic patterns among the SDN switches. Instead, 

the network load level is learned from monitored values of 

the input or transited flows through the network of SDN 

switches.  

The scenario supposes a set S of SDN switches, 

managed by a set CT of controllers. Let Si be a SDN switch 

controlled by the SDN controller CTm. The following flow 

arrival rates are considered: 

 fo,Si  at Si from outside (e.g., from some hosts) the SDN 

network,  

        fSi,o flows leaving the network from Si,  

  fSi,Sj  - current  arrival rate of new flows going on the link 

between the two connected switches, from Si to Sj. 

All the above flows generate processing tasks in the 

controller CTm. Here, it is assumed the case which produces 

the highest controller’s load: reactive SDN control behavior 

is applied. This means that for each new flow coming to a 

switch, a packet_in message is uploaded to the controller. 

The message is asking the controller to process the flow 

information and then to install in the switch Si new rules for 

that flow.  

The SDN network of switches was previously 

partitioned (using some algorithms) in disjoint “control-

domains”, each one controlled by a single controller. The 

total load L(CTm) at controller CTm is composed of three 

main components:  

- the path computation load of new flows arriving from 

  outside the SDN network, to the switches 

“belonging” to CTm 

  another SDN domains of the same SDN network 

- the rule installation load at each switch controlled by 

CTm, for all flows crossing the domain controlled by 

CTm. 

To evaluate in a generic way the computational effort of a 

controller due to the instantiation of the new flows, the work 

[14] considered that path computation for a single flow 

requires α units of load, whereas the rules installation of a 

single flow in a single switch requires β units of load. So, 

the overall computation load for each controller can be 

evaluated, given the flow arrival rates at the switches 

coordinated by it. 

If the CTm has in its partition/domain a set Sw(CTm) of 

SDN switches, then its overall load L(CTm) (see detailed 

formulas  in [14]),  is:  

L(CTm)=Lcmp(CTm) + Linst(CTm)              (1) 

where the index cmp denotes  the computation load and inst 

denotes the installation load. The two components are: 

    Lcmp(CTm) = Lcmp(CTm)in+Lcmp(CTm)transit 

  

    Linst(CTm) = Linst(CTm)out+Linst(CTm)transit             (2) 

 

The notations are explained below.  

Lcmp(CTm)in and Lcmp(CTm)transit are the sums of all 

computation loads associated to input flows for all switches 

in Sw(CTm), related to fo,Si  and respectively to  fSj,Si , where 

Si  Sw(CTm). 

Linst(CTm)out and Linst(CTm)transit are  the sums of the 

installation loads for all switches in Sw(CTm), in order to 

instruct each switch about flows going out of it, outside of 

the SDN network, or flows going out to another switch of 

the SDN network.  

An SDN controller is overloaded or even congested when 

its overall computational load is L(CTm) > L, where L is the 

maximum load to be admitted for CTm. Note that in [14], the 

same value L is supposed for all controllers (this can be seen 

as  a limitation of the method). 

The Optimal Controller Load Balancing (OCLB) 

problem is defined in [14] as to find the partition which 

minimizes the worst case of load of a controller CTm, 

among the set CT of all controllers. It is stated in [13] that 

the OCLB problem is NP-complete. Therefore, a heuristic 

algorithm is proposed. 

The OCLB problem is actually to partition a network 

graph. The computation of L(CTm) for each CTm can be 

induced directly from the graph. The SDN network is 

modeled as a directed edge-weighted and vertex-weighted 

graph G(S, E) in which SDN switches are the vertices with 

weights l(Si), where Si S and edges E = {(Si, Sj) : Si, Sj  

S, l(Si, Sj) > 0}, are the inter-connections among SDN 

switches. The value l(Si, Sj) is the edge weight of (Si, Sj). 

Equivalently, the overall load at CTm is the sum of the 

weights of the vertices belonging to its partition plus the 

sum of weights of the edges directed to the partition of CTm. 

Specifically, the switch Si placed in the partition of CTm, 

produces the following load for its controller CTm: 

 

l(Si) = Lcmp(CTm)in,Si + inst(CTm)out,Si+Linst(CTm)transit,Si,Sj  (3) 

 
The l(Si) is the sum of computing load in CTm, for flows 

coming into Si from external networks added to the   
installation load of the  CTm, in order to install rules in Si for 
flows going out of Si (to external networks/hosts, or to other 
switches). 

l(Sj, Si) =  Lcmp(CTm)transit,Sj,Si     (4)
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Figure 1. Switch migration from D1 to D2 – example; a. before migration; b. after migration

 

  The weight l(Sj, Si) =  Lcmp(CTm)transit,Sj,Si   is the 

computation load in CTm, induced by the Si when it receives 

a new flow from Sj. 

BalCon is a heuristic algorithm, operating during the 

network runtime. It detects and solves congestion at the 

SDN controllers through optimized SDN switch migrations. 

BalCon can be implemented as a northbound application of 

the SDN controller. BalCon consists of three phases: 

1) Monitoring and congestion detection: BalCon 

monitors the congestion level at each controller. If the load 

of a controller CTm reaches a given threshold, then BalCon 

computes a list of switches that may be migrated. The list is 

ordered by a priority based on a pre-determined metric. 

2) Clustering and migration evaluation:  starting from the 

SDN switches in the priority list, BalCon analyzes the 

traffic pattern among switches to find clusters of heavily 

connected switches. 

     3) Cluster migration: the best cluster is found and the 

migration is evaluated; the switches belonging to the cluster 

are migrated to the new SDN controller.  
 
Figure 1 a. shows a SDN network partitioned in two 

domanins D1 and D2, controlled by the controllers CT1 and 
respectively CT2. Each vertice Vi of the graph is a network 
node accommodating a switch or a switch and a controller. 
The example shows three set of flows going into the 
network, routed as in the figure and producing  F1: 40 
flows/sec; F2:25 flows/sec and F3:20 flows/sec. We assume 

that =1 and  = 0.1 [14]. Then, computing the loads for CT1 
and CT2 ( formulas (1) and (2) are applied), we get : 

    L(CT1) =  (30+25+20) + (3*30 +2*25 + 2*20) = 75 + 
18 =93 units of load 

    L(CT2) = (25 + 20) + (2*25 + 2*20) = 45+9 = 54 units 
of load. 

Supposing that L=80 (maximum load for a controller) 
one can see that the CT1 is overloaded. If for instance, V5 and 
V1 migrate to CT2, then the loads will be modified (see Figure 
1 b.). This simple example qualitatively proves that an 
appropriate migration can realize better load balancing. 

    L(CT1) =  (30+20) + (3*30 +2*25 + 2*20) = 50 + 18 
=68 units of load. 

    L(CT2) = (25 + 20) + (3*25 + 4*20) = 45+15.5 = 60.5 
units of load. 

This second partition provides better load balance. 

 B. The BalCon Algorithm 

This sub-section summarizes the BalCon algorithm 
proposed in [14]. It is activated when an overload is detected 
for a controller, by a monitoring system. The input data in 
the algorithm are: the network graph G(S, E); the identity of 
a congested controller CTm and its load; the set of switches 
Sw(CTm) controlled by CTm. A cluster of switches to be 
migrated is started to be defined and then expanded via 
iterations (IncreaseCluster function). The migrations to 
different target SDN controllers of the selected cluster are 
evaluated by a function ComputeMigrationAlternatives. For 
each controller, it computes the controller load and the 
migration size (the number of switches to be migrated). 
Finally, the function Evaluate-BestMigrationAlternative 
evaluates the best alternative (based on some optimum 
criteria). The computation steps are [see details in 14]:  

 
A=Ø; A is the set of cluster switches 
A = ComputeStartingSwitchesList(Sw(CTm))  

foreach Si  A do 

           T = {Si}; T is the cluster 

           alternatives =    

                 alternatives∪ComputeMigrationAlternatives(T ); 

          while 1 do 

  newT = IncreaseCluster(T ); 

 if size(T ) >mcs_ newT = T then break; 

T = newT ; 

alternatives = alternatives ∪  

ComputeMigrationAlternatives(T ); 

            od 

       od 

[T
 0
, Target_SDN_controller

0
] ← 

EvaluateMigrationAlternatives (alternatives);  
 
Starting from the cluster T, the function IncreaseCluster 

constructs the set neighborsT composed of all SDN switches 
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that are neighbors to T. An SDN switch Si is a neighbor of T 

if ∃Sj ∈ T : l(Si, Sj) ≠ 0, l(Sj, Si) ≠  0. The function selects 

the neighbour that maximizes the relative density Density 
[11] of the newly created cluster. The rationale is that only 
SDN switches with strong inter-connections should be 
grouped into the same cluster. Then the cluster will be 
migrated between controllers as a whole, to reduce the 
overall computation complexity (related to migration) of 
controllers. 

The algorithm halts if the cluster reaches a predefined 

size mcs (max cluster size), or the increased cluster is equal 

to the old one (newT = T). The next switch in A is then 

selected and inserted in an empty cluster T. When the max 

starting switch list size is reached, all the migration 

alternatives are evaluated (AlternativeEvaluation). The best 

alternative composed by the cluster and the target SDN 

controller are chosen and the migration can be executed. 
Given the alternatives vector, the function 

EvaluateMigrationAlternatives chooses the best alternative 
([T

0
,Target_SDN_controller

0
]) among them, that optimizes 

one of the following Evaluation-Method like: 
minMax - minimize the maximum controllers’ load: 
argmin ( max [L(CT1), . . . , L(CT|CT|) ])   (5) 
alternatives 

 
minSum - minimize the sum of controllers’ load: 

argmin       L(CTm)     (6) 
alternatives   CTmCT 

 
Note that the optimization criteria presented above is the 

unique load balancing objective, based on the current load of 
the controllers. This can be considered as a limitation of this 
method. 

IV. MULTI-CRITERIA OPTIMIZATION ALGORITHMS 

The placement of the SDN controllers and/or selection, 
or switch migration may involve several particular metrics.  
The migration of switches can use the metric defined by 
formulas (5) or (6). So, to achieve particular objectives, 
appropriate static and/or dynamic optimization algorithms 
can be applied. However, the CPP, CSP and switch 
migration problems have naturally multiple conditions 
characteristics; therefore, the MCDA is a good approach to 
achieve a convenient trade-off solution.  

This paper uses the same variant of MCDA 
implementation i.e., the reference level (RL) decision 
algorithm (MCDA-RL) [20]. Here, the MCDA will be 
applied as to enhance the solution for dynamic switch 
migration, by adding the possibility to obtain a trade-off 
between load balancing objective and some other possible   
criteria. The MCDA-RL selects the optimal solution based 
on normalized values of different metrics. For the sake of 
completeness we summarize the MCDA-RL model.  

The MCDA assumes m objectives functions (whose 
positive values, should be minimized). A solution  is 
represented  as a point in a space R

m 
of objectives;  the  

decision parameters/variables are: vi, i = 1, ..m,  with i, vi ≥ 
0; the  image of a candidate solution is Sls=(vs1,vs2, ..,vsm), 

represented as a point in R
m
. The number of candidate 

solutions is S. The value ranges of decision variables may be 
bounded by given constrains. The optimization selects a 
solution satisfying a given objective function and 
conforming to a particular metric. 

The MCDA-RL [20], defines two reference parameters: ri 

=reservation level=the upper limit, not allowed to be crossed 
by the actual decision variable vi of a solution; ai=aspiration 
level=the lower bound, below which the decision variables 
(i.e., the associate solutions) are seen as similar (i.e., any 
solution can be seen as “good”- from the point of view of 
this variable). For each decision variable vi, one can define 
two values named ri and ai, i= 1, ..m, by computing among 
all solutions s = 1, 2, ..S: 


, ..S, , s = v  = a

, ..S, s = v r

isi

isi

21][min

21 ],[max  =


Normalization can make the algorithm agnostic versus 
different nature of criteria; the normalized non-dimensional 
values can be numerically compared despite their different 
nature. The absolute value vi of any decision variable is 
replaced with distance from it to the reservation level: ri-vi; 
(so, increasing vi will decrease the distance). For each 
variable vsi, a ratio is computed: 

 is)-a)/(r-v' = (rv iisiisi ,,  

The factor 1/(ri-ai) - plays also the role of a weight. A   
variable having high dispersion of values (i.e., max – min has 
a high value in formula (7)) will have lower weight and so, 
greater chances to be considered in determination of the 
minimum in the next relation (9). On the other side, if the 
values min, max are rather close to each other, then any 
solution could be enough “good”, w.r.t. that respective 
decision variable.  

The basic MCDA-RL algorithm steps are (see also [18] ): 
Step 0. Compute the matrix M{vsi'}, s=1…S, i=1…m 

Step 1. Compute for each candidate solution s, the minimum 

among all its normalized variables vsi': 

 ...m'}; i={v = sis 1minmin    (9) 

Step 2. Select the best solution: 

 , ..S}, s= {  = v sopt 1minmax   (10) 

Formula (9) selects for each candidate solution s, the 

worst case, i.e., the closest solution to the reservation level 

(after searching among all decision variables). Then the 

formula (10) selects among the solutions, the best one, i.e., 

that one having the highest value of the normalized 

parameter. One can also finally select more than one 

solution (quasi-optimum solutions in a given range).  

Different policies can be applied for selection; some 

decision variables could be more important than others. A 

simple modification of the algorithm can support a variety 

of provider policies. The new normalized decision variables 

will be: 
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         )-a)/(r-v(r' = wv iisiiisi   (11) 

where wi  (0,1] is a weight (priority), depending on policy 
considerations. Its value can significantly influence the final 
selection. A lower value of wi represents actually a higher 
priority of that parameter in the selection process. 

V. MULTIPLE CONDITIONS-AWARE DYNAMIC SWITCH 

MIGRATION 

This section will develop the main contribution of this 
paper, i.e., to consider several conditions to decide upon 
SDN switch migration and therefore, to transform the 
BalCon algorithm (shortly described in Section III, [13][14])  
in a multi-criteria one, by making a trade-off optimization 
based on several weighted criteria. The idea is that the switch 
migration will change the controller-switch mapping and 
therefore, it can be seen as a new optimization problem 
derived from CPP/CSP.  

Examples of several metrics of interest have been 
presented in [18].  A selection of them (at network provider 
choice and policies) can be included in the function 
EvaluateMigrationAlternatives of the BalCon algorithm, thus 
offering the possibility to decide upon a solution determined 
by multiple conditions and not only by the controller 
overload. The MCDA methodology will be applied. Some 
examples of such metrics are given below. 

A. Other metrics examples 

The SDN-controlled network can be abstracted by an 
undirected graph G(V, E), with  V - set of nodes, E – set of 
edges and  n=|V| the total number of nodes. Note that this 
graph is different from the flow-based graph considered in 
the Section III. The edges weights may represent an additive 
metric (e.g., average propagation latency).    

A basic metric is d(v, c): shortest path distance from a 

forwarder node vV to a controller cV. We denote by  Ci a 

particular placement of controllers; Ci  V and |Ci| < |V|. The 
number of controllers can be limited to |Ci|= k for any 
particular placement Ci. The set of all possible placements is 
denoted by C = {C1, C2 …}. Some metrics are basic, i.e., 
failure-free; others could take into account failure events of 
links or nodes. It is assumed that the controllers are installed 
in particular positions of the set of network nodes V. A few 
examples are given below: 

Example 1:  
Worst_case_latency  

           cvdL
iCcVv

wc ,minmax


   (12) 

Average_latency:   

           





Vv
Cic

iavg cvd
n

CL ),(min
1

)(                (13)

  
The CPP algorithm should find a placement Copt, where 

either average latency or the worst case latency is 
minimized. The limitations of the optimization process based 
on the above metrics (12) and (13) consist in: static values 
assumed for latencies, despite that delay is a dynamic value 
in IP networks; only free-failure case are considered; no 

upper limit exists on the number of forwarders/switches 
assigned to a controller; not taking into account the inter-
controller connectivity. Another possible metric in failure-
free case is maximum cover, [4]. The algorithm should find a 
controller placement, as to maximize the number of nodes 
within a latency bound, i.e., to find a placement of k 
controllers such that they cover a maximum number of 
forwarder nodes, while each forwarder must have a limited 
latency bound to its controller.  

Example 2: 
Nodes/links failures (Nlf) 
This example will consider a failure-aware metric. Links 

or nodes failures can cause some switches to loose access to   
controllers. Therefore, a particular optimization objective 
could be to find a switch-to-controller mapping that 
minimizes the number of switches possible to get into 
controller-less situations, in various scenarios of link/node 
failures. A realistic assumption is to limit the number of 
possible simultaneous failures at only a few (e.g., two [7]).  

For any given placement Ci of the controllers, an additive 
integer value metric Nlf(Ci) could be defined: consider a 

failure scenario denoted by fk, with fkF, where F is  the set 
of all network failure scenarios. Suppose that in an instance 
scenario, at most two link/nodes are down; initialize  Nlfk(Ci) 

=0; then for each node vV, add one to Nlfk(Ci) if the node v 

has no path to any controller cCi and add zero otherwise; in 
other words, count the number of isolated nodes;  compute 
the maximum value (i.e., consider the worst failure scenario). 
One obtains the formula (14) where k covers all scenarios of 
F. 

            iki CNlfCNlf max   (14) 

The optimization algorithm should find a placement 
which minimizes (14). It is expected that increasing the 
number of controllers, will decrease the Nlf value. Note that  
the optimum solution based on the metric (14) could be very 
different from those provided by the algorithms using the 
metrics (12) or (13). 

B. Multi-condition algorithm 

Transformation of the BalCon algorithm in a MCDA 
type is realized by modifying the final BalCon phase and is 
summarized below. Note that  positions of the controllers in 
the network is fixed; only the mapping switch-to-controller 
can vary. 

The function ComputeMigrationAlternatives provides 
several solutions of switch assignment to controllers, to 
avoid controller overload. 

The function EvaluateMigrationAlternatives will be 
replaced by a new function Multi-
condition_Eval_Migration_Alternative in which the inputs 
are: 

- migration alternatives provided by the original 
ComputeMigrationAlternatives 

- solutions of switch-to-controller mapping provided 
by other algorithms based on several criteria of 
interest, selected from, e.g.: to minimize the 
maximum controllers’ load (5); minimize the sum 
of controllers’ load (6); worst case latency (12); 
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average latency (13); node/link failure (14) and 
maybe others. Note that the detailed algorithms for  
the metrics (12-14) are not presented here. 

We also stress the idea that this study will not aim to 
select a given set of “best” criteria and use them for 
optimization.  The reason is that such a selection is actually 
dependent on the particular SDN network characteristics and, 
more important on the policies of the SDN network 
provider/owner in defining the goals of the optimization 
process. So, this study shows the applicability and usefulness 
of multi-criteria in solving dynamic CSP problems. 

 
The working phases are the following: 
 (1)Phase 1:  
1.1. Define the additional criteria, (other than the 

controller load) i.e., the decision variables of interest and 
their priorities.   

1.2. Consider all solutions C1, C2, .. (a solution is a 
particular switch-to-controller mapping  provided by the 
ComputeMigrationAlternatives function (these would result 
after migration of a cluster). 

1.3. Compute the values of the normalized metrics for 
each candidate solution (i.e. future MCDA candidate 
solution), by using specialized algorithms and their 
associated metrics.   

The Phase 1 phase has as outputs the set of candidate 
solutions and values to fill the entries of the matrix M 
defined in Section IV.  

 (2) Phase 2: MCDA-RL: define ri and ai, for each 
decision variable; eliminate those candidates having 
parameter values out of range defined by ri; define – if 
wanted – convenient weights wi for different decision 
variables; compute the normalized variables (formula (8)); 
run the MCDA Step 0, 1 and 2 (formulas (9-11)). 

The Phase 2 provides the migration solution. 

C. Simple numerical example 

This subsection will present a simple numerical example 
to illustrate the multi- criteria switch migration solution. The 
network has three domains D1, D2, D3, each one controlled 
by a controller.  

The network is described by a graph, in which three sets 
of flow rates F1, F2, F3 are represented. The links could be 
physical or overlay links. The numbers written on some links 
show the estimated average latency between those vertices 
(this is an additive metric). 

The loads for CT1,  CT2, CT3  (applying the formulas (1) 

and (2)) with =1, =0.1: 

         L(CT1) =  (30+25+20) + (3*30 +2*25 + 3*20) = 75 
+ 20 =95 units of load. 

         L(CT2) = (25 + 20) + (2*25 + 2*20) = 45+9 = 54 
units of load. 

         L(CT3) = (20) + (3*20) = 20+6 = 26 units of load. 
Supposing that L=80 (maximum load for a controller) 

one can see that the CT1 is overloaded. Therefore a cluster of 
switches migration from the domain of CT1 would make a 
better load balance and solve the overload of CT1. 

Solution M1. Suppose that the cluster {V1, V5} would 
migrate to CT2. The new loads would be: 
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Figure 2. Switch migration example 
 

L(CT1) =  (30+20) + (3*30 + 2*20) = 50 + 13 = 63  

L(CT2) = (25 + 20) + (3*25 + 3*20) = 45+13.5 = 58.5  
L(CT3) =  26 (not modified) 

 
Solution M2. If the cluster {V1, V5} would migrate to 

CT3, then the new loads would be: 

         L(CT1) =  (30+20) + (3*30 + 2*20) = 50 + 13 = 63  
         L(CT2) =  54 (not modified). 

         L(CT3) = (25+20) + (2*25+3*20) = 45+11 = 56  
 
If a single criterion (BalCon: e.g., considering the 

formula (5)), then the migration solutions M1 and M2 are 
equally acceptable (max load = L(CT1) = 63). 

However if one consider additional multi-criteria then the 
best solution selected by a multi-criteria algorithm could be 
different. Examples are given below (see Figure 2). 

 
 Worst case latency (formula (12))  
Let us suppose that shortest path from vertices V1, V5 to 

controllers are: d(V1, CT2) = 5; d(V5, CT2) = 4; d(V1, CT3) = 
8; d(V5, CT3) = 9. So, the MCDA for the criterion worst case 
latency will prefer the M1 solution as better.  

 
Nodes/links failures (Nlf)(formula (14)) 
It can be seen that M2 solution is better than M1, if link 

failures are considered.  In D2 domain, a failure scenario 
with links V7-V9 and V9-V12 out of order, will isolate the 
controller CT2 and consequently, Nlf = 5. On the other side 
in D3 domain, the maximum value of this metric is Nlf = 1.  
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If multiple other criteria are included in a MCDA based 
decision, then the final solution will depend on weights 
assigned to different criteria. 

Of course, other criteria (see [18]) could be added to 
MCDA with different weights for the decision variables.  We 
limited our numerical example above to a simple case, just to 
illustrate the idea of the approach, i.e., to prove the 
usefulness of the multi-criteria in deciding upon SDN switch 
migration. Complete calculations could be performed using 
the full BalCon algorithm enriched with MCDA procedures. 

We have to acknowledge the limitations of this study as a 
work in progress. This paper does not include the study of 
the control plane signalling between controllers, in order to 
achieve awareness of the controllers about the new situation 
of their domains; this is a separate problem. No quantitative 
performance evaluations of the migration procedures are 
presented here. The limit of controller acceptable load has 
been considered to be the same for all controllers; actually 
these values can be different. These topics could be subjects 
of additional studies.   

VI. CONCLUSIONS AND FUTURE WORK  

This paper extended the studies [13][14] on dynamic 
switch migration, by enriching the final decision on the 
migration solution based, i.e., based not only on controllers 
load values but on multiple conditions and using multi-
criteria decision algorithms (MCDA), as in [18]. The 
advantage of MCDA is that it can produce a tradeoff 
(optimum) result, while considering several weighted 
criteria, part of them even being partially contradictory.  

The goal here was not to select a given set of “best” 
criteria and use them for optimization.  The reason is that 
such a selection is actually dependent on the particular SDN 
network characteristics and, more important on the policies 
of the SDN network provider/owner in defining the goals of 
the optimization process. So, this study is focused to show 
the applicability and usefulness of multi-criteria in solving 
CPP/CSP problems not only in static context but also during 
run-time of the SDN network. 

This is still a work in progress; a simulation model is 
currently in development.  An initial proof on concept has 
been performed in Section V by using some simple but 
relevant examples.  

Future work will be done to complete and run the 
simulation model and considering more extended network 
topologies.  

A more deep study should consider the amount of 
signaling between controllers while switch migration occurs. 
Another open issue is to get a trade-off between the 
frequency of switch migration events and stability of the 
network (i.e., to avoid excessive migration of switches) - 
versus the rate of traffic changes in the data plane of the 
network. The dynamic of the data plane after switches 
migration (e.g. in multicast context) is still an open research 
issue.  
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