
Towards Automated Penetration Testing Using Inverse Soft-Q Learning 

Dongfang Song       Yuhong Li         Ala Berzinji       Elias Seid 
 Department of Computer and Systems Sciences, Stockholm University  

Stockholm, Sweden 
Email: {yh2025, alabe, elias.seid}@dsv.su.se

Abstract—Penetration testing (pentesting), a proactive 
defensive practice for identifying vulnerabilities and supporting 
cybersecurity management, has traditionally been conducted 
manually due to its heavy reliance on specialized knowledge of 
human experts. In this paper, we propose PT-ISQL, an 
automated PenTesting approach based on Inverse Soft-Q 
Learning (ISQL), an imitation learning algorithm that enables 
efficient policy learning from expert demonstrations. PT-ISQL 
trains an agent to take optimal actions when interacting with the 
pentesting environment by effectively mimicking expert 
behavior. Our evaluation shows that PT-ISQL achieves high 
performance using significantly fewer expert demonstrations 
compared with generative adversarial imitation learning 
approaches. Furthermore, it demonstrates faster convergence, 
improved stability, and reduced training overhead. These 
results suggest that PT-ISQL is a promising and practical 
solution for scalable, automated penetration testing. 

Keywords—penetration testing; deep reinforcement learning; 
imitation learning; inverse soft-Q learning; PT-ISQL. 

I. INTRODUCTION 

Penetration testing, commonly referred to as pentesting, is 
a proactive cybersecurity measure that involves simulating 
real-world attacks on computer systems, networks, or 
applications to identify vulnerabilities before they can be 
exploited by malicious actors. By mimicking the tactics, 
techniques, and procedures of actual attackers, pentesters can 
uncover weaknesses in systems and applications, providing 
insights to mitigate them and helping organizations prioritize 
their security strategies before real attacks occur.  

Pentesting is one of the most essential cybersecurity 
controls. It is not a one-time activity but a continuous process 
that organizations must conduct regularly. The frequency of 
testing is typically determined by risk assessments and the 
organizations’ operational structure. Traditionally, pentesting 
is a highly manual process, requiring skilled and experienced 
professionals to plan, execute, and adapt attacks based on 
system reconnaissance and responses. The manual nature of 
this process, combined with the increasing complexity and 
scale of modern IT infrastructures, makes frequent and 
comprehensive testing both costly and time-consuming.  

As a result, researchers have begun investigating methods 
to automate pentesting, with the goal of increasing testing 
speed, reducing dependence on skilled professionals, and 
making the process easy to conduct. Recent work can be 
broadly categorized into two main approaches.  

One involves the use of Large Language Models (LLMs), 
such as GPT-based systems [1] and deep learning agent-based 
systems [2][3], to use the extensive domain knowledge 
inherent in LLMs to automate pentesting. Although LLM-

based pentesting approaches have proven highly effective in 
reducing manual intervention and enhancing automation, they 
still face notable challenges and inefficiencies inherent to 
LLMs, such as limited pentesting knowledge, context loss [1], 
unstructured data generation and efficiency [4].      

The other category uses Reinforcement Learning (RL) to 
discover novel attack paths and adapt to dynamic environ-
ments. Among these approaches, one class, such as [5]-[7], 
relies on attack graphs. However, applying attack graphs to 
real-world, dynamic pentesting scenarios is challenging, as 
they require comprehensive and often unavailable system 
knowledge. In contrast, the other class, such as [8], uses 
exploitable machines to train a deep reinforcement learning 
model to automate the pentesting process. Nevertheless, deep 
RL methods often face challenges related to large state spaces 
and high-dimensional discrete action spaces, which 
complicate the training process in pentesting scenarios [9]. 
Moreover, the use of random exploration during the early 
stages of training can further introduce instability, potentially 
causing the model to fail to converge.  

Recently, Imitation Learning (IL) has been used in 
automating pentesting [4] [10] [11]. IL[12], a special form of 
reinforcement learning, infers the reward function by 
modeling expert behaviour rather than relying on direct 
feedback from the environment. The agent learns a policy 
through expert demonstrations. The approaches presented in 
[4] [10] [11] have shown that IL can improve the 
performance of automated pentesting by incorporating expert 
knowledge. However, these approaches often face challenges 
in agent training, either too complex or requiring a vast 
amount of expert data, which is hard to gain in practice.  

In this paper, we proposed PT-ISQL, an automated 
pentesting approach based on Inverse Soft-Q Learning 
(ISQL), which simplifies the process of IL by learning a soft 
Q-function that implicitly captures both the reward and the 
policy without using the complex adversarial training process. 
Our contributions are as follows: 
 We propose an architecture for realizing automated 

pentesting based on ISQL;  
 We implement a method for encoding pentesting tasks and 

actions, demonstrating that ISQL can be effectively used in 
automating pentesting;  

 We conduct thorough experiments in a simulated network 
to evaluate the proposed PT-ISQL approach, and provide 
an in-depth analysis to the results.  
The remainder of the paper is organized as follows. In 

Section II, we review the related work, focusing on comparing 
our approach with state-of-the-art approaches for pentesting 
based on reinforcement and imitation learning. In Section III, 
we present the proposed PT-ISQL approach, including the 

62Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



system architecture and detailed methodological steps. In 
Section IV, we elaborate the experiments and provide an 
analysis of the results. We conclude the paper and describe the 
future work in Section V.   

II. RELATED WORK 

As mentioned above, LLMs have recently been used to 
automate pentesting. For example, PentestGPT [1] uses three 
modules, Reasoning, Generation, and Parsing to represent the 
specific roles typically found within penetration testing. It 
introduces a Pentesting Task Tree (PTT) derived from the 
cybersecurity attack tree to encode the ongoing status of tests 
and guide the subsequent actions. To overcome limitations 
such as limited pentesting knowledge and insufficient 
automation, PentestAgent [2] was proposed, which uses 
multi-agent collaboration to cover all phases of the pentesting 
lifecycle, thereby greatly reducing the need for human 
intervention. Although these studies have shown strong 
potential for automating penetration testing tasks, they also 
suffer from critical limitations inherent to LLMs. These 
include the need for vast amounts of high-quality training 
data, shallow task understanding, limited context windows, 
and lack of persistent memory. Such constraints pose huge 
risks in security-critical domains like pentesting. Particularly, 
the inability to perform long-term planning and retain stateful 
knowledge may hinder performance in complex tasks such as 
multi-step exploit chaining and privilege escalation.  

We chose to use IL with limited amount of expert 
knowledge to automate pentesting, aiming to build compact, 
robust and reliable pentesting systems. In the following 
sections, we focus on state-of-the-art approaches using RL 
and IL to automate the pentesting process.  

A. Pentesting based on Reinforcement Learning (RL)  

In RL, an agent learns to make decisions by interacting 
with an environment, making it well-suited for pentesting 
which requires evaluating the current situation and then 
taking appropriate actions. As a result, many studies have 
applied RL to automate pentesting, such as [5]-[8]. In these 
approaches, the system under test is modeled as the 
Environment, and the pentester is the Agent. The interaction 
of the tester and the system is considered as the Action and 
results in the state change. Various techniques, including deep 
RL, have been used to address the complexity of RL 
problems for pentesting.  

For example, [5] presented a method for identifying 
optimal attack path using a Deep Q-Network (DQN), based 
on a network topology generated from Shodan data and an 
attack tree constructed using MulVAL [13]. The traditional 
attack tree representation was improved by transforming it 
into a transition matrix, which was then used for DQN 
training. However, in real-world scenarios, the topology of the 
target network is often unknown or only partially accessible, 
limiting the applicability of such approaches. 

Deep Exploit [14] is a pentesting tool that uses an 
advanced deep RL algorithm, Asynchronous Advantage 
Actor Critic (A3C), to exploit vulnerable servers 
automatically. In [8], a pentesting framework was developed 
based on Deep Exploit, and the influence of the number of 

neural networks on exploitation success rates was evaluated. 
However, real-world pentesting environments and complex 
network systems often involve a large, discrete action space, 
posing challenges for the training and convergence of deep 
RL models. For instance, algorithms like DQN select the 
action with the highest predicted value as the optimal choice. 
Unlike environments such as games, where actions are 
relatively deterministic and limited in scope, pentesting 
involves greater uncertainty and a more complex, discrete set 
of actions and outcomes. Furthermore, in large action spaces, 
multiple actions may have similar or identical values, leading 
to ambiguity and suboptimal decisions [15]. These 
limitations hinder the effective use of RL for pentesting, 
especially in realistic and dynamic environments.      

B. Pentesting based on Imitation Learning (IL)  

IL [12] is a specialized form of RL. Traditional RL relies 
on trial and error, with the agent receiving feedback from its 
environment in the form of rewards or penalties. In contrast, 
IL enables an agent to learn a policy directly from expert 
demonstrations by modeling expert behavior and inferring the 
underlying reward function being implicitly optimized. IL is 
particularly useful when it is easier for an expert to 
demonstrate the desired behavior than to define a reward 
function that would lead to the same behaviour, or when 
learning the policy from scratch is difficult. This makes IL 
especially well-suited for complex tasks such as pentesting. 

A Generative Adversarial IL (GAIL) method was 
proposed in [16], where the reward function is learnt by 
measuring the similarity between an agent’s and an expert’s 
behavior. GAIL-PT [9], which combines GAIL and Deep 
Exploit, was developed to build an automatic pentesting 
framework. It addresses the challenge of high-dimensional 
action space by using the GAIL algorithm. GAIL-PT 
performs well in small-scale network environments (with or 
without honeypots), and large-scale networks, showing the 
potential of using IL for automated pentesting. However, the 
training process of GAIL requires careful tuning of 
hyperparameters and techniques, such as gradient 
penalization. Moreover, GAIL-PT is prone to overfitting with 
expert trajectory distributions and may not generalize well to 
different environments.  

In the framework (i.e., DQfD-AIPT) [11], a method using 
expert knowledge is proposed. It combines transformed 
abstract expert knowledge with collected pentesting traces 
over various network scenarios. It provides a different method 
for solving the overfitting problem. However, despite using a 
less complex algorithm, this method requires a large amount 
of expert data to build the expert database.  

Compared with these studies, our approach uses a more 
efficient way to train a pentesting agent, which requires far 
fewer expert demonstrations while converges more quickly.  

III. PENTESTING BASED ON INVERSE SOFT-Q LEARNING 

A. System Architecture  

IL has developed into three main methods, Behaviour 
Cloning (BC), Direct Policy Learning (DPL) and Inverse 
Reinforcement Learning (IRL). BC is the simplest form of 

63Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



IL, using supervised learning on expert data. It is widely used 
but can lead to cascade errors. DPL requires the presence and 
interaction with an expert. IRL, on the other hand, aims to 
infer the environment’s reward function from expert 
demonstrations and then uses RL to discover the optimal 
policy—one that maximizes the inferred reward function.  

ISQL is a recent method for implementing IRL, 
incorporating soft Q-Learning into the inverse learning 
process. ISQL has been shown to require less expert 
demonstration data to achieve comparable performance. 
Moreover, it considers stochastic or noisy expert actions. 
Thus, we chose ISQL to automate pentesting.  Figure 1 
illustrates the basic architecture of our automated pentesting 
framework based on ISQL: PT-ISQL. It consists of three 
main components. The Pentesting Environment represents 
the network environment where vulnerabilities are assessed 
by using the automated pentesting approach. It is the 
environment with which the RL agent and human experts 
interact during the pentesting. The environment returns the 
corresponding state information after each action taken by the 
agent or expert.  

 
Figure 1. System architecture for PT-ISQL. 

The ISQL component is the core of our system, 
implementing the ISQL algorithm tailored for pentesting. It 
interacts with the Pentesting Environment and generates the 
information used by the RL Agent. Expert demonstrations are 
first collected, consisting of recorded sequences of actions 
taken by human security experts or earlier runs of an RL agent 
during attempts to discover and exploit vulnerabilities in the 
Pentesting Environment. These demonstrations capture high-
quality, goal-directed behaviours, such as exploiting services, 
vulnerability detection, and escalating privileges. Then, the 
resulting state-action pairs are used in the training process to 
get a soft Q-function, which enables the model to infer both 
the reward function and the policy that best explain the 
experts’ behaviours. This process allows the RL agent to 
imitate expert strategies by learning from their 
demonstrations, even when the experts’ behaviours are 
stochastic or suboptimal.  

Using the learned policy, the RL Agent component 
interacts with the Pentesting Environment, navigating 
networks and selecting actions, such as scanning, exploiting, 
escalating privileges, or exfiltrating data, much like a fully 
autonomous AI red team agent. Since ISQL allows for 
stochastic behaviour (a soft policy), the agent can randomize 
attack sequences, adapt to defensive changes, such as patched 

systems or Intrusion Detection Systems (IDS), and make 
context-aware decisions that evolve over time. In addition, 
because the reward function captures underlying intent (e.g., 
reaching high-value targets, or staying undetected), the agent 
can generalize its knowledge to unseen network topologies or 
adapt to different vulnerabilities.  

Through the interaction of these three components, fully 
automated pentesting can be achieved.  

B. Inverse Soft-Q Learning for Pentesting 

The PT-ISQL process consists of three main steps: 
Step 1: process expert demonstrations. For each 

trajectory τ in the set of expert demonstrations Dexpert, the 
state-action pairs (s, a) are extracted. These pairs are then 
used as inputs for the reward and Q networks. 

Step 2: conduct iterative training via ISQL. Instead of 
learning a policy from a reward function, ISQL simplifies the 
process of the IRL by learning a Q-function that implicitly 
captures both the reward and the policy without using the 
complex adversarial training process. The goal of this step is 
to learn rewards and Q-values that align with expert 
behaviour. The target of the Q-function is computed based on 
the current reward r(s,a), the expected value of the next 
state’s Q-values and a soft entropy term -αlog π(a|s), where 
π(a|s) is the policy derived from the Q-values using a softmax 
function, scaled by the entropy temperature α. This reflects 
the fact that experts not only try to perform well (i.e., high 
rewards) but also act stochastically and robustly, avoiding 
always picking the single "best" action. It balances the reward 
maximization and exploration through entropy. Namely 

      Qtarget(s,a)= r (s,a)+γ a′ [Q(s′,a′)]−αlogπ(a′∣s′)       (1) 

      π(a|s) = softmax (Q(s,a)/ α)                                     (2) 

Figure 2 shows the pseudocode of this step.  

 
Figure 2.  Pseudocode of the ISQL training for pentesting. 

Step 3: agent execution. The trained agent can now use 
the learned policy to act in the environment autonomously, 
performing pentesting tasks, such as discovering attack paths, 
exploiting systems, and chaining exploits toward high-value 
targets, which enables realistic and adaptive red teaming.  

64Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



IV. EVALUATION AND ANALASYS 

A. Experiement Setup 

We implemented the proposed approach in a virtual 
machine running Kali Linux.  MiniConda (Version 24.1.2) 
was used to set up the Python virtual environment for building 
the three components of PT-ISQL. We used the 
NetworkAttack Simulator (NASim, Version 0.12.0) [17] to 
simulate the Pentesting Environment. In order to compare our 
work with [9], we have chosen the “small-honeypot” network. 

The topology of our experimental network is shown in 
Figure 3. The network consists of four subnetworks with a 
total of eight hosts, one of which is a honeypot. The hosts run 
two types of operating systems (Linux and Windows) and 
three types of services (HyperText Transfer Protocol-HTTP, 
Secure SHell-SSH, and File Transfer Protocol-FTP). Hosts (2, 
0) and (4, 0) are valuable assets (i.e., sensitive hosts) in the 
network, each assigned a reward value of 100. Node (3, 2) is 
a honeypot machine with a value of -100. The RL agent is 
expected to avoid exploiting honeypots. Firewalls filter 
specific types of services between subnets, and each action 
makes a cost for the agent. 

 
Figure 3. Topology of the experimental network. 

The agent aims to maximize its score by reaching the 
sensitive hosts while minimizing cost. There are four types of 
scanning actions for getting information from each host: 
OSScan, Service Scan, ProcessScan, and SubnetScan. In 
addition, the agent can perform exploitation and privilege 
escalation actions for specific services and processes. The 
total number of actions is 72 and states is 24576. The available 
actions are listed in Table I, with each action associated with 
a different cost. Moreover, each action has a probability of 
success, indicating the difficulty of exploiting certain 
vulnerabilities. However, whether an action succeeds depends 
not only on this probability but also on factors such as firewall 
rules, the network topology, and the host’s configuration. 

TABLE I.      ACTIONS THAT CAN BE TAKEN BY AGENTS  

 
 

Table II lists the hyperparameters used for expert 
demonstration data generation using RL and agent training. A 
three-layer SimpleQ Network model was chosen for ISQL. A 
total of 1000 expert trajectories were extracted. To control the 
quality of the expert demonstrations, a reward threshold was 
used to filter the expert demonstrations data. 

TABLE II.  HYPERPARAMETERS FOR EXPERT DATA GENERATION AND 
AGEMT TRAINING 

 

B. Evaluation Metrics 

We evaluated the performance of PT-ISQL from the 
perspectives of both imitation learning and automated 
pentesting. We first discuss the key factors that influence the 
performance of the ISQL algorithm in the context of 
pentesting in Sections C and D, then evaluate the proposed 
PT-ISQL approach according to the following three metrics. 

Honeypot invasion probability. It is the likelihood that a 
pentesting agent is deceived into interacting with a honeypot. 
It serves as an indicator of the pentesting approach’s stealth 
and precision. A high probability suggests that the pentesting 
approach cannot well distinguish real targets from decoys, 
while a low probability indicates more accurate reconnaiss-
ance and smarter exploitation strategies. Frequent hitting of 
honeypots implies a low ability to uncover real vulnerabilities. 
In our tests, a honeypot is considered invaded if the returned 
reward is less than -100. In such cases, the invasion 
probability is set to 1.0 (100%); otherwise, it is 0. The average 
honeypot invasion probability is computed over 10 episodes 
(i.e., pentesting rounds) for each evaluation. 

Average reward. In ISQL, an agent that receives a high 
cumulative reward is likely following expert-level strategies, 
taking efficient and goal-directed actions while avoiding risky 
or low-value behaviors. Reward accumulation directly reflects 
several aspects of performance: success rate (i.e., whether the 
goal is reached), efficiency (i.e., fewer steps to reach the goal) 
and stealthiness (i.e., fewer alerts triggered or honeypots 
invaded). Therefore, we use the average cumulative reward of 
10 episodes to measure the performance of the proposed PT-
ISQL approach.  

Goal-reached probability. The goal of our tests in the 
simulated network is to reach the valuable hosts (2, 0) and (4, 
0). Whether the goal is reached or not is recorded after each 
episode. If the goal is reached, the probability is set to 1.0 
(100%); otherwise, it is 0. The goal-reached probability is 
calculated as the average value over 10 episodes. 

In our tests, the learning steps are set to 20000 as default, 
and the evaluation interval is set to 200 steps. But for the tests 

65Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



in Section E, the numbers are increased to 100000 and 1000, 
respectively, to accommodate the extended training 
requirements of deep reinforcement learning. We describe our 
experiments and analyze the results in Sections C to E below. 

C. Influence of the Threshold of Expert Demonstrations 

To study the influence of expert demonstration quality on 
the performance of PT-ISQL, we use a threshold to filter the 
expert demonstration data. We observed that when the 
threshold is reduced to 21, the agent’s mean reward is 
considerably lower than that of the expert demonstrations. To 
illustrate the influence of this threshold, we compared the 
results using two values: 21 (low threshold) and 100 (high 
threshold). For each threshold, varying numbers of expert 
demonstrations were used to train the agent. The average 
reward and standard deviation are calculated after 2000 steps, 
when all rewards had converged.  

 
Figure 4. Rewards under different thresholds (solid lines-average values). 

Figure 4 shows the rewards with different numbers of 
expert demonstrations under two threshold settings. When the 
reward threshold is low (21), the average reward and standard 
deviation of all the experiments are 98.80 and 41.14, 
respectively. When the threshold is high (100), the average 
reward and the standard deviation improved to 134.86 and 
21.23, respectively. These results indicate that higher-quality 
expert data (i.e., higher threshold) leads to both higher average 
rewards and more stable performance, regardless of the 
number of demonstrations used. However, even in the high-
threshold case, the agent's mean reward remains lower than 
that of the expert data.  

D. Number of Reruired Expert Demonstrations 

Due to the difficulty of obtaining expert data in practice, 
the minimum required number of expert demonstrations is an 
important factor affecting the usability of IL algorithms. To 
investigate this in the context of our PT-ISQL, we measured 
the reward when using different numbers of expert 
demonstrations: 1, 10, 30, 40, 50, 100, and 1000, under both 
low and high threshold settings. We observe the minimum 
number of expert demonstrations when the reward reaches a 
stable required value.  

As shown in Figure 5, the rewards converge around 2000 
steps in all settings. When the number of expert 
demonstrations is 1, the rewards are low and fluctuate heavily. 
Table III presents the average reward with standard deviation 
for different numbers of expert demonstrations after 
convergence (2000 steps). The results show that when the 

number of expert demonstrations exceeds 30, the performance 
becomes stable and consistent. 

 
Figure 5. Rewards of different number of expert demonstrations.  

TABLE III.    AVERAGE REWARD  WITH STANDARD DEVIATION  UNDER 
DIFFERENT NUMBER OF EXPERT DEMONSTRATGIONS 

No. Expert demo Rewards - low 
threshold  

Rewards - high 
threshold 

1 2 ± 67 82 ± 16 
10 70 ± 27 100 ± 15 
30 82 ± 19 116 ± 15 
40 86 ± 20 121 ± 12 
50 82 ± 19 132 ± 14 

100 85 ± 25 113 ± 15 
1000 82 ± 19 126 ± 17 

To further analyze convergence speed, we examined the 
relationship between the number of episodes completed and 
the number of training steps. After convergence (around 2000 
steps), a higher number of episodes within a fixed number of 
training steps indicates faster convergence and thus a shorter 
duration for completing the automated pentesting task.  

As shown in Figure 6, under the low-threshold setting, 
using 50 expert demonstrations results in a convergence speed 
nearly identical to that achieved with 100 or even 1000 expert 
demonstrations. Under the high-threshold setting, the number 
of expert demonstrations can be reduced to 40 while still 
achieving the convergence speed of the 100 and 1000 
demonstration cases. Additionally, when completing 100 
episodes, the time required with 30 expert demonstrations 
under the high-threshold condition is shorter than that under 
the low-threshold condition. 

 
Figure 6. Relationship between episode and training steps. 

In contrast, GAIL-PT requires 5000 expert demonstrations 
to reach the minimum number of training rounds in the same 
simulated network with a honeypot [6]. This shows that the 
number of required expert demonstrations in our proposed 
PT-ISQL is greatly fewer than that in GAIL-PT, which relies 
on generative adversarial learning and is also dependent on 
expert data. With our PT-ISQL, 30 expert demonstrations are 
enough to achieve good training performance in the simulated 
network with a “small honeypot”. Furthermore, increasing the 

66Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



number or the quality threshold of expert demonstrations can 
further increase the converging speed of training. 

E. Comparison of ISQL with Simple Q-Learning 

To demonstrate the advantages of the ISQL algorithm in 
our PT-ISQL approach, we compared the pentesting 
performance using ISQL with that using Simple Q-Learning 
(a reinforcement learning method). The three pentesting 
metrics were examined across varying training steps. In this 
experiment, the high-threshold expert data was used, with 50 
expert demonstrations provided. For each algorithm (with 
ISQL denoted as iq, and Simple Q-Learning as rl), five runs 
were conducted, and the results were averaged for the 
comparison of each metric.   

Honeypot Invasion Probability 

Figure 7 illustrates the honeypot invasion probability of 
five runs. The solid line represents the mean value, with the 
shaded area denoting the standard deviation. The results show 
that using ISQL greatly reduces the probability of honeypot 
invasion compared with deep reinforcement learning. This 
finding aligns with the results reported in DQfD-AIPT [11], 
where using expert demonstrations also led to significantly 
fewer interactions with honeypots. Nevertheless, in their 
study, the agent interacted with the honeypot during the early 
stages, i.e., before convergence. 

 
Figure 7. Probability of honeypot invasion of ISQL and Simple Q-

Learning. 

Average Reward 

As shown in Figure 8, the rewards obtained using ISQL 
are both high and stable from the early stage of training. In 
addition, the reward is consistent across runs as indicated by 
the small shaded area. In contrast, when using the 
reinforcement learning algorithm, the reward is highly 
unstable across different runs. In fact, some runs fail to 
converge even after 100000 steps. This trend is consistent with 
the results reported in [9] and [11]. 

 
Figure 8. Rewards of ISQL and Simple Q-Learning. 

Goal-Reached Probability 

Figure 9 shows the average goal-reached probability with 
standard deviation (shaded area) over five runs using both 
algorithms. The results demonstrate that ISQL achieves much 
higher goal-reaching performance and requires far fewer 
training steps compared with Simple Q-Learning. ISQL 
achieves high goal-reaching performance even from the early 
stage of training, as it can quickly learn effective strategies 
from expert demonstrations. 

 
Figure 9.  Goal reached probability of ISQL and Simple Q-Learning. 

However, the performance of ISQL may degrade with 
excessive training. As seen in Figure 8 and Figure 9, after 
around 20000 steps, the reward begins to fluctuate more, and 
the goal-reaching rate declines. In contrast, Simple Q-
Learning shows slower and less stable learning. Even after 
100000 steps, the algorithm has not fully converged: the 
continued upward trend in the goal-reaching probability 
indicates that learning is still in progress. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we proposed an automatic pentesting 
approach based on ISQL. Our approach uses soft Q-Learning 
to infer the reward function implicitly optimized by human 
experts, while requiring significantly less expert data 
compared with other reinforcement learning methods based 
on expert demonstrations. Evaluation results show that our 
PT-ISQL approach is much faster than that of the general deep 
reinforcement learning method, such as Simple Q-Learning. 
The performance of the trained PT-ISQL agent is comparable 
to that of human experts. The required number of expert 
demonstrations is largely reduced compared with GAIL-PT 
(50 vs 5000), making PT-ISQL a more data-efficient and 
practical solution for automated pentesting. 

However, the experiments conducted in the paper are 
limited in a simulation environment with a small network, and 
the trained agent's transferability to different situations has not 
been assessed. Future work is to evaluate PT-ISQL in a more 
realistic simulation environment and to test it in real-world 
networks. This includes training agents on real expert 
demonstrations data, and integrating PT-ISQL with 
frameworks such as Deep Exploit, with the goal of making 
PT-ISQL a fully functional and deployable automated 
pentesting tool. Qualitative comparisons with LLM-based 
agents, such as PentestGPT, is also a future work.  

67Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies



REFERENCES 
[1] G. Deng et al., “PentestGPT: Evaluating and Harnessing Large 

Language Models for Automated Penetration Testing,” In proc. 
of 33rd USENIX Security Symposium (USENIX Security 24), 
pp.847–864. 

[2] X. Shen et al., “Pentest Agent: Incorporating LLM Agents to 
Automated Penetration Testing”, arXiv:2411.05185v1 
[cs.CR], Nov. 7, 2024. 

[3] A. Happe and J. Cito, “Getting pwn’d by AI:penetration testing 
with large language models,” In Proc. of the 31st ACM Joint 
European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering, pp.2082–2086. 

[4] H. Kong et al., “VulnBot: Autonomous penetration testing for 
a multi-agent collaborative framework”, arXiv:2501.13411v1 
[cs.SE] 23 Jan. 2025 

[5] Z. Hu, R. Beuran, and Y. Tan, “Automated penetration testing 
using deep reinforcement learning,” in 2020 IEEE European 
Symposium on Security and Privacy Workshops (EuroSPW), 
pp. 2–10, IEEE, 9 2020.   

[6] I. Jabr, Y. Salman, M. Shqair, and A. Hawash, “Penetration 
testing and attack automation simulation: deep reinforcement 
learning approach,” An-Najah University Journal for Research, 
Apr. 2024, pp. 7-14. DOI:10.35552/anujr.a.39.1.2231 

[7] J. Yi and X. Liu, “Deep reinforcement learning for intelligent 
penetration testing path design,” Applied Sciences, vol. 13, p. 
9467, Aug. 2023.  

[8] L. V. Hoang et al., “Leveraging deep reinforcement learning 
for automating penetration testing in reconnaissance and 
exploitation phase,” in Int. Conf. on Computing and 
Communication Technologies, pp. 41–46, IEEE, 12 2022.  

[9] J. Chen, S. Hu, H. Zheng, C. Xing, and G. Zhang, “Gail-PT: 
An intelligent penetration testing framework with generative 
adversarial imitation learning,” Computers Security, vol. 126, 
p. 103055, 3 2023. 

[10] F. M. Zennaro and L. Erdödi, “Modelling penetration testing 
with reinforcement learning using capture-the-flag challenges: 
tradeoffs between model-free learning and a priori knowledge” 
IET Information Security, vol.17, pp.441–457, 5 2023. 

[11] Y. Wang et al., “Dqfd-aipt: An intelligent penetration testing 
framework incorporating expert demonstration data,” Security 
and Communication Networks, vol. 2023, pp. 1–15, 5. 2023. 

[12] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi, “A 
survey of imitation learning: Algorithms, recent developments, 
and challenges,” IEEE Transactions on Cybernetics, vol.54, pp. 
7137-7168, Dec. 2024. 

[13] X. Ou, S. Govindavajhala and A. W. Appel, “Mulval: A logic-
based network security analyzer,” in Proc. of USENIX security 
symposium, vol. 8, pp. 113–128, 2005. 

[14] T. Isao, “Deep exploit,” 2018. https://github.com/13o-bbr-
bbq/machine_learning_security/blob/master/DeepExploit/RE
ADME.md / [retrieved: Sept. 2025] 

[15] G. Farquhar et al., “Growing action spaces,”in Proc. of the 
37th International Conference on Machine Learning, vol. 119, 
pp. 3040–3051, PMLR, 5 2020.  

[16] J. Ho and S. Ermon, “Generative adversarial imitation 
learning,” Advances in neural information processing systems, 
vol. 29, pp. 4572-4580, Dec. 2016. 

[17] J. Schwartz and H. Kurniawati, “Autonomous penetration 
testing using reinforcement learning,” CoRR, vol. 
abs/1905.05965, 2019. 

68Copyright (c) IARIA, 2025.     ISBN:  978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies


