SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

Towards Automated Penetration Testing Using Inverse Soft-Q Learning

Dongfang Song

Yuhong Li

Ala Berzinji ~ Elias Seid

Department of Computer and Systems Sciences, Stockholm University
Stockholm, Sweden
Email: {yh2025, alabe, elias.seid}@dsv.su.se

Abstract—Penetration testing (pentesting), a proactive
defensive practice for identifying vulnerabilities and supporting
cybersecurity management, has traditionally been conducted
manually due to its heavy reliance on specialized knowledge of
human experts. In this paper, we propose PT-ISQL, an
automated PenTesting approach based on Inverse Soft-Q
Learning (ISQL), an imitation learning algorithm that enables
efficient policy learning from expert demonstrations. PT-ISQL
trains an agent to take optimal actions when interacting with the
pentesting environment by effectively mimicking expert
behavior. Our evaluation shows that PT-ISQL achieves high
performance using significantly fewer expert demonstrations
compared with generative adversarial imitation learning
approaches. Furthermore, it demonstrates faster convergence,
improved stability, and reduced training overhead. These
results suggest that PT-ISQL is a promising and practical
solution for scalable, automated penetration testing.

Keywords—penetration testing; deep reinforcement learning;
imitation learning; inverse soft-Q learning; PT-ISQL.

[. INTRODUCTION

Penetration testing, commonly referred to as pentesting, is
a proactive cybersecurity measure that involves simulating
real-world attacks on computer systems, networks, or
applications to identify vulnerabilities before they can be
exploited by malicious actors. By mimicking the tactics,
techniques, and procedures of actual attackers, pentesters can
uncover weaknesses in systems and applications, providing
insights to mitigate them and helping organizations prioritize
their security strategies before real attacks occur.

Pentesting is one of the most essential cybersecurity
controls. It is not a one-time activity but a continuous process
that organizations must conduct regularly. The frequency of
testing is typically determined by risk assessments and the
organizations’ operational structure. Traditionally, pentesting
is a highly manual process, requiring skilled and experienced
professionals to plan, execute, and adapt attacks based on
system reconnaissance and responses. The manual nature of
this process, combined with the increasing complexity and
scale of modern IT infrastructures, makes frequent and
comprehensive testing both costly and time-consuming.

As aresult, researchers have begun investigating methods
to automate pentesting, with the goal of increasing testing
speed, reducing dependence on skilled professionals, and
making the process easy to conduct. Recent work can be
broadly categorized into two main approaches.

One involves the use of Large Language Models (LLMs),
such as GPT-based systems [1] and deep learning agent-based
systems [2][3], to use the extensive domain knowledge
inherent in LLMs to automate pentesting. Although LLM-

based pentesting approaches have proven highly effective in

reducing manual intervention and enhancing automation, they

still face notable challenges and inefficiencies inherent to

LLMs, such as limited pentesting knowledge, context loss [1],

unstructured data generation and efficiency [4].

The other category uses Reinforcement Learning (RL) to
discover novel attack paths and adapt to dynamic environ-
ments. Among these approaches, one class, such as [5]-[7],
relies on attack graphs. However, applying attack graphs to
real-world, dynamic pentesting scenarios is challenging, as
they require comprehensive and often unavailable system
knowledge. In contrast, the other class, such as [8], uses
exploitable machines to train a deep reinforcement learning
model to automate the pentesting process. Nevertheless, deep
RL methods often face challenges related to large state spaces
and high-dimensional discrete action spaces, which
complicate the training process in pentesting scenarios [9].
Moreover, the use of random exploration during the early
stages of training can further introduce instability, potentially
causing the model to fail to converge.

Recently, Imitation Learning (IL) has been used in
automating pentesting [4] [10] [11]. IL[12], a special form of
reinforcement learning, infers the reward function by
modeling expert behaviour rather than relying on direct
feedback from the environment. The agent learns a policy
through expert demonstrations. The approaches presented in
[4] [10] [11] have shown that IL can improve the
performance of automated pentesting by incorporating expert
knowledge. However, these approaches often face challenges
in agent training, either too complex or requiring a vast
amount of expert data, which is hard to gain in practice.

In this paper, we proposed PT-ISQL, an automated
pentesting approach based on Inverse Soft-Q Learning
(ISQL), which simplifies the process of IL by learning a soft
Q-function that implicitly captures both the reward and the
policy without using the complex adversarial training process.
Our contributions are as follows:

e We propose an architecture for realizing automated
pentesting based on ISQL;

e We implement a method for encoding pentesting tasks and
actions, demonstrating that ISQL can be effectively used in
automating pentesting;

e We conduct thorough experiments in a simulated network
to evaluate the proposed PT-ISQL approach, and provide
an in-depth analysis to the results.

The remainder of the paper is organized as follows. In
Section II, we review the related work, focusing on comparing
our approach with state-of-the-art approaches for pentesting
based on reinforcement and imitation learning. In Section III,
we present the proposed PT-ISQL approach, including the

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

62

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

system architecture and detailed methodological steps. In
Section IV, we elaborate the experiments and provide an
analysis of the results. We conclude the paper and describe the
future work in Section V.

II. RELATED WORK

As mentioned above, LLMs have recently been used to
automate pentesting. For example, PentestGPT [1] uses three
modules, Reasoning, Generation, and Parsing to represent the
specific roles typically found within penetration testing. It
introduces a Pentesting Task Tree (PTT) derived from the
cybersecurity attack tree to encode the ongoing status of tests
and guide the subsequent actions. To overcome limitations
such as limited pentesting knowledge and insufficient
automation, PentestAgent [2] was proposed, which uses
multi-agent collaboration to cover all phases of the pentesting
lifecycle, thereby greatly reducing the need for human
intervention. Although these studies have shown strong
potential for automating penetration testing tasks, they also
suffer from critical limitations inherent to LLMs. These
include the need for vast amounts of high-quality training
data, shallow task understanding, limited context windows,
and lack of persistent memory. Such constraints pose huge
risks in security-critical domains like pentesting. Particularly,
the inability to perform long-term planning and retain stateful
knowledge may hinder performance in complex tasks such as
multi-step exploit chaining and privilege escalation.

We chose to use IL with limited amount of expert
knowledge to automate pentesting, aiming to build compact,
robust and reliable pentesting systems. In the following
sections, we focus on state-of-the-art approaches using RL
and IL to automate the pentesting process.

A. Pentesting based on Reinforcement Learning (RL)

In RL, an agent learns to make decisions by interacting
with an environment, making it well-suited for pentesting
which requires evaluating the current situation and then
taking appropriate actions. As a result, many studies have
applied RL to automate pentesting, such as [5]-[8]. In these
approaches, the system under test is modeled as the
Environment, and the pentester is the Agent. The interaction
of the tester and the system is considered as the Action and
results in the state change. Various techniques, including deep
RL, have been used to address the complexity of RL
problems for pentesting.

For example, [5] presented a method for identifying
optimal attack path using a Deep Q-Network (DQN), based
on a network topology generated from Shodan data and an
attack tree constructed using MulVAL [13]. The traditional
attack tree representation was improved by transforming it
into a transition matrix, which was then used for DQN
training. However, in real-world scenarios, the topology of the
target network is often unknown or only partially accessible,
limiting the applicability of such approaches.

Deep Exploit [14] is a pentesting tool that uses an
advanced deep RL algorithm, Asynchronous Advantage
Actor Critic (A3C), to exploit vulnerable servers
automatically. In [8], a pentesting framework was developed
based on Deep Exploit, and the influence of the number of

neural networks on exploitation success rates was evaluated.
However, real-world pentesting environments and complex
network systems often involve a large, discrete action space,
posing challenges for the training and convergence of deep
RL models. For instance, algorithms like DQN select the
action with the highest predicted value as the optimal choice.
Unlike environments such as games, where actions are
relatively deterministic and limited in scope, pentesting
involves greater uncertainty and a more complex, discrete set
of actions and outcomes. Furthermore, in large action spaces,
multiple actions may have similar or identical values, leading
to ambiguity and suboptimal decisions [15]. These
limitations hinder the effective use of RL for pentesting,
especially in realistic and dynamic environments.

B. Pentesting based on Imitation Learning (IL)

IL [12] is a specialized form of RL. Traditional RL relies
on trial and error, with the agent receiving feedback from its
environment in the form of rewards or penalties. In contrast,
IL enables an agent to learn a policy directly from expert
demonstrations by modeling expert behavior and inferring the
underlying reward function being implicitly optimized. IL is
particularly useful when it is easier for an expert to
demonstrate the desired behavior than to define a reward
function that would lead to the same behaviour, or when
learning the policy from scratch is difficult. This makes IL
especially well-suited for complex tasks such as pentesting.

A Generative Adversarial IL (GAIL) method was
proposed in [16], where the reward function is learnt by
measuring the similarity between an agent’s and an expert’s
behavior. GAIL-PT [9], which combines GAIL and Deep
Exploit, was developed to build an automatic pentesting
framework. It addresses the challenge of high-dimensional
action space by using the GAIL algorithm. GAIL-PT
performs well in small-scale network environments (with or
without honeypots), and large-scale networks, showing the
potential of using IL for automated pentesting. However, the
training process of GAIL requires careful tuning of
hyperparameters and techniques, such as gradient
penalization. Moreover, GAIL-PT is prone to overfitting with
expert trajectory distributions and may not generalize well to
different environments.

In the framework (i.e., DQfD-AIPT) [11], a method using
expert knowledge is proposed. It combines transformed
abstract expert knowledge with collected pentesting traces
over various network scenarios. It provides a different method
for solving the overfitting problem. However, despite using a
less complex algorithm, this method requires a large amount
of expert data to build the expert database.

Compared with these studies, our approach uses a more
efficient way to train a pentesting agent, which requires far
fewer expert demonstrations while converges more quickly.

III. PENTESTING BASED ON INVERSE SOFT-Q LEARNING

A. System Architecture

IL has developed into three main methods, Behaviour
Cloning (BC), Direct Policy Learning (DPL) and Inverse
Reinforcement Learning (IRL). BC is the simplest form of

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

63

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

IL, using supervised learning on expert data. It is widely used
but can lead to cascade errors. DPL requires the presence and
interaction with an expert. IRL, on the other hand, aims to
infer the environment’s reward function from expert
demonstrations and then uses RL to discover the optimal
policy—one that maximizes the inferred reward function.

ISQL is a recent method for implementing IRL,
incorporating soft Q-Learning into the inverse learning
process. ISQL has been shown to require less expert
demonstration data to achieve comparable performance.
Moreover, it considers stochastic or noisy expert actions.
Thus, we chose ISQL to automate pentesting. Figure 1
illustrates the basic architecture of our automated pentesting
framework based on ISQL: PT-ISQL. It consists of three
main components. The Pentesting Environment represents
the network environment where vulnerabilities are assessed
by using the automated pentesting approach. It is the
environment with which the RL agent and human experts
interact during the pentesting. The environment returns the
corresponding state information after each action taken by the
agent or expert.

< ()
7

e 1

P1 Expert g)

Inverse Soft-Q Learning (ISQL)

State & Action
(Online)

* \
Pentesting B e
Environment R (

- o ¢
fntemet. g I = a 'Y
b Q
E_ =] (= s e o | RL Agent
s

Figure 1. System architecture for PT-ISQL.

The ISQL component is the core of our system,
implementing the ISQL algorithm tailored for pentesting. It
interacts with the Pentesting Environment and generates the
information used by the RL Agent. Expert demonstrations are
first collected, consisting of recorded sequences of actions
taken by human security experts or earlier runs of an RL agent
during attempts to discover and exploit vulnerabilities in the
Pentesting Environment. These demonstrations capture high-
quality, goal-directed behaviours, such as exploiting services,
vulnerability detection, and escalating privileges. Then, the
resulting state-action pairs are used in the training process to
get a soft Q-function, which enables the model to infer both
the reward function and the policy that best explain the
experts’ behaviours. This process allows the RL agent to
imitate expert strategies by learning from their
demonstrations, even when the experts’ behaviours are
stochastic or suboptimal.

Using the learned policy, the RL Agent component
interacts with the Pentesting Environment, navigating
networks and selecting actions, such as scanning, exploiting,
escalating privileges, or exfiltrating data, much like a fully
autonomous Al red team agent. Since ISQL allows for
stochastic behaviour (a soft policy), the agent can randomize
attack sequences, adapt to defensive changes, such as patched

systems or Intrusion Detection Systems (IDS), and make
context-aware decisions that evolve over time. In addition,
because the reward function captures underlying intent (e.g.,
reaching high-value targets, or staying undetected), the agent
can generalize its knowledge to unseen network topologies or
adapt to different vulnerabilities.

Through the interaction of these three components, fully
automated pentesting can be achieved.

B. Inverse Soft-Q Learning for Pentesting

The PT-ISQL process consists of three main steps:

Step 1: process expert demonstrations. For each
trajectory 7 in the set of expert demonstrations Deyers, the
state-action pairs (s, a) are extracted. These pairs are then
used as inputs for the reward and Q networks.

Step 2: conduct iterative training via ISQL. Instead of
learning a policy from a reward function, ISQL simplifies the
process of the IRL by learning a Q-function that implicitly
captures both the reward and the policy without using the
complex adversarial training process. The goal of this step is
to learn rewards and Q-values that align with expert
behaviour. The target of the Q-function is computed based on
the current reward r(s,a), the expected value of the next
state’s Q-values and a soft entropy term -alog 7(als), where
n(als) is the policy derived from the Q-values using a softmax
function, scaled by the entropy temperature a. This reflects
the fact that experts not only try to perform well (i.e., high
rewards) but also act stochastically and robustly, avoiding
always picking the single "best" action. It balances the reward
maximization and exploration through entropy. Namely

Quargel(s,a)=r (s,a)+y Ea [O(s",a")]-alogn(a'ls’)
7(als) = softmax (Q(s,a)/ &)
Figure 2 shows the pseudocode of this step.

(1
2

Algorithm 1 Inverse soft Q-Learning (ISQL) for Pentesting
Require:
Input: Expert trajectories Dexpert = {(s,a,s’)}, states s, Actions a, dis-
count factor v, entropy temperature «, learning rate n, total iterations 7'
//Expert trajectories Dexpery are from pentesting environment;
//states s, such as configuration, vulnerability information of all hosts
(open ports, access level...) ;
//Actions a, such as scans, exploits, or privilege escalations etc. similar
to expert behavior.
Ensure:
Output: Learned Q-function Qp(s,a) from which policy m(als) o
exp(Qg(s,a)/a) can be derived
: Initialize Q-function Qy(s, a) with parameters 6
: for t =1to T do
Sample batch {(s,a,s')} ~ Dexpert
Compute soft values: V(s') < a-logy . exp(Qo(s’,a’) /)
Compute reward: 7 < (Qq(s,a) —yV(s))
Compute loss:

S I R R

L+ —E[f] + E[Qe(s,a) — vV (s')] + ﬁE[F"]

it Update Q-function parameters: 6 < 0 —nVoL
8: end for

Figure 2. Pseudocode of the ISQL training for pentesting.

Step 3: agent execution. The trained agent can now use
the learned policy to act in the environment autonomously,
performing pentesting tasks, such as discovering attack paths,
exploiting systems, and chaining exploits toward high-value
targets, which enables realistic and adaptive red teaming.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

64

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

IV. EVALUATION AND ANALASYS

A. Experiement Setup

We implemented the proposed approach in a virtual
machine running Kali Linux. MiniConda (Version 24.1.2)
was used to set up the Python virtual environment for building
the three components of PT-ISQL. We wused the
NetworkAttack Simulator (NASim, Version 0.12.0) [17] to
simulate the Pentesting Environment. In order to compare our
work with [9], we have chosen the “small-honeypot” network.

The topology of our experimental network is shown in
Figure 3. The network consists of four subnetworks with a
total of eight hosts, one of which is a honeypot. The hosts run
two types of operating systems (Linux and Windows) and
three types of services (HyperText Transfer Protocol-HTTP,
Secure SHell-SSH, and File Transfer Protocol-FTP). Hosts (2,
0) and (4, 0) are valuable assets (i.c., sensitive hosts) in the
network, each assigned a reward value of 100. Node (3, 2) is
a honeypot machine with a value of -100. The RL agent is
expected to avoid exploiting honeypots. Firewalls filter
specific types of services between subnets, and each action

makes a cost for the agent.
Legend

Server Valuable

host
2,0)
S(ubnel 2

Internet

(1,0)

(4,0)

Subnet 4 Subnet 3

Figure 3. Topology of the experimental network.

The agent aims to maximize its score by reaching the
sensitive hosts while minimizing cost. There are four types of
scanning actions for getting information from each host:
OSScan, Service Scan, ProcessScan, and SubnetScan. In
addition, the agent can perform exploitation and privilege
escalation actions for specific services and processes. The
total number of actions is 72 and states is 24576. The available
actions are listed in Table I, with each action associated with
a different cost. Moreover, each action has a probability of
success, indicating the difficulty of exploiting certain
vulnerabilities. However, whether an action succeeds depends
not only on this probability but also on factors such as firewall
rules, the network topology, and the host’s configuration.

TABLEIL ACTIONS THAT CAN BE TAKEN BY AGENTS
Action name (O8] Cost | Probability |Access
SSH-EXP Linux 3 0.9 User
FTP-EXP Windows | 1 0.6 User
http-EXT / 2 0.9 User
Tomcat-PE Linux 1 1 Root
Daclsve-PE Windows | 1 1 Root
Subnet-Scan / 1 1 /
OS-Scan / 1 1 /
Service-Scan / 1 1 /
Process-Scan / 1 1 /

Table II lists the hyperparameters used for expert
demonstration data generation using RL and agent training. A
three-layer SimpleQ Network model was chosen for ISQL. A
total of 1000 expert trajectories were extracted. To control the
quality of the expert demonstrations, a reward threshold was
used to filter the expert demonstrations data.

TABLE II. HYPERPARAMETERS FOR EXPERT DATA GENERATION AND
AGEMT TRAINING

Hyperparameter Value
Learning rate 0.0001
Batch size 64
Discount factor, 0.9
Hidden layer size 128
Replay memory size 1000000
Initial memory size 10000
Target network update frequency| 4

Initial temperature parameter 1

Max steps per episode 1000

B. Evaluation Metrics

We evaluated the performance of PT-ISQL from the
perspectives of both imitation learning and automated
pentesting. We first discuss the key factors that influence the
performance of the ISQL algorithm in the context of
pentesting in Sections C and D, then evaluate the proposed
PT-ISQL approach according to the following three metrics.

Honeypot invasion probability. It is the likelihood that a
pentesting agent is deceived into interacting with a honeypot.
It serves as an indicator of the pentesting approach’s stealth
and precision. A high probability suggests that the pentesting
approach cannot well distinguish real targets from decoys,
while a low probability indicates more accurate reconnaiss-
ance and smarter exploitation strategies. Frequent hitting of
honeypots implies a low ability to uncover real vulnerabilities.
In our tests, a honeypot is considered invaded if the returned
reward is less than -100. In such cases, the invasion
probability is set to 1.0 (100%); otherwise, it is 0. The average
honeypot invasion probability is computed over 10 episodes
(i.e., pentesting rounds) for each evaluation.

Average reward. In ISQL, an agent that receives a high
cumulative reward is likely following expert-level strategies,
taking efficient and goal-directed actions while avoiding risky
or low-value behaviors. Reward accumulation directly reflects
several aspects of performance: success rate (i.e., whether the
goal is reached), efficiency (i.e., fewer steps to reach the goal)
and stealthiness (i.e., fewer alerts triggered or honeypots
invaded). Therefore, we use the average cumulative reward of
10 episodes to measure the performance of the proposed PT-
ISQL approach.

Goal-reached probability. The goal of our tests in the
simulated network is to reach the valuable hosts (2, 0) and (4,
0). Whether the goal is reached or not is recorded after each
episode. If the goal is reached, the probability is set to 1.0
(100%); otherwise, it is 0. The goal-reached probability is
calculated as the average value over 10 episodes.

In our tests, the learning steps are set to 20000 as default,
and the evaluation interval is set to 200 steps. But for the tests

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

65

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

in Section E, the numbers are increased to 100000 and 1000,
respectively, to accommodate the extended training
requirements of deep reinforcement learning. We describe our
experiments and analyze the results in Sections C to E below.

C. Influence of the Threshold of Expert Demonstrations

To study the influence of expert demonstration quality on
the performance of PT-ISQL, we use a threshold to filter the
expert demonstration data. We observed that when the
threshold is reduced to 21, the agent’s mean reward is
considerably lower than that of the expert demonstrations. To
illustrate the influence of this threshold, we compared the
results using two values: 21 (low threshold) and 100 (high
threshold). For each threshold, varying numbers of expert
demonstrations were used to train the agent. The average
reward and standard deviation are calculated after 2000 steps,
when all rewards had converged.

Rewards with Different Thresholds

//\/‘
e
100 i =

Reward

—— High threshold
—— Low threshold

1 10 50 100 1000

30 40 5
Number of Expert Demonstrations

Figure 4. Rewards under different thresholds (solid lines-average values).

Figure 4 shows the rewards with different numbers of
expert demonstrations under two threshold settings. When the
reward threshold is low (21), the average reward and standard
deviation of all the experiments are 98.80 and 41.14,
respectively. When the threshold is high (100), the average
reward and the standard deviation improved to 134.86 and
21.23, respectively. These results indicate that higher-quality
expert data (i.e., higher threshold) leads to both higher average
rewards and more stable performance, regardless of the
number of demonstrations used. However, even in the high-
threshold case, the agent's mean reward remains lower than
that of the expert data.

D. Number of Reruired Expert Demonstrations

Due to the difficulty of obtaining expert data in practice,
the minimum required number of expert demonstrations is an
important factor affecting the usability of IL algorithms. To
investigate this in the context of our PT-ISQL, we measured
the reward when using different numbers of expert
demonstrations: 1, 10, 30, 40, 50, 100, and 1000, under both
low and high threshold settings. We observe the minimum
number of expert demonstrations when the reward reaches a
stable required value.

As shown in Figure 5, the rewards converge around 2000
steps in all settings. When the number of expert
demonstrations is 1, the rewards are low and fluctuate heavily.
Table III presents the average reward with standard deviation
for different numbers of expert demonstrations after
convergence (2000 steps). The results show that when the

number of expert demonstrations exceeds 30, the performance
becomes stable and consistent.

Group = Low Threshold Group = High Threshold

200
: BANES b b (N aitoehy
100 - Nadiaha leoiiiiau b acndil Y W' i
) \ '

. i Ll

g o) ,

& Expe: -
—100 S
—200 T T T T T

0 10000 20000 O 10000 20000
Step Step

Figure 5. Rewards of different number of expert demonstrations.

TABLE III. AVERAGE REWARD WITH STANDARD DEVIATION UNDER
DIFFERENT NUMBER OF EXPERT DEMONSTRATGIONS

No. Expert demo Rewards - low Rewards - high
threshold threshold
1 2+67 82+16
10 70 +£27 100 =15
30 82+19 116 £ 15
40 86 +20 121 £12
50 82+19 132+ 14
100 85+25 113+15
1000 82+19 126 =17

To further analyze convergence speed, we examined the
relationship between the number of episodes completed and
the number of training steps. After convergence (around 2000
steps), a higher number of episodes within a fixed number of
training steps indicates faster convergence and thus a shorter
duration for completing the automated pentesting task.

As shown in Figure 6, under the low-threshold setting,
using 50 expert demonstrations results in a convergence speed
nearly identical to that achieved with 100 or even 1000 expert
demonstrations. Under the high-threshold setting, the number
of expert demonstrations can be reduced to 40 while still
achieving the convergence speed of the 100 and 1000
demonstration cases. Additionally, when completing 100
episodes, the time required with 30 expert demonstrations
under the high-threshold condition is shorter than that under
the low-threshold condition.

Group = Low Threshold Group = High Threshold

Expert Demo Number
) 1 o .
B 10 100 i
300 i 10 w000 ! /
— ' -
g : - | S
! -~]
§ 200 : - !
& p P
100 +- '7 TR b 7 """
0 T 'I T T ; T
0 10000 20000 0 10000 20000
Step Step

Figure 6. Relationship between episode and training steps.

In contrast, GAIL-PT requires 5000 expert demonstrations
to reach the minimum number of training rounds in the same
simulated network with a honeypot [6]. This shows that the
number of required expert demonstrations in our proposed
PT-ISQL is greatly fewer than that in GAIL-PT, which relies
on generative adversarial learning and is also dependent on
expert data. With our PT-ISQL, 30 expert demonstrations are
enough to achieve good training performance in the simulated
network with a “small honeypot”. Furthermore, increasing the

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

66

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

number or the quality threshold of expert demonstrations can
further increase the converging speed of training.

E. Comparison of ISOL with Simple Q-Learning

To demonstrate the advantages of the ISQL algorithm in
our PT-ISQL approach, we compared the pentesting
performance using ISQL with that using Simple Q-Learning
(a reinforcement learning method). The three pentesting
metrics were examined across varying training steps. In this
experiment, the high-threshold expert data was used, with 50
expert demonstrations provided. For each algorithm (with
ISQL denoted as iq, and Simple Q-Learning as rl), five runs
were conducted, and the results were averaged for the
comparison of each metric.

Honeypot Invasion Probability

Figure 7 illustrates the honeypot invasion probability of
five runs. The solid line represents the mean value, with the
shaded area denoting the standard deviation. The results show
that using ISQL greatly reduces the probability of honeypot
invasion compared with deep reinforcement learning. This
finding aligns with the results reported in DQfD-AIPT [11],
where using expert demonstrations also led to significantly
fewer interactions with honeypots. Nevertheless, in their
study, the agent interacted with the honeypot during the early
stages, i.e., before convergence.

0.301 Group

—

0.25)

o

N

S
!

0.154

<1 duslh bl

T
20000

Probability of Invading Honeypot

o o
° =
] o
1 L

T T T T
40000 60000 80000 100000

Step
Figure 7. Probability of honeypot invasion of ISQL and Simple Q-
Leaming.
Average Reward

As shown in Figure 8, the rewards obtained using ISQL
are both high and stable from the early stage of training. In
addition, the reward is consistent across runs as indicated by
the small shaded area. In contrast, when using the
reinforcement learning algorithm, the reward is highly
unstable across different runs. In fact, some runs fail to
converge even after 100000 steps. This trend is consistent with
the results reported in [9] and [11].

200 4

N - y
i
=200

-400 4

Reward

-600 4

—800
Group

—_—

iq

—1000

T T T T
40000 60000 80000 100000

Step

T T
0 20000

Figure 8. Rewards of ISQL and Simple Q-Learning.

Goal-Reached Probability

Figure 9 shows the average goal-reached probability with
standard deviation (shaded area) over five runs using both
algorithms. The results demonstrate that ISQL achieves much
higher goal-reaching performance and requires far fewer
training steps compared with Simple Q-Learning. ISQL
achieves high goal-reaching performance even from the early
stage of training, as it can quickly learn effective strategies
from expert demonstrations.

1.0

i

o o o
> o ©
1 L 1

Probability of Goal Reached

o
N
1

Group
=
iq

0.0

T T T T
40000 60000 80000 100000

Step

T T
0 20000

Figure 9. Goal reached probability of ISQL and Simple Q-Learning.

However, the performance of ISQL may degrade with
excessive training. As seen in Figure 8 and Figure 9, after
around 20000 steps, the reward begins to fluctuate more, and
the goal-reaching rate declines. In contrast, Simple Q-
Learning shows slower and less stable learning. Even after
100000 steps, the algorithm has not fully converged: the
continued upward trend in the goal-reaching probability
indicates that learning is still in progress.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an automatic pentesting
approach based on ISQL. Our approach uses soft Q-Learning
to infer the reward function implicitly optimized by human
experts, while requiring significantly less expert data
compared with other reinforcement learning methods based
on expert demonstrations. Evaluation results show that our
PT-ISQL approach is much faster than that of the general deep
reinforcement learning method, such as Simple Q-Learning.
The performance of the trained PT-ISQL agent is comparable
to that of human experts. The required number of expert
demonstrations is largely reduced compared with GAIL-PT
(50 vs 5000), making PT-ISQL a more data-efficient and
practical solution for automated pentesting.

However, the experiments conducted in the paper are
limited in a simulation environment with a small network, and
the trained agent's transferability to different situations has not
been assessed. Future work is to evaluate PT-ISQL in a more
realistic simulation environment and to test it in real-world
networks. This includes training agents on real expert
demonstrations data, and integrating PT-ISQL with
frameworks such as Deep Exploit, with the goal of making
PT-ISQL a fully functional and deployable automated
pentesting tool. Qualitative comparisons with LLM-based
agents, such as PentestGPT, is also a future work.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

67

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

REFERENCES

[11 G. Deng et al., “PentestGPT: Evaluating and Harnessing Large
Language Models for Automated Penetration Testing,” In proc.
of 33rd USENIX Security Symposium (USENIX Security 24),
pp-847-864.

[2] X. Shen et al., “Pentest Agent: Incorporating LLM Agents to
Automated Penetration Testing”, arXiv:2411.05185v1
[cs.CR], Nov. 7, 2024.

[3]1 A.Happe andJ. Cito, “Getting pwn’d by Al:penetration testing
with large language models,” In Proc. of the 31st ACM Joint
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp.2082—2086.

[4] H. Kong et al., “VulnBot: Autonomous penetration testing for
a multi-agent collaborative framework”, arXiv:2501.13411v1
[cs.SE] 23 Jan. 2025

[5] Z.Hu, R. Beuran, and Y. Tan, “Automated penetration testing
using deep reinforcement learning,” in 2020 IEEE European
Symposium on Security and Privacy Workshops (EuroSPW),
pp. 2-10, IEEE, 9 2020.

[6] I Jabr, Y. Salman, M. Shqair, and A. Hawash, ‘“Penetration
testing and attack automation simulation: deep reinforcement
learning approach,” An-Najah University Journal for Research,
Apr. 2024, pp. 7-14. DOI:10.35552/anujr.a.39.1.2231

[71 J.Yiand X. Liu, “Deep reinforcement learning for intelligent
penetration testing path design,” Applied Sciences, vol. 13, p.
9467, Aug. 2023.

[8] L. V. Hoang et al., “Leveraging deep reinforcement learning
for automating penetration testing in reconnaissance and
exploitation phase,” in Int. Conf. on Computing and
Communication Technologies, pp. 41-46, IEEE, 12 2022.

[9]1 J. Chen, S. Hu, H. Zheng, C. Xing, and G. Zhanﬁ, “Gail-PT:
An intelligent penetration testing framework with generative
adversarial imitation learning,” Computers Security, vol. 126,
p- 103055, 3 2023.

[10] F. M. Zennaro and L. Erdddi, “Modelling penetration testing
with reinforcement learning using capture-the-flag challenges:
tradeoffs between model-free learning and a priori knowledge”
IET Information Security, vol.17, pp.441-457, 5 2023.

[11] Y. Wang et al., “Dqfd-aipt: An intelligent penetration testing
framework incorporating expert demonstration data,” Security
and Communication Networks, vol. 2023, pp. 1-15, 5. 2023.

[12] M. Zare, P. M. Kebria, A. Khosravi, and S. Nahavandi, “A
survey of imitation learning: Algorithms, recent developments,
and cﬁ,allenges,” IEEE Transactions on Cybernetics, vol.54, pp.
7137-7168, Dec. 2024.

[13] X. Ou, S. Govindavajhala and A. W. Appel, “Mulval: A logic-
based network security analyzer,” in Proc. of USENIX security
symposium, vol. 8, pp. 113-128, 2005.

[14] T. Isao, “Deep exploit,” 2018. https://github.com/130-bbr-
bbg/machine learning_security/blob/master/DeepExploit/RE
ADME.md / Tretrieved: Sept. 2025]

G. Farquhar et al., “Growing action spaces,” in Proc. of the
37th International Conference on Machine Learning, vol. 119,
pp- 3040-3051, PMLR, 5 2020.

[16] J. Ho and S. Ermon, “Generative adversarial imitation
learning,” Advances in neural information processing systems,
vol. 29, pp. 4572-4580, Dec. 2016.

[17] J. Schwartz and H. Kurniawati, “Autonomous penetration

testing using reinforcement learning,” CoRR, vol.
abs/1905.05965, 2019.

[15

—

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

