SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

A Modular and Flexible OPC UA Testbed Prototype for Cybersecurity Research

Sebastian Kraust

, Peter Heller

and Jiirgen Mottok

Laboratory for Safe and Secure Systems (LaS3)
OTH Regensburg
93053 Regensburg, Germany
e-mail: {sebastian .kraust | peter2.heller | juergen. mottok}@oth—regensburg .de

Abstract—The security assessment of Industrial Control Sys-
tems (ICS) is becoming increasingly challenging due to their
growing complexity and interconnectivity. Traditional penetra-
tion testing is often impractical in live environments due to the
risk of operational disruption, making testbeds essential for eval-
uating security mechanisms, analyzing threats, and developing
defense strategies. However, existing testbeds tend to be static
and difficult to quickly adapt to a wide variety of scenarios.
To address these limitations, we propose a modular and flexible
ICS testbed that enables rapid reconfiguration of the testbed
composition in order to test a wide variety of scenarios. Our open-
source approach leverages containerized applications as building
blocks, allowing users to create and modify the testbed with
minimal effort. We show how to use the provided components to
construct testbeds and how our approach can be used as a tool
for accommodating penetration tests.

Keywords-testbed; OPC UA; cybersecurity; penetration testing.

I. INTRODUCTION

The increasing complexity and interconnectivity of Indus-
trial Control Systems (ICS) require extensive security as-
sessments. This is no trivial task considering the rapidly
evolving attack surface and the widespread use of devices and
protocols without security features. Penetration tests offer a
way to actively assess a system’s security status but are not
practical in live environments due to the risk of damaging
equipment and endangering human life. Testbeds address this
issue by providing a safe environment for evaluating security
mechanisms, analyzing cyber-physical threats, and develop-
ing defense strategies. However, existing testbeds are often
static in nature, tightly coupled to specific architectures, or
require extensive effort to modify, making them unsuitable
for adapting them to the specific needs for a given scenario.
Most notably, this rigidity limits their usefulness for assessing
threats to one’s own system, which might be vastly different
from a prefabricated testbed.

To address this issue, we introduce a novel ICS testbed
prototype designed for maximum modularity and flexibility,
enabling rapid restructuring and reconfiguration to accommo-
date various attack vectors and system configurations. The
basic idea is to provide a set of building blocks in the form
of containerized applications, from which a wide variety of
testbed compositions can be created with minimal manual
effort. By making the testbed components freely available, we
hope to facilitate the sharing of problematic scenarios, insights,
and custom testbed extensions within the research community.

In this paper, we first describe our design process along
with the relevant literature in Section II. Then, we present the

basic concept and components in Section III, and create and
modify a basic testbed. We also show how containers can be
swapped to enable security tests with certain vulnerabilities.
We summarize the paper and provide an outlook for future
work in Section IV.

II. DESIGN PROCESS AND RELATED WORK

Prior to introducing the testbed, we provide the relevant
context regarding the project environment in which it was
developed, and highlight topics and issues we encountered that
influenced our design.

The idea for a new type of testbed was developed within the
context of a research project focusing on improving the cyber
resilience of critical infrastructure systems. Key elements in-
clude the exploration of new active and passive cyber security
techniques for industrial environments powered by artificial
intelligence. We conducted extensive literature research to find
a suitable testbed that we could recreate. However, this turned
out to be difficult due to lack of information or accessibility. As
a result, we decided to develop our own environment to have
total control over a system while launching realistic attacks.
During this process, we first noticed an evident lack of litera-
ture that addresses testbed design in industrial environments.
Most publications touch upon it only very briefly and instead
cite a real system or a reference model as the inspiration, as
shown in [1]. As a result, we decided to document our thought
process during the development process.

The first task was to choose a common industrial protocol
with known vulnerabilities, working exploits, and readily
accessible toolkits and SDKs. Ultimately, OPC Unified Archi-
tecture (OPC UA) was selected as the primary protocol for a
number of reasons: first, it is well defined in the open standard
IEC 62541 [2] and comes with a plethora of security-relevant
features, such as encryption, authentication, and certificate
management. Second, it supports the creation of complex
hierarchical system architectures, which are high-value targets
for adversaries due to their highly interconnected monitoring
and control devices. Lastly, OPC UA fits well into the context
of our research project and has a significant share of usage
in industry and research. We also realized that flexibility
would play an important role during design, due to the great
number of existing implementations of the protocol and the
extensive configuration capabilities. Secondary protocols for
simulating other legitimate applications in an ICS environment
and additional noise are planned to be included in the future,
but are not a focal point.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

105

https://orcid.org/0009-0008-8108-2138
https://orcid.org/0009-0005-4762-6056
https://orcid.org/0000-0002-7727-2448

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE I. COMPARISON OF TESTBED FEATURES

Feature MiniCPS [13] DHALSIM [14] MOTRA [12]
Focus ICS network simulation, Impact analysis of ICS Penetration testing
SDN traffic events on physical
process simulation
Network fidelity high high low (focus on OPC UA)
Physical process fidelity low high (EPANET, water- low
only)
Deployment single host (Mininet) single host co-sim single/multi host
(Docker)

Swap implementation/version

codebase modification

codebase modification Docker images/tags

OPC UA provides a framework in which complex informa-
tion can be modeled and accessed with standardized services
[31[4]. The most basic building blocks are called nodes,
which are used to construct more complex structures, such
as hierarchical data types and objects. The entirety of all node
instances is called the address space, which defines a standard
way of structuring the nodes within in a tree-like fashion. This
achieves a consistent way for servers to present data to clients.
Initially, we focused on building prototypes of virtual devices
for a custom water treatment testbed with different OPC UA
software stacks and versions to enable certain vulnerabilities.
For all these variants, we manually created all required nodes
within the address space. Although we achieved near-identical
behavior, the resulting tree structure was not exactly the same,
making quick one-to-one replacements of devices during our
penetration tests unfeasible. Furthermore, maintaining the dif-
ferent stack versions written in their respective programming
languages required significant amounts of time and effort.
Fortunately, OPC UA also allows the address space and custom
extensions to be modeled using XML. Through the use of
tools like the OPC UA Model Compiler, the source code for
specific implementations can be generated automatically using
a common modeling language. Most available stacks support
these extensions; thus we can use a standardized way of
building and maintaining devices by using XML-based models
and configurations. This simplified the workflow and allowed
us to verify a variety of vulnerabilities.

Developing interchangeable implementations was merely
the initial phase in establishing a versatile framework. Subse-
quently, we needed to tackle their deployment. Container tech-
nology was the first solution to be considered as it allows pack-
aging software to be developed and deployed independently of
the underlying hardware. It can even be deployed on embedded
platforms with built-in support for different platforms, such as
x86 and ARM64. It also guarantees reproducible results, as it
leaves no room for errors regarding software versions, installed
tool chains, etc., and simplifies exchanging implementations
by replacing containers. Other advantages include implicit ver-
sioning through tags, easy software sharing with the research
community, and, to a certain extent, the ability to recreate

testbeds and verify results independently. In addition, many
network simulation tools, such as GNS3, natively support
container integration, which facilitates the creation of complex
architectures. Finally, the flexibility to replace any container
through a real component makes it easy to expand from a
virtual to a hybrid setup.

The ability to grow into a hybrid setup turns out to be
very relevant, as commercial, proprietary products often use
reference implementations as a basis. In 2021, OTORIO [5]
released their latest research on OPC UA attack surface,
mapping out supply chain dependencies for a number of major
manufacturers. Based on the specification available from the
standard body (IEC 62541 [2]), there have been different
releases of the OPC UA Core Stack for public use. Before this,
there have been different stacks (namely: .NET legacy, ANSI C
legacy, JAVA legacy) that are not officially supported anymore.
As OTORIO has shown, there is a significant relationship
between the reference stack implementations and the selected
OPC UA SDKs. The foundation reference implementations
and core stacks have been partly used to design or build
commercial and open source SDKs for products by different
OEMs [5]. Due to the ability to include such products in
a hybrid setup, we can also evaluate vulnerabilities in these
proprietary stacks.

Finally, further aspects that we came across during devel-
opment are configuration and bootstrapping issues. While the
underlying protocol has been verified to be securely designed
and audited by several bodies (BSI [6], Kaspersky [7], Claroty
[8]), proper configuration, bootstrapping, and personnel train-
ing are still major issues [9]-[11]. Furthermore, certain im-
plementations are characterized by incomplete feature sets and
potentially confusing documentation. As a result, we started to
vary the configurations in addition to the software stack itself.

Considering these issues in conjunction with the aforemen-
tioned lack of testbed design literature, we implement the
penetration testing-focused methodology for deriving testbeds
proposed by Kraust et al. [1] as a proof of concept. It intro-
duces an iterative, protocol-agnostic approach that gradually
builds up a complex testbed from individual devices. Dur-
ing each iteration, penetration tests including their respective

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

106

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

goals are defined and executed. The following iterations build
on the knowledge gained, which allows the user to create
more complex attacks over time. To be able to do this, the
testbed must be modular in nature. As a consequence, we
analyzed the OPC UA protocol in terms of its features and
capabilities, which allowed us to extract the basic building
blocks of a testbed centered around this protocol. We then
used the so-called Model Compiler to translate XML files with
the specified nodes of OPC UA devices into actual source
code across different implementations. In this way, we were
able to create applications with the same interface that use
various software stacks underneath. These building blocks are
currently available on Github [12]. We will explain the full
extent of the available software in the following section. In this
paper, we will use these building blocks to actually construct
an exemplary water treatment testbed.

To conclude this section, we want to briefly address how
this testbed concept distinguishes itself from other approaches
in the ICS domain that also emphasize flexibility and repro-
ducibility instead of using a static setup. For this comparison,
we have chosen to use MiniCPS [13] and DHALSIM [14].
The former is a toolkit that extends Mininet (a network
emulator) to emulate realistic ICS networks, providing a
physical-layer API for coupling simulations. It was developed
in response to the lack of generic simulation environments
for cyber-physical systems (CPS), providing a framework that
supports physical interactions and industrial protocols while
placing a strong focus on software-defined networking (SDN).
DHALSIM combines MiniCPS with the EPANET process
simulator to achieve high-fidelity co-simulation of water dis-
tribution systems in order to study the impact of network
anomalies and faults on the process. Table I summarizes the
key features and highlights the differences compared to our
approach. Although MiniCPS and DHALSIM can be used
for cybersecurity analyses, this was not their primary design
objective. Consequently, essential penetration testing features,
such as quick and easy reconfiguration, multi-host setups,
and swapping protocol implementations and software versions,
require more time and effort. MOTRA was developed with
these needs in mind, focusing on protocol-level interactions
and semantics rather than high network-level fidelity.

III. THE TESTBED

The goal of this section is to introduce the reader to the
overall testbed concept and to highlight how researchers can
build a testbed tailored to specific scenarios. We divide our
presentation into two parts: first, we introduce the overall
concept and the building blocks. Second, we build up an
exemplary testbed from scratch and show how the modular
approach can be used to modify the system with minimal effort
to perform a specific penetration test.

A. Concept and Components

The concept of a flexible testbed through the use of contain-
ers allows users to test specific setups and configurations, and

enables reproducible experiments across cybersecurity prac-
titioners. This requires careful consideration of how to split
testbeds into reusable chunks. During our initial tests, we often
found ourselves in the situation of needing another already
existing component, such as another sensor or actuator. As a
result, packaging software units that perform a certain function
was the obvious choice. The exemplary testbed used in this
paper is shown in Figure la, where these units (hereinafter
referred to as Components) are shown as white boxes. For the
chosen OPC UA protocol, they can be derived in part from the
protocol specification, such as discovery or global services.

In addition to the pure functionality, the next most rel-
evant properties for penetration testing considerations are
the underlying software stacks and the respective versions.
Generally, components (e. g., the valve-server) can be realized
using different implementations. Depending on the stack used,
specific vulnerabilities exist and can be exploited. Closely
related to this is the selection of the exact software version. As
developers constantly patch their software to improve security,
many real-world systems do not receive timely updates and
continue to run with outdated versions. We account for this
issue by allowing for the specification of a certain version.
As a result, we package components according to these three
parameters as separate containers, which is reflected in the
suggested naming scheme in the following section. We decided
to use Docker as the containerization solution, as it is freely
available, well-known, and feature-rich.

Before explaining the usage of the suggested testbed, we
provide a rough description of the workflow and the com-
ponents shown in Figure la. Please note that unless stated
otherwise, all components communicate using the OPC UA
protocol. In principle, the functionality could be replicated
using any other suitable protocol.

In essence, the testbed simulates a closed, single water tank
system as shown in Figure 1b. It has a static outflow and
an adjustable inflow through a pump. The water level is kept
between an upper limit (V,,,,) and a lower limit (V,,;,) by
activating the pump when the water level falls below V,,;,
and deactivating it upon reaching V... The water level in
the tank is monitored by a single fill level sensor. Depending
on the current level, water purification chemicals are added
by activating a valve. The control of the valve, logging,
and monitoring functionalities are realized by the architecture
shown in Figure la. In the following, we take a closer look at
the individual components.

watertank-simulation - This component implements the
simulation of the physical process of the tank in Python. This
simplified version is derived from a real process of a water
treatment facility. The current implementation features pump
control to keep the water level between the allowed minimum
and maximum. The pump is modeled to show PT2 behavior.
The current tank fill level is reported to the levelsensor-
server via an OPC UA client. For simplicity reasons, there
is currently no feedback loop regarding the concentration of
water treatment chemicals. The communication between the
simulation and the connected servers can be made invisible

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

107

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

headunit
headunit-client
OPC UA client with controlled
visualization inflow
valve for
chemicals
e N plc I E j
plc-server plc-historian
.................... V
OPC UA server serving logs variable changes to max
plc-database's data database
\. _J
) I
. level
plc-logic s:r:/seor
database
control process simulation
\. _J
.................... Vin
rocess
a) N °
levelsensor-server valve-server
OPC UA server serving the OPC UA server controlling the ¢
tank's water level tank's valves
static outflow
\, y y
4 h
watertank-simulation
water tank model with a fill sensor and process valve
\ J

(a) Schematic representation of the testbed architecture

(b) Schematic representation of the
simulated water tank system

Figure 1. Schematic representations of the testbed architecture and the simulated water tank system

to the host networks by using internal Docker networks
while simultaneously decoupling the simulation and the server
application code. The realism of the simulations was of lesser
concern due to the testbed’s focus on penetration testing.

levelsensor-server - This OPC UA server hosts the current
sensor readings of the water level sensor. Depending on the
requirements of the production network, the security configu-
ration can be adjusted as needed. Another design consideration
was the implementation of internal sensor value updates. We
went with network-based communication for interacting with
the simulation instead of using hard-coded callbacks in each
custom server. This allows us to decouple the simulation from
the server entirely, which simplifies replacing containers.

valve-server - The second OPC UA server allows the
control of actuators in the system, which is currently just the
valve for adding treatment chemicals. The valve status does
not propagate back to the simulation, but we plan to extend
the simulation to include this feature in the future. As for
levelsensor-server, security features can be enabled as needed.

plc-logic - This component encapsulates the logic of acti-
vating and deactivating the valve depending on the current
reading of the level sensor. It opens a connection to both
the valve-server and the levelsensor-server and subscribes to
changes in the water level variable. This triggers the latter to
send a message to the logic client, where the reading is first
written into a queue and evaluated asynchronously in another

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

108

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

services:
headunit-dashboard:
container_name: "headunit-dashboard"

hostname: "headunit-dashboard"
image: dashboard:latest
environment:

- SERVER_URI=opc.tcp://172.17.1.1:4840
build:

context: ${IMAGE_REPO_URL} #main:opcua/

dashboard/python-opcua-asyncio/latest

ports:

- "8050:8050"

Figure 2. compose.yaml file for headunit

thread. Depending on the value, the valve position is changed
by writing a new value to the valve-server. Any changes to
either the water level or the valve position are also written to
the plc-server. This allows other devices (the headunit in our
case) to assess process data without having to directly interact
and possibly interrupt the process level servers. Lastly, the
water level thresholds for opening and closing the valves used
by the logic component can be configured. For this purpose,
it is informed if new values are written to the plc-server and
adopts the values as soon as possible.

plc-historian - The historian acts as a recording mechanism
for all relevant process parameters by writing them into a
persistent database. The current implementation uses the file-
based, lightweight SQLite database for simplicity reasons,
which is made accessible to the container via volumes. The
current implementation is not packaged as a container to
allow easier replacement with the user’s database of choice,
and is therefore depicted in gray in Figure la. The historian
subscribes to all relevant variables on the plc-server and is
triggered upon receiving new values.

plc-server - This third OPC UA server allows systems
of the upper layers to access process data for monitoring
and planning purposes. In contrast to the production network
servers, this instance simulates interactions with enterprise
clients, e. g., encrypted and authenticated connections for
administrative tasks or read-only connections for dashboards.
Authorized users may also set certain properties that influence
the simulation.

headunit-client - This client simulates a control station for
visualizing and monitoring the underlying process through a
web GUL It also allows for setting certain process-relevant
parameters, such as the threshold values. It connects to the
plc-server via a secure connection.

Please note that these currently available components are
implemented with different software stacks and versions. We
only implemented what is currently needed for this proof-of-
concept, but it is planned to add more containers. Another
notable point is that we will add containers for network noise
in the future, in order to simulate more realistic networks.

B. Building a Testbed

In this section, we present how the previously defined
building blocks can be orchestrated and deployed. As we

services:
plc-server:

container_name: "plc-server"

hostname: "plc-server"
image: node-server:latest
build:
context: ${IMAGE_REPO_URL} #main:opcua/server/

nodejs—-node-opcua/latest
args:
NODESET_MODEL: "PLC.NodeSet2.xml"
ports:
- "4840:4840"
networks:
- plc—net

plc-historian:

container_name: "plc-historian"
hostname: "plc-historian"
image: historian:latest
environment :

- SERVER_URI=opc.tcp://plc-server:4840
volumes:

- /tmp/docker/database:/database
build:

context: ${IMAGE_REPO_URL} #main:opcua/

historian/python-opcua-asyncio/latest

networks:

- plc—net
depends_on:

- plc-server

plc-logic:
container_name: "plc-logic"
hostname: "plc-logic"
image: plc-logic:latest

environment:
- PS_URI=opc.tcp://plc-server:4840
- LSS_URI=opc.tcp://172.17.0.1:4840
- VS_URI=opc.tcp://172.17.0.2:4840

build:
context: ${IMAGE_REPO_URL} #main:opcua/plc—
logic/python-opcua-asyncio/latest
networks:
- plc—net

depends_on:
- plc-server

networks:
plc-net:
name: plc-net
external: false

Figure 3. compose.yaml file for plc

use Docker, the orchestration tool of choice is Docker Com-
pose [15]. It allows the management of multi-container ap-
plications on a single host by using a declarative YAML file.
It allows users to define services (containers), networks, and
volumes that are then automatically configured and created
upon starting the Compose application. Every physical device
that is part of the testbed uses its own compose file. This gives
the user maximum freedom in terms of distributing services
across devices. We intentionally decided against using multi-
host orchestration tools, such as Docker Swarm or Kubernetes,
as this would introduce additional unwanted traffic that is
normally not found in industrial environments.

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

109

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

services:
levelsensor—server:
container_name: "levelsensor-server"
hostname: "levelsensor-server"
image: node-server:latest
build:
context: ${IMAGE_REPO_URL} #main:opcua/server/
open62541/latest
args:
NODESET_MODEL: "Tank.NodeSet2.xml"
ports:
- "4840:4840"
networks:
— levelsensor—net

water-tank-simulation:
container_name: "water-tank-simulation"
hostname: "water-tank-simulation”
image: water-tank-simulation:latest
environment :
- SERVER_URI=opc.tcp://levelsensor-server
:4840/KRITIS3M/
build:
context: ${IMAGE_REPO_URL} #main:opcua/water—
tank-simulation/python-opcua-asyncio/
latest
networks:
- levelsensor—net
depends_on:
- levelsensor—-server

networks:
levelsensor—net:
name: levelsensor-net
external: false

tempsensor-server:
container_name: "tempsensor-server"
hostname: "tempsensor-server"
image: node-server:latest
build:
context: ${IMAGE_REPO_URL} #main:opcua/server/
open62541/latest
args:
NODESET_MODEL: "Temp.NodeSet2.xml"
ports:
- "4841:4840"
networks:
- levelsensor-net

Figure 4. compose.yaml file for process

To demonstrate the usage, we again consider the system
shown in Figure la. Therein, we divided the system into
three groups: headunit, plc, and process. This indicates a
reasonable division of the testbed across different devices,
which are Raspberry Pi 4’s. The headunit could be assumed
to be a monitoring workstation, the plc replicates the behavior
of a real programmable logic controller, and the process
encapsulates the interfaces with the low-level process devices.
As a result, we would need a total of three compose files,
which are presented below. Please note that the exact usage
could deviate as the software matures, so please consult the
online documentation for the latest version.

This first compose file in Figure 2 configures the services
of the headunit device. The string for the build key points to
path within the Github repository, which is comprised of the
4-tuple protocol, component, library/stack, and version. In this
instance, the client is implemented using the latest version of
the asyncua Python library. Our applications are configured by
certain exposed environment variables (environment), in this
case, the address of the plc-server on another physical device
to which the client connects. As this application provides a
graphical monitoring interface, it allows access via the host
on port 8050 in this example.

The PLC application shown in Figure 3 is more complex, as

Figure 5. compose.yaml file extension for additional sensor

it currently consists of three separate services that communi-
cate over a private network plc-net. By using these networks,
we expose ports only if it is necessary, and addressing within
the network can be done by referencing the container names.
The OPC UA servers in our implementation are able to load a
number of different nodesets, depending on their task. This is
specified by the NODESET_MODEL argument, and therefore
avoids building the server anew every time the nodes change.
Due to the fact that we are currently using SQLite, we have
to mount the database file into the container using volumes.

Lastly, the production process application with the simula-
tion is shown in Figure 4. It is demonstrated how internal con-
tainer networks (in this example process-net) can be used to
separate simulation-specific network traffic from the testbed-
facing interfaces of the host system. Therefore, it isolates
simulation and additional tools from the testbed system. It
can also be seen that the same server implementation is used,
but another nodeset is loaded upon startup. Please note that
we omitted the valve server for the sake of clarity.

The described exemplary setup can be easily modified. For
example, suppose that the system is upgraded by including a
second sensor to measure the water temperature. To replicate
this in the testbed, it is sufficient to modify the process
compose file by adding a service as shown in Figure 5.

Modularity was a key requirement to support our concept
for designing testbeds as proposed in [1]. By starting with
a minimal setup initially and gradually adding functionality
through additional containers, we can support a bottom-up
approach when creating testbeds. This means that penetration
tests are initially conducted in a relatively simple environment
(e. g., only a server-client pair), and the following tests can
build upon these layers of understanding. This is more feasible
than coming up with complex scenarios straight away.

Another feature of the design is the redistribution of services
between physical devices. This can easily be done by moving
a service to another compose file and adjusting the environ-
ment variables if necessary. This is especially interesting for
recording network data at specific nodes. By restructuring the
setup, the desired connection can be exposed and recorded by
inserting a network tap.

Lastly, adjusting the setup for a certain penetration test

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

110

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

plc-server:
change old version to new
build: "plc-server/node-opcua/latest"”
build: "plc-server/node-opcua/v2.73.0"

plc-server:
container_name: "plc-server"
build:
change old version to new
context: S{IMAGE_REPO_URL}#main:opcua/server
/node js—-node-opcua/latest
context: ${IMAGE_REPO_URL} #main:opcua/server/
nodejs—-node-opcua/v2.73.0

Figure 6. modify image to enable vulnerabilities

is straightforward: first, the necessary implementation and
version must be selected. This is as easy as searching for the
relevant CVEs, and selecting the vulnerable software. Then,
the image for the affected container is modified. For example,
CVE-2022-21208 describes a Denial-of-Service attack against
implementations using the node-opcua package. Before ver-
sion 2.74.0, this causes the server to crash if an attacker
continuously sends big chunks of data to the server. Simply
modifying the version within the compose file enables the
vulnerability, as shown in Figure 6.

We currently support the most common open-source im-
plementations of OPC UA, namely open62541 (written in C),
node-opcua (NodelJS), opcua-asyncio (Python), locka99/opcua
(rust), and UA-.NETStandard (C#). Over time, we are planning
to expand on the available stacks.

IV. CONCLUSION AND FUTURE WORK

This paper proposes a modular and flexible testbed approach
to facilitate easier and faster reconfigurations for penetration
testing purposes. First, we put our approach into context by
providing design considerations, relevant literature, and issues
that we encountered. Next, we introduced our testbed approach
by defining the building blocks of the modular design. Then,
these were combined into an exemplary testbed. Lastly, we
showed how the ability to quickly change the architecture,
implementation, and configuration can be used to leverage
penetration testing activities.

The next steps include open-sourcing of our testbed com-
plete with an example configuration. We will also expand
the number of available components in order to enable the
modeling of more complex scenarios. We will use the knowl-
edge gained to construct a testbed with a sufficient number
of features to create an ICS dataset for intrusion detection
research.

ACKNOWLEDGMENT

The presented work is part of the research project KRI-
TIS Scalable Safe and Secure Modules (KRITIS3M), which
is funded by the Project Management Jiilich (PtJ) and the
German Federal Ministry for Economic Affairs and Climate
Action (BMWK) under funding code 03EI6089A.

(13]

(14]

[12]

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]

(9]

(10]

(1]

(15]

REFERENCES

D. Antonioli and N. O. Tippenhauer, “MiniCPS: A Toolkit
for Security Research on CPS Networks,” in Proceedings of
the First ACM Workshop on Cyber-Physical Systems-Security
and/or PrivaCy, ser. CPS-SPC ’15, New York, NY, USA:
Association for Computing Machinery, 2015, pp. 91-100,
ISBN: 978-1-4503-3827-1. DOI: 10.1145/2808705.2808715.
A. Murillo et al., “High-Fidelity Cyber and Physical Simula-
tion of Water Distribution Systems. I: Models and Data,” May
2023, Publisher: CISPA. DOI: 10.60882/cispa.25460440.v1.
Laboratory for Safe and Secure Systems, “MOdular Testbed
for Researching Attacks (MOTRA) - setups,” [Online]. Avail-
able: https://github.com/Laboratory - for- Safe - and- Secure -
Systems/motra-setups (Retrieved: 09/08/2025).

S. Kraust, P. Heller, and J. Mottok, “Concept for designing an
ICS testbed from a penetration testing perspective,” in 2025
IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), ISSN: 2768-0657, Jun. 2025, pp. 561—
568. pol: 10.1109/EuroSPW67616.2025.00071.

OPC Foundation, “OPC UA Online Reference - Released
Specifications,” 2025, [Online]. Available: https://reference.
opcfoundation.org/ (Retrieved: 09/08/2025).

F. Pauker, T. Frihwirth, B. Kittl, and W. Kastner, “A Sys-
tematic Approach to OPC UA Information Model Design,”
Procedia CIRP, vol. 57, pp. 321-326, 2016, 1SSN: 22128271.
Dpor: 10.1016/j.procir.2016.11.056.

S. Friedl, C. von Arnim, A. Lechler, and A. Verl, “Generation
of OPC UA Companion Specification with Eclipse Modeling
Framework,” in 2020 16th IEEE International Conference on
Factory Communication Systems (WFCS), Apr. 2020, pp. 1-7.
DpolL: 10.1109/WFCS47810.2020.9114448.

E. Jacob, “A Broken Chain: Discovering OPC UA Attack
Surface and Exploiting the Supply Chain,” Dec. 2021, [On-
line]. Available: https://i.blackhat.com/USA21/Wednesday -
Handouts/us-21 - A - Broken - Chain- Discovering - OPC - UA -
Attack - Surface - And - Exploiting - The - Supply - Chain . pdf
(Retrieved: 09/08/2025).

BSI, “OPC-UA Security Analysis,” Bundesamt fiir Sicherheit
in der Informationstechnik, Tech. Rep., 2022.

P. Cheremushkin and S. Temnikov, “OPC UA Security Anal-
ysis,” Kaspersky Lab, Security Analysis, 2018.

Team82, “Exploring the OPC Attack Surface,” 2020, [Online].
Available: https://claroty.com/team82/research/white- papers/
exploring-the-opc-attack-surface (Retrieved: 09/08/2025).
A. Erba, A. Miiller, and N. O. Tippenhauer, “Security analysis
of vendor implementations of the OPC UA protocol for
industrial control systems,” in Proceedings of the 4th Workshop
on CPS & IoT Security and Privacy, ser. CPSIoTSec 22,
New York, NY, USA: Association for Computing Machinery,
Nov. 7, 2022, pp. 1-13, 1SBN: 978-1-4503-9876-3. DoI: 10.
1145/3560826.3563380.

L. Roepert, M. Dahlmanns, I. Fink, J. Pennekamp, and
M. Henze, “Assessing the security of OPC UA deploy-
ments,” Proceedings of the Ist ITG Workshop on IT Secu-
rity, May 11, 2020, Accepted: 2020-05-11T12:51:19Z ISBN:
9781698020358 Publisher: Universitdt Tiibingen. DOI: 10.
15496/publikation-41813.

J. Polge, J. Robert, and Y. L. Traon, “Assessing the impact
of attacks on OPC-UA applications in the Industry 4.0 era,”
in 2019 16th IEEE Annual Consumer Communications &
Networking Conference (CCNC), Jan. 2019, pp. 1-6. DOIL:
10.1109/CCNC.2019.8651671.

Docker, “Docker compose manual,” 2025, [Online]. Available:
https://docs.docker.com/compose (Retrieved: 09/08/2025).

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

111

https://doi.org/10.1145/2808705.2808715
https://doi.org/10.60882/cispa.25460440.v1
https://github.com/Laboratory-for-Safe-and-Secure-Systems/motra-setups
https://github.com/Laboratory-for-Safe-and-Secure-Systems/motra-setups
https://doi.org/10.1109/EuroSPW67616.2025.00071
https://reference.opcfoundation.org/
https://reference.opcfoundation.org/
https://doi.org/10.1016/j.procir.2016.11.056
https://doi.org/10.1109/WFCS47810.2020.9114448
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-A-Broken-Chain-Discovering-OPC-UA-Attack-Surface-And-Exploiting-The-Supply-Chain.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-A-Broken-Chain-Discovering-OPC-UA-Attack-Surface-And-Exploiting-The-Supply-Chain.pdf
https://i.blackhat.com/USA21/Wednesday-Handouts/us-21-A-Broken-Chain-Discovering-OPC-UA-Attack-Surface-And-Exploiting-The-Supply-Chain.pdf
https://claroty.com/team82/research/white-papers/exploring-the-opc-attack-surface
https://claroty.com/team82/research/white-papers/exploring-the-opc-attack-surface
https://doi.org/10.1145/3560826.3563380
https://doi.org/10.1145/3560826.3563380
https://doi.org/10.15496/publikation-41813
https://doi.org/10.15496/publikation-41813
https://doi.org/10.1109/CCNC.2019.8651671
https://docs.docker.com/compose

	Introduction
	Design Process and Related Work
	The Testbed
	Concept and Components
	Building a Testbed

	Conclusion and Future Work

