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Abstract—Quantum computing threatens classical crypto-
graphic protocols like the Schnorr identification scheme, which
relies on the Discrete Logarithm Problem (DLP), vulnerable to
quantum attacks. In this paper, we propose a modification to the
classical Schnorr protocol by redefining the prover response as
r = cu±x mod q instead of r = u+cx mod q. While this adjust-
ment preserves the arithmetic simplicity of the original protocol,
it introduces subtle but significant changes to the protocol’s secu-
rity and verifiability. We analyze its soundness, zero-knowledge
properties, extractor functionality, and practical viability, and
explore its adaptation into a secure digital signature system under
standard cryptographic assumptions. To underscore the practical
significance of our approach, we implement the modified protocol
within an isogeny-based framework, demonstrating its capacity
to enhance an existing identification scheme with respect to both
security and efficiency. Our findings illustrate that revisiting
classical protocols through judicious modifications can yield
more robust, quantum-resistant solutions for applications like
blockchain.

Keywords-Schnorr Protocol; Zero-knowledge proofs; Discrete
Logarithm Problem; Isogeny-based cryptography; Post-Quantum
Cryptography.

I. INTRODUCTION

Identification protocols are fundamental cryptographic
primitives that enable a prover to convince a verifier of their
identity by demonstrating knowledge of a secret without dis-
closing it. These protocols are the foundation for many cryp-
tographic systems, such as authentication frameworks, zero-
knowledge proofs, and digital signature algorithms. One of
the most celebrated and widely studied identification schemes
is the Schnorr identification protocol [1], which offers a simple
and elegant construction grounded in the hardness of the
Discrete Logarithm Problem (DLP) [2].

The Schnorr protocol is a canonical Σ-protocol that de-
fines the prover’s response to the verifier’s challenge c as
r = u + cx mod q, where u is a random nonce used in the
commitment, x is the prover’s secret and c is the challenge.
This formulation balances efficiency and security, and forms
the basis for many digital signature schemes through the Fiat–
Shamir transformation [3].

As a Σ-protocol, Schnorr satisfies three essential properties:
completeness, which ensures that an honest prover always
convinces the verifier; special soundness, which guarantees
that if an adversary can produce two accepting transcripts
with the same commitment but different challenges, then it
is possible to efficiently extract the secret x, and Honest

Verifier Zero-Knowledge (HVZK), meaning that a simulator,
given access to the challenge, can generate transcripts that
are computationally indistinguishable from real interactions,
without knowing the prover’s secret.

A. Related work

The Schnorr protocol has been extensively studied and
extended in various directions. Fuchsbauer et al. [4] analyzed
blind Schnorr signatures and signed ElGamal encryption tech-
niques using the Algebraic Group Model (AGM), demon-
strating robust security guarantees under normal assumptions
without the use of heuristic arguments.

In the threshold setting, Bacho et al. [5] introduced HARTS,
the first threshold Schnorr signature scheme that is simul-
taneously adaptively secure, robust under full asynchrony,
and communication-efficient. HARTS supports high-threshold
configurations—where the number of required signers can
significantly exceed the corruption threshold—and outputs
standard Schnorr signatures using only one asynchronous
online round and subcubic communication.

Fukumitsu and Hasegawa [6] demonstrated that Schnorr
signatures are secure in the multi-user setting under the AGM,
assuming the hardness of the DLP. This multi-user resilience
is essential for large-scale deployments, such as public key
infrastructures.

In parallel, Fuchsbauer and Wolf [7] proposed a practical,
concurrently secure blind signature protocol compatible with
standard Schnorr signatures. Their technique ensures system
compatibility while introducing predicate blind signatures,
enabling signers to impose constraints on signed messages—a
feature particularly valuable for privacy-preserving blockchain
applications.

In post-quantum cryptography, Galbraith, Petit, and Silva
[8] developed two digital signature systems based on the
hardness of isogeny problems over supersingular elliptic
curves, leveraging a novel identification technique to achieve
quantum-resistant security. A key innovation in their work
is a novel identification technique that builds upon a well-
established computational problem but addresses limitations
seen in prior methods. These systems can be converted into
secure digital signatures using both classical and quantum-safe
approaches, providing a realistic path to efficient post-quantum
cryptography solutions. In a related advancement, Baghery et
al. [9] adapted the Schnorr sigma protocol to the isogeny-based
setting.
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These developments illustrate the robustness of the Schnorr
paradigm across diverse cryptographic settings. Building on
this foundation, we introduce a novel algebraic modification
to the protocol’s response function to improve efficiency
and resilience in isogeny-based, post-quantum identification
schemes.

B. Our contribution

In this paper, we propose a novel variation of the Schnorr
identification protocol in which the prover’s response is com-
puted as r = cu ± x mod q, fundamentally altering the
interaction between the nonce, challenge, and secret. This
structural change results in a new verification equation and
requires a complete re-evaluation of the protocol’s security
properties. Unlike minor tweaks, our modification challenges
the conventional structure and allows for new analytical in-
sights.

Our main contributions can be summarised as follows.

1) Formal definition and analysis of the modified protocol,
reversing the typical dependency between the challenge
and the secret. We also prove the security proofs that
guarantee the protocol maintains completeness, special
soundness, and honest-verifier zero-knowledge.

2) We analyze how the modified response can be adapted
for use in non-interactive settings via the Fiat–Shamir
heuristic, preserving signature viability.

3) We propose a new post-quantum id protocol based on
isogenies using the modified Schnorr protocol.

4) An examination of the proposed Sigma protocol’s ap-
plication within isogeny-based cryptographic systems.
Building upon and extending prior work [9], we identify
significant advantages, most notably the elimination of
the requirement for witnesses at critical proof stages.
This refinement enhances protocol resilience by prevent-
ing leakage of errors related to the protocol, or witness
during execution.

In addition, our modified Schnorr protocol enables the use
of the MPC-in-the-Head technique and its advantages, which
we leave as an avenue for future work.

This paper is structured as follows. In Section II, we provide
the necessary background on Σ-protocols, digital signature
schemes, and isogeny-based identification systems. Section III
introduces our modified Schnorr protocol in detail, including
the new response format and its implications on completeness,
special soundness, and honest-verifier zero-knowledge. We
also show how our construction leads to a secure digital
signature scheme under the Discrete Logarithm Problem and
supports non-interactive instantiations via the Fiat–Shamir
transform. In Section IV, we extend the modified protocol
to an isogeny-based setting, presenting a novel identification
scheme that improve upon previous work by eliminating
the need for witnesses during critical stages and enhancing
resilience against execution errors. Finally, Section V con-
cludes with a summary of our findings and outlines potential
directions for future research in post-quantum cryptography.

II. PRELIMINARIES

A. Notation

Let Zq = Z/qZ denote the set of integers modulo q, being
q a positive prime integer and Z∗

q its multiplicative set. Let G
be a group of order q with generator g ∈ G.

Let ZN = Z/NZ denote the ring of integers modulo
N , where N is a composite integer with a known prime
factorization N =

∏m
i=1 q

ri
i , such that q1 < q2 < · · · < qm

are distinct prime numbers and each ri ∈ N.
For any set S, the notation a

$← S indicates that the element
a is sampled uniformly at random from S. A function µ(X)
from the natural numbers to the non-negative real numbers is
negligible if for every positive polynomial p there is a constant
C such that for all integers x > C, we have µ(x) < 1

p(x) [9].
We denote by λ the security parameter.

Discrete Logarithm Problem (DLP). Given a group G, a
generator g ∈ G and some element h = gx ∈ G, recovering
x is called the Discrete Logarithm Problem.

B. Sigma protocols

Let V = V (λ) and W = W (λ) be two sets defined with
respect to a security parameter λ. Let R ⊆ V×W be a relation
on V × W that defines a language L = {v ∈ V : ∃w ∈
W,R(v;w) = 1}. An element w ∈ W such that R(v;w) = 1
for some v ∈ L is called a witness for v.

A sigma-protocol (Σ-protocol) for the relation R is a
three-round interactive protocol between two Probabilistic
Polynomial-Time (PPT) algorithms: a prover P and a verifier
V . The prover holds a witness w for v ∈ L, and the
verifier knows v. The protocol proceeds as follows: P sends
a commitment a, V answers with a challenge c, and P sends
a response r. The verifier accepts or rejects the proof based
on the triple (a, c, r), which is called a transcript of the Σ-
protocol.

A Σ-protocol satisfies three properties: completeness, spe-
cial soundness, and honest verifier zero-knowledge (HVZK).

Completeness. A Σ-protocol Π with parties (P,V) is com-
plete for R, if for all (v;w) ∈ R, the honest V always accepts
the honest proof of P .

Special Soundness. A Σ-protocol Π has a special soundness
for R if there exists a PPT extractor E such that, for any
v ∈ L, given two valid transcripts (a, c, r) and (a, c′, r′) with
the same commitment a but different challenges c ̸= c′, the
extractor E (a, c, r, c′, r′) outputs a valid witness w such that
(v;w) ∈ R.

Honest-Verifier Zero-Knowledge (HVZK). A Σ-protocol Π
satisfies HVZK for R if there exists a PPT simulator Sim
such that, for all (v;w) ∈ R, the transcript (a, c, r) generated
by Sim(v) is computationally indistinguishable from a real
transcript produced by an honest execution between the prover
P and the verifier V on input (v;w).
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P(g, h;x) V(g, h)
samples u

$← Zq

computes a = gu a−→ samples c
$← Z∗

qc←−computes
r = u+ cx mod q r−→ computes gr, hc

V’s output: accept or reject

checks gr
?
= a · hc

if yes, V accepts;
otherwise rejects.

Figure 1. Protocol 1- Schnorr Protocol for relation RID.

1) Schnorr Identification Protocol: The Schnorr protocol
instantiates a Σ-protocol for the relation RID = {(g, h;x) |
h = gx} with G a multiplicative group of order q and
generator g. Let x ∈ Zq be the secret key (witness) and
h = gx ∈ G be the public key. Protocol 1 (see Figure 1)
describes the steps of the Schnorr protocol.

The Schnorr protocol satisfies the key properties of a Σ-
protocol:

• Completeness: If the prover is honest and knows x, then

gr = gu+cx = gu · (gx)c = a · hc

and the verifier accepts.
• Special Soundness: Given two accepting transcripts

(a, c, r) and (a, c′, r′) with c ̸= c′, we show how the
verifier can extract x.First, we have gr = a · hc and
gr

′
= a · hc′ . Then, by operating these two expressions,

grg−r′ = hc−c′ we get that the discrete logarithm of h
is equal to (r − r′)(c− c′)−1 mod q.

• HVZK: There exists a simulator S that, chooses random
values c

$← Z∗
q and r

$← Zn, computes:

a = gr · h−c

and outputs a transcript (a, c, r) that is indistinguishable
from a real one.

C. Isogeny-Based ID Protocol Using Structured Public Keys

An identification (ID) protocol allows a prover to demon-
strate the knowledge of a secret key corresponding to a public
key, often formalized as a Σ-protocol over a hard relation.
In isogeny-based cryptography, the underlying hardness as-
sumption is the difficulty of computing isogenies between
supersingular elliptic curves, a post-quantum hard problem.

Commutative Supersingular Isogeny Diffie–Hellman
(CSIDH) [10] was proposed to enhance the efficiency of
isogeny-based cryptography by using supersingular elliptic
curves over the prime field Fp. The CSI-FiSh signature
scheme [11] was developed within the CSIDH framework to
provide efficient isogeny-based signatures. It began with a
binary challenge space and was later optimized with larger

public keys and an improved identification protocol, achieving
subsecond signing times.

In [9], the authors propose an efficient isogeny-based iden-
tification protocol that extends CSI-FiSh [11], which was
previously enhanced in [12] and [13] to support a larger
challenge space through the use of structured public keys.
This enhancement significantly reduces the soundness error
and communication overhead. The protocol is built on Hard
Homogeneous Spaces and introduces exceptional and superex-
ceptional sets to ensure extractability and security. A non-
interactive signature version is derived via the Fiat–Shamir
transform, achieving strong unforgeability in the quantum
random oracle model. Additionally, they present trustless key
generation techniques using zero-knowledge proofs of well-
formedness, making the scheme both efficient and suitable for
postquantum cryptographic applications.

Let E0 be a fixed supersingular elliptic curve over Fp, and
let Cl(O) be the class group of its endomorphism ring O. This
group acts freely and transitively on the isogeny class of E0,
defining a Hard Homogeneous Space (HHS). The secret key
is an element x ∈ ZN , and the public key is E1 = [x]E0,
where [x] denotes the group action via an ideal class.

Classical isogeny-based ID protocols, such as those underly-
ing CSI-FiSh [11], suffer from efficiency issues due to binary
challenge spaces. To reduce the soundness error ϵ, they must
be repeated λ times, where ϵ = 2−λ. The new protocol extends
the challenge space to k elements, reducing the soundness
error per round to 1/k, or 1/(2k−1) when symmetry (through
twisting) is used.

The security of our protocol is based on a hardness assump-
tion: the (c0, . . . , ck−1)-Vectorization Problem with Auxiliary
Inputs. Detailed definitions and explanations of this issue are
presented in [9], which, it should be noted, draws inspiration
from papers [14] and [15]. Given a starting curve E0 and a
sequence of images {Ei = [cix]E0}, where c0 = 0, c1 = 1
and all pairwise differences ci − cj (for i ̸= j) are invertible
modulo N . the problem is to recover the secret scalar x, under
the assumption that each ci ∈ ZN and all pairwise differences
ci − cj are invertible modulo N . This assumption generalizes
the discrete logarithm problem with auxiliary inputs to the
setting of isogenies and hard homogeneous spaces.

The protocol presented in [9] can be made non-interactive
using the Fiat-Shamir transform in the Quantum Random Or-
acle Model (QROM). This structure enables a tradeoff: larger
public keys allow shorter proofs and 14× faster executions than
repeated binary-challenge protocols, without compromising
post-quantum security or requiring trusted third parties.

D. Hard Homogeneous Space

A Hard Homogeneous Space (HHS), as formulated by
Couveignes [12], comprises a finite abelian group G and a
finite set E , equipped with an efficient computable group action

⋆ : G× E → E .

This action satisfies the following structural properties:
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1) Freeness and Transitivity: The group action is free,
which means that for any E ∈ E and g ∈ G, if g ⋆ E =
E, then g is the identity in G. It is also transitive, to
ensure that for every pair E1, E2 ∈ E , there exists a
g ∈ G such that g ⋆ E1 = E2.

2) Efficient Operations: The group operation in G, mem-
bership and equality checks in both G and E , and the
group action ⋆ are all efficiently computable. Further-
more, each element in G has a unique representation
that can be computed efficiently, and elements of G can
be sampled uniformly at random.

3) Hard Computational Problems: Security in HHS-
based cryptosystems relies on the intractability of two
core problems:

• Vectorization Problem: Given E1, E2 ∈ E , compute
g ∈ G such that g ⋆ E1 = E2.

• Parallelization Problem: Given E1, E2, F1 ∈ E with
E2 = g ⋆ E1 for some unknown g ∈ G, compute
F2 = g ⋆ F1.

In the common special case where G is a cyclic group of
known order N with generator g, the action can be expressed
using additive notation as [a]E := ga ⋆ E, where a ∈ ZN

and E ∈ E . This representation satisfies the compositional
property

[a][b]E = [a+ b]E,
which is frequently exploited in isogeny-based protocols.

III. MODIFIED SCHNORR PROTOCOL
In this section, regarded as the most significant portion of

this work, we first present the new protocol based on Schnorr
where the response form is specifically one of r = cu + x
or r = cu − x, previously agreed on between the prover and
the verifier. We then proceed to investigate and prove its core
properties.

A. Modified Schnorr Protocol

Let G = ⟨g⟩ be a cyclic group of prime order q and
g a generator. The following sigma protocol lets the prover
convince a verifier about the prover’s knowledge of their secret
key is x ∈ Zq , such that the corresponding public key is
h = gx ∈ G. More precisely, the sigma protocol is a proof
system for the following relation:

RID = {(g, h;x) : h = gx} .
The protocol for relation RID is described in Protocol 2 (see

Figure 2) in the following, where previously r = cu + x or
r = cu− x has been chosen, but use both in the exposition:

The commitment and the challenge steps of our protocol are
exactly as Schnorr’s. We changed the response of the prover
that now is r = cu ± x mod q, which is send r to V in
the final step. In the verification phase, the verifier accepts if
gr = ac · h in the case of r = cu+ x, or if gr · h = ac in the
case of r = cu− x.

In the following, we analyse that our modified protocol
holds same properties as the original scheme that are the main
properties of a sigma protocol.

P(g, h;x) V(g, h)
samples u

$← Zq

computes a = gu a−→
samples c

$← Z∗
qc←−

computes r = cu± x mod q
r−→

computes gr, ac

V’s output: accept or reject
if r = cu+ x,

checks gr
?
= ac · h

if yes, V accepts;
otherwise rejects.

if r = cu− x,

checks gr · h ?
= ac

if yes, V accepts;
otherwise rejects.

Figure 2. Protocol 2- Modified Schnorr Protocol for relation RID.

1) Completeness: Let us ensure that an honest prover
always passes the verifier’s check.

gr = gcu+x = gcu · (gx) = (gu)c · (gx) = ac · h.

Hence gr = ac · h, So, the verifier will accept. Thus,
completeness holds. For the case r = cu−x, the completeness
property is established as follows.

gr · h = gcu−x · (gx) = gcu = (gu)c = ac.

2) Special Soundness: To prove soundness, we must
demonstrate that if an adversary can produce valid responses
to two distinct challenges c ̸= c′ for the same commitment a,
then the secret x can be extracted.
Assume the adversary outputs a valid transcript (a, c, r).
By rewinding the adversary with the same commitment a
but a different challenge c′, we obtain a second valid tran-
script (a, c′, r′). Therefore, we have two valid transcripts:
(a, c, r), (a, c′, r′) with c ̸= c′, and both satisfying the
verification equations:

gr = ac · h and gr
′
= ac

′
· h.

We compute

(gr)c
′
(gr

′
)−c = (ach)c

′
(ac

′
h)−c = hc′−c. (1)

Thus, the secret, which is the Discrete Logarithm of h in the
basis g, can be extracted by computing:

x = (rc′ − r′c) · (c′ − c)−1 mod q.

This confirms that knowledge of valid responses to two
distinct challenges allows extraction of the secret witness x,
thereby proving the soundness of the protocol.
Note that we used the verification of the case that the response
is, r = cu+ x, to prove the above equality. In the case where
the response is r = cu−x, the same relation can be employed
to extract x.
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3) Honest-Verifier Zero-Knowledge (HVZK): To prove
HVZK, we show that the simulator chooses a random chal-
lenge c and a random response r, can simulate a valid
transcript without knowing the secret x. Given the public
parameters g, h, the simulator begins by selecting a random
challenge c ∈ Z∗

q and a random response r ∈ Zq . Then, it
computes the commitment a ∈ G so that the final transcript
(a, c, r) satisfies the verification equation of the verifier.

Specifically, the simulator sets a = (grh−1)c
−1

if r =
cu + x, or a = (grh)c

−1

if r = cu − x. This ensures that
the verification equation gr = ac · h is valid, even if the
simulator does not know x. Since both c and r are chosen
independently and uniformly at random, and the commitment
a is derived deterministically, the simulator output is compu-
tationally indistinguishable from that of an honest execution.
Consequently, the protocol maintains the HVZK property,
assuming the hardness of the discrete logarithm problem and
that c is invertible modulo q.

B. Non-Interactive Schnorr and Its Modified Variant

The Fiat–Shamir transformation [3] allows converting in-
teractive identification protocols, such as Schnorr’s [16], into
non-interactive zero-knowledge proofs (NIZKs). This transfor-
mation replaces the verifier’s random challenge with a deter-
ministic output derived from a cryptographic hash function,
typically modeled as a random oracle. It enables the prover to
independently compute the proof without interaction, making
it suitable for applications such as digital signatures and proof
of key possession.

In both the classical and modified Schnorr protocols, the
prover first computes a commitment a = gu, where u ∈ Zq

is randomly chosen. The challenge is then generated as c =
H(a,m), where m represents the public data (e.g., a message
or context), andH is a cryptographic hash function. The prover
computes the response r using either the classical form r =
u + cx mod q or the modified form r = cu ± x mod q,
depending on the protocol variant.

The final proof consists of the pair (a, r). The verifier re-
constructs c from the hash and checks the validity of the proof
by verifying the corresponding group equation. This non-
interactive approach preserves zero-knowledge and soundness
under the random oracle model.

IV. ISOGENY-BASED ID PROTOCOL USING MODIFIED
SCHNORR

The isogeny-based identification protocol presented in [9]
extends the CSI-FiSh framework by introducing structured
public keys, which significantly improve efficiency and reduce
the soundness error rate. Although it operates within the
Hard Homogeneous Space (HHS) formed by the class group
acting on supersingular elliptic curves, the protocol maintains
a classic Σ-protocol format with a commitment, challenge, and
response reminiscent of the Schnorr identification scheme.

Our modified Isogeny-Based ID Schnorr variant offers
a conceptual change by redefining the prover response as
r = cu ± x mod q, in contrast to the traditional r = u +

cx mod q. The resulting protocol has completeness, special
soundness, and HVZK, making it suitable for efficient Fiat-
Shamir-based signature schemes.

A. An Efficient ID Protocol based on Modified Schnorr
Let p be a large prime such that the supersingular elliptic

curves over Fp form a well-connected isogeny graph. Denote
by E the set of Fp-isomorphism classes of supersingular
elliptic curves, and let Cl(O) ∼= ZN denote the class group
of maximal order O in a quaternion algebra acting on E via
isogenies.

The pair (ZN , E) thus defines a hard homogeneous space
[12] (G,X ), equipped with a free and transitive action:

[a] ⋆ E := ϕa(E), for a ∈ ZN , E ∈ E .
Let E0 ∈ E denote a publicly agreed base curve. We assume
the existence of a publicly known exceptional set C = {c0 =
0, c1 = 1, . . . , ck−1} ⊂ ZN such that every pairwise difference
ci − cj ∈ Z∗

N is invertible. This assumption enables the
construction of a sound Σ-protocol with extractability. Based
on [9], we know that an Exceptional Set is defined as follows.
Definition. Let N ∈ Z>0. A subset C = {c0, c1, . . . , ck−1} ⊂
ZN is called an exceptional set modulo N if all pairwise
differences are invertible, i.e., for all i ̸= j, the element
ci − cj ∈ Z∗

N . This set guarantees that for any two distinct
challenges c, c′ ∈ C, the value c− c′ is invertible modulo N ,
enabling efficient extraction in Σ-protocols.
Remark. Given a target size k for an exceptional set and
a modulus N , it is sufficient that the smallest prime factor
q1 of N satisfies q1 ≥ k. Under this condition, there exists
an efficient algorithm, referred to as XSGen, capable of
generating an exceptional set C = {c0, c1, . . . , ck−1} ⊆ ZN of
size k, in which all pairwise differences ci−cj (for i ̸= j) are
invertible modulo N . If q1 < k, one can still construct such a
set by restricting the operation to a subgroup of ZN in which
smaller prime divisors are eliminated. This involves factoring
out those small primes so that the minimal prime factor of the
resulting subgroup is at least k. The only structural constraint
imposed on N is that it must not be k-smooth, that is, N
should not be composed entirely of prime factors less than k,
which is typically a reasonable assumption for cryptographic
applications involving large composite moduli [9].
B. Identification Protocol steps

In the first step for this protocol, we start with Key Gen-
eration. The prover samples x

$← ZN as a secret key, and
the public key is Ex := [x] ⋆ E0. The tuple (E0, Ex) ∈ E2
is published, while x remains private to the prover. The
identification protocol is a 3-move public-coin Σ-protocol
defined by the protocol 3 (see Figure 3) as following steps.
This Protocol ensures that the prover demonstrates knowledge
of x consistent with the challenge and commitment.

Before detailing the protocol’s primary characteristics, it is
essential to first outline its underlying structure and associated
benefits. Building on the proof techniques presented in [9],
it can be readily shown that the set A in protocol 3 is
well-defined and retains its essential properties. For any Ai,
a corresponding proof, referred to as a pre-proof, must be
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P(E0, C,Ex;x) V(E0, C,Ex)

samples u
$← ZN

computes

A = {Ai := [ciu] ⋆ E0}k−1
i=1

runs pre-proof†π
A−→

samples d
$← {0, 1, . . . , k−1}

d←−
computes r = cdu− x mod N

r−→ computes [r] ⋆ Ex

V’s output: accept or reject

checks [r] ⋆ Ex
?
= Ad

if yes, V accepts;
otherwise rejects.

Figure 3. Protocol 3- Isogeny Schnorr Protocol for relation RID.

provided. This pre-proof follows the same approach as the
proof techniques in [9], concretely Theorems 5.1 and 5.2 in
[9], as well as remark (IV-A).

It is important to note that the protocol presented in [9]
operates under idealized assumptions—namely, that all com-
ponents, including randomness and network integrity, function
flawlessly. Under such conditions, any deviation—such as
inaccurate randomness or communication failures— during
pre-proof can compromise the witness and, consequently, the
security of the main protocol by causing information leakage
from x.

On the other hand, generating all Ei = [cix]E0 in [9] re-
quires invoking the aforementioned theorems and consistently
relying on the witness x during the pre-proof construction.
However, in the modified isogeny-based Schnorr protocol,
this reliance is mitigated by replacing x with u, thereby
reducing direct dependence on the witness. In contrast, our
modified Schnorr protocol exhibits greater resilience, enabling
corrective measures to be taken without undermining its core
functionality. More specifically, in the modified isogeny-based
Schnorr protocol, it is sufficient to halt execution, select a
new value u, and restart the pre-proof and protocol—without
affecting the witness. This property significantly enhances
the protocol’s reliability under failure scenarios or adversarial
conditions.

1) Completeness: We know that if the prover follows the
protocol honestly, the verifier accepts with probability 1. For
our modified Schnorr protocol, given Ad = [cdu] ⋆ E0, Ex =
[x] ⋆ E0, and r = cdu− x, we compute:

[r] ⋆ Ex = [cdu− x] ⋆ [x]E0 = [cdu] ⋆ E0 = Ad.

Therefore, the verifier check passes.
2) Special Soundness: We demonstrate that given two valid

transcripts for the same commitment and distinct challenges,
the prover’s secret x can be recovered efficiently. Given two
accepting transcripts (A, d, r) and (A, d′, r′) with d ̸= d′

and a known set C = {c0 = 0, c1 = 1, c2, · · · , ck−1}, we
have:

[r]⋆Ex = Ad = [cdu]⋆E0 and [r′]⋆Ex = Ad′ = [cd′u]⋆E0

note that we can extract cd and cd′ by having d, d′ and set C.
From the verification equation, one can conclude that [r]Ex =
Ad and [r′]Ex = Ad′ , and from the pre-proof (or trusted)
commitment we know that Ai = [ciu]E0 for i = 1, · · · , k−1.
These imply that we have [r][x]E0 = [cdu]E0 and [r′][x]E0 =
[cd′u]E0, so:

[r + x]E0 = [cdu]E0 and [r′ + x]E0 = [cd′u]E0

These imply that:

[cd′(r+x)]E0 = [cd′cdu]E0 and [cd(r
′+x)]E0 = [cdcd′u]E0

Since the right part of relations are the same we have:

[cd′(r + x)]E0 = [cd(r
′ + x)]E0

It implies that

cd′r + cd′x = cdr
′ + cdx ⇒

cd′r − cdr
′ = cdx− cd′x = (cd − cd′)x.

Since d ̸= d′ so cd ̸= cd′ . Therefore, we can divide both sides
to cd − cd′ ∈ Z∗

N and then we compute:

x =
cd′r − cdr

′

cd − cd′
mod N.

This proves extractability and thus special soundness.
3) Honest-Verifier Zero-Knowledge (HVZK): To prove

HVZK, we construct a simulator that produces a valid-looking
transcript (A, c, r) without knowing the secret key x ∈ ZN .
Consider that the simulator has a sequence of images {Ei =
[cix]E0} according to (c0, . . . , ck−1)-Vectorization Problem
with Auxiliary Inputs. The simulator selects u ∈ ZN and
samples a challenge d ∈ {0, . . . , k − 1}, both uniformly
at random and set Ex = [cdx]E0 = Ed. Given random
u and sequence {Ei = [cix]E0}, the simulator calculates
A = {Ai := [ciu] ⋆ Ei = [ciu + cix] ⋆ E0}k−1

i=1 and sets
the response as r = cdu. The resulting transcript (A, d, r)
satisfies the verifier check by construction [r] ⋆ Ex = Ad and
is identical to a real transcript, thus establishing the HVZK
property.

Remark. In [9], the pre-proof phase involves verifying the
public set Ei = [cix]E0, directly involving the secret x. In
contrast, our protocol verifies Ei = [ciu]E0, where u is a
random value unrelated to the secret.

If, during the pre-proof phase in [9], the randomness used
in the commitment has insufficient entropy, the verifier could
potentially recover the secret x from the response. In our pro-
tocol, even if such a weakness occurs, only the random value u
could be exposed, without compromising x. In that case, the
prover can simply discard u and any related computations,
select a fresh random value, and rerun the pre-proof securely.
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V. CONCLUSION AND FUTURE WORK

We have introduced a modified version of the Schnorr
Sigma protocol, redefining the prover’s response to reduce its
dependency on the secret witness x. This seemingly minor
algebraic change leads to meaningful improvements in both
the structural and practical aspects of the protocol. Through
a formal analysis, we have demonstrated that the modified
scheme retains its fundamental security properties—including
soundness and zero-knowledge—while offering enhanced ro-
bustness and flexibility.

Applying this construction in the isogeny-based setting, we
addressed key limitations of an existing identification protocol,
particularly those arising from its idealized assumptions and
its heavy reliance on the witness during pre-proof generation.
By shifting this dependency from x to a fresh random value u,
our approach enables safer recovery from randomness failures
or communication errors, without compromising the security
of the secret key. This resilience to faults and adversarial
interruptions marks a significant improvement in the proto-
col’s practicality and reliability for real-world deployment.
Moreover, our modification opens the door to applying the
MPC-in-the-Head technique, offering potential advantages in
efficiency and security. We leave the exploration and formal
development of this direction to future work.

Our work illustrates how carefully rethinking classical cryp-
tographic constructions can lead to more robust solutions in
post-quantum settings, such as isogeny-based cryptography,
and opens the door to further exploration of protocol mod-
ifications that enhance security under realistic conditions.
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