
Secure Software Brownfield Engineering – Sequence Diagram Identification

Aspen Olmsted

School of Computer Science and Data Science

Wentworth Institute of Technology

Boston, MA 02115

email: olmsteda@wit.edu

Abstract— The process of securing existing "brownfield" software

systems becomes challenging when trying to identify and mitigate

vulnerabilities in complex and often undocumented codebases.

The paper investigates the essential requirement for improved

program execution flow comprehension in legacy PHP

applications to support secure software development. The

proposed solution utilizes the trace functionality of program

execution tracing through the PHP extension to obtain detailed

execution paths dynamically. The methodology generates

complete UML Sequence Diagrams through automated processing

of program execution trace logs. These diagrams present object

and function interactions through visual representations, which

developers and security analysts use as essential tools. The

sequence diagrams provide a straightforward, high-level view of

runtime operations, which enhances code understanding and

reveals concealed dependencies and security-critical control paths.

The automated visualization system helps security professionals

detect potential attack vectors, verify the implementation of

security controls, and identify insecure data handling practices.

The research demonstrates how a debugging tool can be leveraged

as a security enhancement tool for brownfield environments,

enabling developers to identify vulnerabilities more efficiently

without relying on manual code reviews or architectural

documentation. This method offers a practical solution to enhance

the security posture of legacy PHP applications.

Keywords- cyber-security; software engineering; secure software

development.

I. INTRODUCTION

In the realm of software development, there is a distinction

between developing greenfield systems and maintaining and

advancing existing "brownfield " applications. When it comes to

greenfield projects, there's the advantage of integrating up-to-

date security measures from the start. However, brownfield

systems, which comprise the majority of deployed software,

pose a significant challenge. These older applications, developed

over years or even decades, often lack security protocols, have

inadequate documentation, and carry a burden of technical debt.

Businesses depend on them for their operations, but their nature

and lack of clarity make them vulnerable to security risks. The

process of managing and addressing these vulnerabilities in

established settings proves to be quite challenging because it

needs strategies that combine traditional practices with modern

security needs.

The primary challenge in securing software lies in its

inherently black-box nature - a term used to describe its complex

and opaque structure that is difficult to comprehend from the

outside perspective alone. Developers and security analysts

tasked with ensuring the security of these systems often face

obstacles due to the lack of up-to-date information about how

the software operates. The original developers may have moved

on to other projects or roles, and the design documents might

have also changed. Even when missing altogether, the sheer size

of the codebase can be overwhelming to navigate efficiently.

The system's lack of transparency creates significant difficulties

for users in detecting control pathways within the codebase and

tracking data movement across software components. The

system's lack of transparency creates problems for both

identifying vulnerabilities that allow harmful input to enter the

system and detecting accidental mishandling of sensitive

information.

 Traditional tools for analysis may highlight problems but

often yield numerous incorrect alerts or struggle to understand

the intricate context of older code bases. On the one hand,

manual code inspections are comprehensive. It can be too time-

consuming and costly for established applications. Dynamic

analysis—observing how a system behaves during operation—

provides an approach to grasping real-time attributes. However,

it frequently lacks a deep understanding of function calls and

object interactions, which is necessary for accurately pinpointing

vulnerabilities.

This article explores the world of existing PHP applications

that have been around for a while and have undergone numerous

changes and updates over time, often without prioritizing

security from the outset. Due to PHP's flexibility and popularity

in the online world, these applications have frequently lacked a

security-first approach. An immediate requirement arises for

widely applicable strategies to enhance the security posture of

these yet vulnerable programs.

In our study, we propose a practical method to enhance

software development methods in existing PHP environments

by automatically generating UML Sequence Diagrams from

XDebug trace logs. XDebug is an open-source tool used by

developers for debugging and profiling PHP code. The robust

tracing capability of XDebug primarily serves for debugging and

performance evaluation, but it also provides an opportunity for

security assessment. XDebug enables the capture of runtime

information about function calls, method invocations, and

variable assignments, which provides visibility into program

execution behavior.

 Our goal is to repurpose this known developer tool to offer

an approach for comprehending intricate legacy code with

minimal overhead and maximum effectiveness.

Our approach includes a series of steps to achieve our goal

efficiently. Firstly, we start by activating an XDebug trace for

scenarios or attack situations in the existing PHP system under

consideration, creating logs of the exact sequence of actions

taken. Secondly, we programmatically process these logs to

extract essential details, such as, function names, class methods,

arguments, return values, and execution order. We transform the

14Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

extracted data into a format that works for creating UML

Sequence Diagrams. The visual representations illustrate how

individual objects and functions interact with each other over

time, demonstrating the control flow and data movement within

the software application.

There are many benefits of utilizing reverse-engineered

UML Sequence Diagrams in the realm of software engineering.

These diagrams play a role in enhancing the understanding of

code structures. This becomes especially valuable for developers

or security experts who face deciphering intricate legacy

codebases, as the sequence diagram provides a holistic overview

of how various components collaborate to accomplish specific

functionalities. This visual representation simplifies

comprehension compared to sifting through lines of

undocumented code. Furthermore, the utility of diagrams

extends to revealing concealed dependencies and unforeseen

interactions within the system. In systems that have undergone

development or modifications (brownfield systems), functions

could interact with each other in unexpected ways, or data could

pass through unforeseen middle steps or components not easily

recognizable at first glance. Sequence diagrams bring clarity to

these hidden connections by spelling out the relationships, for a

deeper examination of possible repercussions or unintentional

data disclosures.

Essentially, from a security standpoint, these diagrams point

out control pathways. By showing the order of actions, analysts

can easily identify areas of attack, such as, points where user

inputs are handled, where outside data is used, or where essential

tasks are performed. They can assist in tracking how unreliable

data moves, from where it enters to processing steps, exposing

spots for injections or flaws, in deserialization security.

Additionally, sequence diagrams help confirm that security

measures are properly implemented. For example, a person can

visually verify whether authentication checks are executed in

real-time, if input validation processes are regularly utilized, or

if authorization determinations are made before accessing

resources. This automated display enables security teams to

conduct efficient security evaluations, reducing the need for

tedious manual techniques.

The primary objective of this study is to demonstrate that

utilizing debugging tools for security analysis is not only

feasible but also highly beneficial. By converting execution data

into a visual display format, we create a valuable tool that can be

integrated into the secure development process of legacy

applications. This strategy provides a solution for companies

facing security issues in their systems, enabling them to identify

and resolve vulnerabilities more efficiently without incurring

significant costs for re-documentation or re-engineering efforts.

Our research suggests that this method offers a reliable way to

enhance the security of PHP programs, ultimately contributing

to a safer online environment. The paper is organized as follows.

Section II describes the related work and the limitations of

current methods. Section III describes a motivating example for

our work. Section IV discusses the implementation of our parser.

Section V discusses the creation of sequence diagrams. We

conclude and discuss future work in Section VI.

II. RELATED WORK

Secure software engineering has made substantial progress
through greenfield development, which enables security
integration at the beginning of software development. The
distinctive obstacles of brownfield systems require separate
attention. This section examines relevant literature on secure
software development, with special attention to research that
addresses security integration in existing codebases and the
application of dynamic analysis and visualization techniques.

A foundational aspect of secure software engineering is the
proactive integration of security considerations throughout the
software development lifecycle. Aspen Olmsted's seminal
work, "Security Driven Software Development" [1], provides a
comprehensive framework for embedding security into every
phase of development, from requirements gathering to
deployment and maintenance. This book emphasizes the
importance of a security-first mindset and offers strategies for
identifying and mitigating risks early. While primarily focused
on new development, the principles outlined by Olmsted, such
as threat modeling and secure coding practices, are equally
relevant to brownfield remediation efforts. Our proposed
methodology, which aims to improve understanding of existing
brownfield code, directly supports the application of such
security principles by making the implicit explicit.

The paper by Olmsted titled "Secure software development
through non-functional requirements modeling" [2] expands on
the significance of early security integration by demonstrating
how Non-Functional Requirements (NFRs) serve as essential
elements for software security. The paper indicates that security
requirements should be treated as an NFR, which should be
explicitly modeled during the initial development phase.

 The precision and verifiability of security requirements can
be enhanced through the use of formal specification languages
such as, Object Constraint Language (OCL) and UML
stereotypes in this context [3]. For brownfield systems, where
NFRs may not have been formally captured during initial
development, our approach of generating UML Sequence
Diagrams helps in reverse-engineering the system's behavior.
By visualizing execution flows, it becomes possible to infer
how security-related NFRs (e.g., access control, input
validation) are currently being handled, or where they are
conspicuously absent. The analysis results will guide the
redefinition of security NFRs and direct the remediation
process.

The paper "Secure Software Development–Models, Tools,
Architectures and Algorithms" by Olmsted [3] presents a
comprehensive overview of the various elements necessary for
developing secure software systems. This paper discusses
multiple models for security, the tools that aid in analysis,
architectural considerations for building secure systems, and the
algorithms underlying security mechanisms. Our research
aligns with this broader vision by introducing a practical tool-
based approach (leveraging XDebug) to generate a specific
model (UML Sequence Diagrams) that aids in understanding
the architecture and behavior of brownfield PHP applications.
The generated diagrams serve as essential inputs for security
models and algorithm applications, helping analysts detect
hidden vulnerabilities in complex legacy code by tracing data
and control flow.

15Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

While existing literature extensively covers secure software
development, a gap remains in practical, low-overhead methods
tailored explicitly for thoroughly understanding the runtime
behavior of brownfield applications for security purposes.
Static analysis tools (e.g., SAST solutions) are effective at
identifying patterns of vulnerabilities but often struggle with
context and produce false positives in complex legacy code.
The interaction of Dynamic Application Security Testing
(DAST) tools with running applications reveals vulnerabilities,
but it operates at a higher abstraction level than XDebug traces
provide function-level details. Our solution enhances existing
tools by creating detailed visual execution flow maps, which aid
in manual security auditing, threat modeling, and vulnerability
impact assessment for complex brownfield PHP applications.
The re-purposing of XDebug for this task provides a unique
advantage because it uses a widely available and familiar
developer tool, which reduces the learning curve and
integration overhead for teams working with legacy PHP
systems.

III. MOTIVATING EXAMPLE

Our proposed methodology demonstrates practical utility

through an example that focuses on SuiteCRM, an open-source

Customer Relationship Management (CRM) system widely

used by many organizations. The open-source PHP application

SuiteCRM represents an excellent brownfield example, as it

contains extensive complexity from multiple years of

development, without complete modern architectural

documentation. The complex nature of SuiteCRM's

functionalities makes it challenging for new developers and

security auditors to understand its security aspects. Our method

of creating UML Sequence Diagrams from XDebug traces

enables effective business process reverse-engineering, which

improves code understanding and security analysis capabilities.

The following common user scenarios in SuiteCRM

demonstrate how program traces reveal their execution flows:

1. Scenario 1: User Creates Contact

• User Action: A sales representative navigates to

the "Contacts" module, fills in various contact

details (e.g., name, email, phone number, address),

and submits the form to save the new contact

record.

• Trace Insight and Security Relevance: When

XDebug tracing is enabled during this operation,

the generated trace log meticulously records every

function call, method invocation, and file inclusion

that occurs from the moment the form submission

is processed. This includes the initial handling of

the HTTP POST request, validation routines, and,

critically, the data persistence logic. The trace

would capture calls to files such as,

modules/Contacts/Save.php, revealing the

sequence of operations involved in taking the

submitted data and committing it to the database.

• A detailed analysis of the sequence diagram

derived from this trace shows:

• Input Handling: How the raw form data is received

and sanitized (or not) before processing. This is

crucial for identifying potential Cross-Site

Scripting (XSS) or SQL Injection vulnerabilities if

input validation is insufficient or bypassed.

• Data Flow: The path of sensitive contact

information (e.g., email addresses, personal

details) as it moves from the web form, through

various PHP functions, and ultimately to the

database. This helps in understanding where data

might be exposed or mishandled.

• Database Interaction: The specific functions

responsible for constructing and executing SQL

queries for insertion into the contacts table.

Insecure practices like direct string concatenation

for SQL queries would be immediately apparent,

highlighting SQL injection risks.

• Workflow Triggers: If the creation of a contact

triggers other business logic (e.g., sending a

welcome email, updating related accounts, or

initiating a workflow), the trace would show the

invocation of these subsequent functions. This

helps in understanding the full impact of a contact

creation operation and identifying any security

implications of these cascading actions (e.g.,

unauthorized email sending).

• Access Control: The diagram could reveal where

authorization checks are performed (or omitted)

before data is saved, indicating potential Insecure

Direct Object Reference (IDOR) or unauthorized

data modification vulnerabilities if a user can

manipulate data they shouldn't.

2. Scenario 2: User Schedules a Meeting

• User Action: A user accesses the "Meetings"

module, enters details such as the meeting subject,

time, date, duration, and invites participants (e.g.,

other users, contacts, leads), then saves the meeting

record.

• Trace Insight and Security Relevance: Tracing this

scenario would provide a rich sequence of

interactions involving the logical meeting module

and its dependencies. The trace illustrates how

meeting details are processed, how participants are

associated, and how notifications may be

generated.

• The resulting sequence diagram would be

invaluable for:

• Participant Management: Understanding how

participants are linked to the meeting. This is

critical for assessing potential information leakage

(e.g., if a user can view participants they shouldn't)

or unauthorized access to meeting details.

• Cross-Module Interactions: Visualizing the calls to

linked modules, such as, Users and Contacts, to

retrieve participant information. This helps

identify potential privilege escalation paths if the

16Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

system implicitly trusts data retrieved from these

modules without proper revalidation.

• Calendar Integration: If the meeting scheduling

integrates with an internal calendar or external

service, the trace would expose the functions

responsible for these interactions. This enables

security analysis of data exchanged with external

systems.

• Notification Mechanisms: Tracing the functions

responsible for sending meeting invitations or

reminders. This can reveal vulnerabilities related

to email spoofing, content injections in

notifications, or denial-of-service if the

notification system can be abused.

• Time and Date Handling: How time and date

inputs are processed and stored. Incorrect handling

of time zones or date formats can lead to logical

flaws or even a denial-of-service attack if parsing

errors are not handled gracefully.

3. Scenario 3: User Creates an Invoice

• User Action: An accountant generates a new

invoice through the "Invoices" module, associating

it with a specific client (Account), adding various

products or services, specifying quantities and

prices, and saving the invoice.

• Trace Insight and Security Relevance: This

scenario is particularly sensitive due to its financial

implications. The XDebug trace would capture the

complex interactions involved in creating invoice

entries, calculating totals, and establishing

relationships between Accounts, Products, and

Invoices modules.

• The sequence diagram would reveal:

• Financial Calculation Logic: The precise functions

involved in calculating line item totals, taxes, and

the grand total of the invoice. This is paramount for

identifying potential manipulation vulnerabilities

(e.g., rounding errors, incorrect tax calculations, or

unauthorized price modifications) that could lead

to financial discrepancies.

• Relationship Management: How the invoice is

linked to an Account (client) and Products. This

helps in understanding access control mechanisms

for financial data and preventing unauthorized

association of invoices with incorrect clients or

products.

• Data Integrity: Tracing the flow of product

quantities, prices, and client details into the

invoice. Any points where these values are not

adequately validated or where they could be

tampered with before persistence would be

highlighted.

• State Transitions: If an invoice goes through

different states (e.g., Draft, Pending, Paid), the

trace shows the functions responsible for these

state changes, allowing for analysis of potential

unauthorized state transitions.

• Reporting and Export: If invoice creation triggers

the generation of a PDF or an export to an

accounting system, the trace would expose the

functions handling this, allowing for security

review of data serialization and external

communication.

In each of these scenarios, the automatically generated

UML Sequence Diagrams provide a visual roadmap of the

application's runtime behavior. This "living documentation" is

far more accurate and up-to-date than static, manually created

diagrams, which often become obsolete as the codebase

evolves. For brownfield applications like SuiteCRM, these

diagrams transform opaque execution paths into transparent,

analyzable flows, significantly reducing the time and effort

required for security auditing, vulnerability discovery, and

targeted remediation. They empower security professionals and

developers to ask precise questions about data handling, access

control, and business logic, ultimately leading to a more secure

and resilient system.

IV. PARSER IMPLEMENTATION

The core of our methodology lies in the ability to accurately
parse and interpret the detailed trace logs generated by XDebug.
This section describes the implementation of our parser
developed in Java, designed to transform the raw, verbose
XDebug output into a structured, actionable format suitable for
subsequent UML Sequence Diagram generation.

XDebug trace files, typically in the .xt format, contain a
chronological record of every function call, method invocation,
file inclusion, and variable assignment during a PHP script's
execution. While incredibly rich in detail, their raw format is not
directly consumable by UML diagramming tools. Our Java
parser addresses this by extracting salient information and
organizing it into a programmatic representation that captures
the essential elements of a sequence diagram: lifelines
(objects/functions), messages (method calls), and their temporal
order.

1. XDebug Trace File Format Overview
Before detailing the parser's design, it's essential to

understand the structure of XDebug trace files. XDebug offers
several trace formats, but the most common and detailed is the
"computer readable" format (format 1). Each line in this format
represents an event (e.g., function entry, function exit, include,
require, eval) and contains a series of tab-separated fields. Key
fields include:

• Level: The nesting level of the function call.

• Function Number: A unique identifier for the
function call instance.

• Type: Indicates the event type (e.g., 0 for function
call, 1 for function return, 2 for include, 3 for
require, 4 for eval).

• Function Name: The name of the function or
method being called.

• File Name: The PHP file where the function call
originated.

• Line Number: The line number within the file.

17Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

• Time: Timestamp of the event.

• Memory: Memory usage at the time of the event.

• Arguments: A representation of the arguments
passed to the function (if configured to be
included).

2. Parser Design and Architecture
Our Java parser is designed as a modular component,

following a typical parsing pipeline: reading, lexical analysis,
syntactic analysis, and data model construction.

3. File Reading and Line-by-Line Processing:
The parser begins by reading the XDebug trace file line by

line. Given that trace files can be very large (hundreds of
megabytes for complex operations), an efficient line-by-line
reading mechanism is crucial to avoid excessive memory
consumption. Java's BufferedReader is employed for this
purpose.

4. Lexical Analysis (Tokenization):
Each line read from the trace file undergoes lexical analysis.

Since the fields are tab-separated, a simple String.split("\t")
operation is sufficient to break down each line into its constituent
tokens. Robust error handling is incorporated to manage
malformed lines or unexpected field counts, preventing parser
crashes due to corrupted trace data.

5. Syntactic Analysis and Event Interpretation:
After tokenization, the parser performs syntactic analysis by

interpreting the meaning of each token based on its position and
the event Type field. A switch statement or a strategy pattern can
be used to handle different event types (0 for call, 1 for return,
etc.).

Function/Method Calls (Type 0): When a function call event
is encountered, the parser extracts the function name, the
originating file and line number, and the call level. This
information is used to identify the "caller" and "callee" in the
sequence. The Function Number is critical for matching function
calls with their corresponding returns.

Function/Method Returns (Type 1): Upon encountering a
function return event, the parser uses the Function Number to
locate the corresponding outstanding function call. This pairing
is essential for determining the duration of a call and for
correctly nesting messages in the sequence diagram.

Includes/Requires (Type 2, 3): These events indicate file
inclusions. While not direct messages in a UML Sequence
Diagram, they are important for understanding the context and
dependencies within the PHP application. The parser can record
these events to provide additional context or to help in
identifying the "lifeline" associated with the executed code.

6. Data Model Construction:
The most critical phase is the construction of an in-memory

data model that represents the sequence of interactions. We
define several Java classes to represent the elements of a UML
Sequence Diagram:

7. SequenceDiagram: The top-level class representing
the entire diagram, containing a list of lifelines and
messages.

Lifeline: Represents an object or function participating in the
sequence. For PHP, this typically maps to a class name, an object
instance, or a global function. The parser dynamically creates
lifelines as new, unique function or method owners are
encountered.

Message: Represents a communication between two
lifelines. Key attributes include:

• sender: The Lifeline initiating the message.

• receiver: The Lifeline receiving the message.

• methodName: The name of the function/method
being called.

• callLevel: The nesting depth of the call.

• startTime: Timestamp of the call.

• endTime: Timestamp of the return.

• arguments: (Optional) Parsed arguments.

• returnValue: (Optional) Parsed return value.

• messageType: (e.g., synchronous call, return).

The parser maintains a stack-like structure (e.g., a Deque or

Stack in Java) to keep track of current active function calls.
When a Type 0 event (call) occurs, a new Message object is
created and pushed onto the stack. When a Type 1 event (return)
occurs, the corresponding Message is popped, its endTime is set,
and it is added to the Sequence Diagram's list of messages. This
stack-based approach correctly handles nested function calls and
ensures the proper temporal ordering of messages.

V. UML SEQUENCE DIAGRAM GENERATION

Once the XDebug trace data has been successfully parsed
into our structured Java data model (comprising Sequence
Diagram, Lifeline, and Message objects), the next step is to
translate this model into a visual UML Sequence Diagram. For
this purpose, we leverage PlantUML, a powerful open-source
tool that allows users to create UML diagrams using a simple,
human-readable text description.

The choice of PlantUML offers several significant
advantages:

• Text-Based Definition: Diagrams are defined in
plain text, making them easy to generate
programmatically, version-controlled, and
collaboratively worked on. This aligns well with
automated generation from trace files, as our Java
parser can directly output the PlantUML syntax.

• Ease of Integration: PlantUML can be integrated
into various environments and workflows. The
generated text file can be rendered into images
(PNG, SVG) or other formats using the PlantUML
command-line tool, a dedicated server, or IDE
plugins.

• Flexibility and Expressiveness: PlantUML supports
a wide range of UML diagram types, including
Sequence Diagrams, with rich features for actors,
participants, messages, activation bars, loops,
conditionals, and notes, allowing for detailed and
expressive visualizations.

Our Java parser, after constructing the Sequence Diagram

object, includes a component responsible for generating the
PlantUML syntax. This component iterates through the Lifeline
and Message objects in the data model and translates them into
PlantUML's specific syntax.

• Participants/Lifelines: Each unique Lifeline object
identified during parsing (e.g., a class name like

18Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

ContactService, DatabaseHandler, or a generic
Application for global functions) is declared as a
participant in PlantUML using keywords like
participant, actor, or boundary.

• Messages: Each Message object is translated into a
PlantUML message arrow. The sender and receiver
lifelines determine the source and target of the
arrow, and the methodName becomes the message
label. Activation bars are automatically handled by
PlantUML when -> (call) and <- (return) messages
are used.

• Nesting and Call Levels: The callLevel attribute of
our Message objects is crucial for correctly
representing nested calls and activation bars.
PlantUML inherently handles nesting through the
sequence of -> and <- messages, but explicit
activate and deactivate keywords can be used for
finer control.

• Conditional Logic and Loops: While XDebug
traces capture the executed path, they don't directly
provide information about if conditions or for loops
that weren't taken. However, for executed loops or
branches, the repeated messages or specific
sequences can be grouped using PlantUML's loop
or alt/else constructs, which can be inferred from
patterns in the trace or added manually for clarity.

The output of this component is a plain text file (e.g.,
diagram.puml) containing the PlantUML definition. This file
can then be fed into a PlantUML renderer to produce the final
visual sequence diagram, providing an intuitive and accurate
representation of the brownfield application's runtime behavior.
This automated generation significantly reduces the manual
effort traditionally associated with creating and maintaining
such diagrams, making them a practical tool for security analysis
and code comprehension.

VI. CONCLUSION AND FUTURE WORK

Future work should address multiple challenges starting with
the issue of large file sizes according to our research findings.
XDebug trace files tend to expand their size when complex
operations or scripts run for extended periods. The parser needs
both memory efficiency and the ability to handle files which
exceed RAM capacity.

The trace data produced by XDebug includes all function
arguments in its output. The process of interpreting complex
PHP data structures (arrays, objects) in Java requires advanced
logic to convert them into meaningful representations. The
initial development should begin with basic data types before
moving on to raw string logging of arguments.

The performance speed becomes vital when handling
massive trace files. String manipulation using StringBuilder
alongside data structure efficiency and object creation
minimization will substantially boost performance.

Real-world trace files may contain corrupted lines or
unexpected formats because of system crashes or
misconfigurations. The parser needs to maintain robustness by
either skipping malformed entries or logging warnings so it can
prevent crashes.

Converting PHP dynamic elements like global functions and
anonymous functions and closures into standard UML lifelines

and messages requires thorough analysis. The system should
treat global tasks as part of a basic "Application" lifeline and
each object should receive its own lifeline based on its class
name.

Our solution transforms XDebug trace data through Java
parsing followed by PlantUML diagram generation to create
structured programmatic models which become visual sequence
diagrams. The generated model functions as the direct input
source for any UML diagramming library or tool which
produces valuable visual sequence diagrams to analyze and
secure brownfield PHP applications. The parser architecture
allows future extensions for new XDebug features while
providing flexibility for processing various trace formats.

REFERENCES

[1] A. Olmsted, Security-Driven Software Development: Learn to

analyze and mitigate risks in your software projects, Birmingham,

UK: Packt Publishing, 2024.

[2] A. Olmsted, "Secure software development through non-

functional requirements modeling," in Proceedings of the 2010

International Conference on Software Engineering Research and

Practice (SERP), 2010.

[3] A. Olmsted, "Secure Software Development–Models, Tools,

Architectures and Algorithms," Journal of Software Engineering

and Applications, pp. 743-750, 2012.

19Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

