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Abstract—Malware is one of the main threats against electronic
devices, as malicious software can damage the device, disrupt
network communications and provide an entry point for additional
attacks. While software-based countermeasures such as antivirus
can be effective, they require presence on the device and
can furthermore be disabled or fooled by advanced malware.
Monitoring of physical side-channels, on the other hand, provides
a non-invasive and hard-to-spoof method to detect unauthorized
software being executed on a device. However, in a modern
device, several processes may execute at once, making detection
of alterations difficult, especially in the case where more than
one process is security sensitive and should be monitored.
In this paper, we present a solution for enabling granular
side-channel monitoring for complex, multi-core devices. We
apply new machine-learning enhanced methodology, focused on
efficiently representing the measurements in latent space, to
enable classification of two simultaneously executing processes.
The classification training is based on labeled power side-channel
traces of dual-core measurements. Our results show that it is
feasible to classify two processes on separate cores having observed
a single power trace obtained from a single probe.
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I. INTRODUCTION

Physical side-channel monitoring observes unintended infor-
mation leakage from electronic devices, e.g., such as changes
in the power consumption, alterations in electromagnetic
fields or temperature fluctuations [1]. An important distinction,
compared to classical cryptographic side-channel analysis, is
that primarily data-independent architectural process leakage
is observed. This approach provides a promising field for non-
invasive monitoring of software processes executing on an
electronic device. By analyzing these physical side-channels,
an external monitor can determine which software processes
are executing on a device, even without logical access to it.
Figure 1 for a high level illustration of how a machine learning
model is trained, and later used for inference on monitored
data from a target.

However, there is still a large gap between academic literature
and real world settings, preventing large scale deployments
of side-channel monitors. One of the primary obstacles is the
lack of research for more complex monitored environments,
e.g., devices where multiple processes execute simultaneously
on more than one processor or processor cores; and processor
optimizations that cause non-determinism in the execution
patterns. Most prior art [1][2] assumes single threaded targets.
This is a reasonable assumption for low-cost embedded devices
and for microcontrollers where the primary objective is to
perform a very specific task. Alternatively, the assumption is
made that only a single process is of interest and the rest of the

processes executing should be treated as noise to filter out [3-5].
To make side-channel monitoring viable also in settings where
several processes of interest execute simultaneously on different
processors or processor cores it is important to overcome
these hurdles. In this paper, we investigate the possibility of
classifying two simultaneously executing processes, on two
separate CPU cores, by measuring the power consumption of
the entire device. Further, we perform the classification using
a one-shot classification, i.e., the classification is done using a
single power trace, without the need of repeated executions of
the software. Our contribution is three-fold:

1) A multi-model machine-learning solution that improves
feasibility of multiprocess side-channel monitoring.

2) An evaluation of side-channel monitoring-based classi-
fication of multiple, simultaneously executing, software
processes.

3) A machine learning-based approach to classify a single
side-channel measurement trace as two classes from a set
of predefined processes.

The remainder of the paper is organized as follows: We describe
the relevant background in Section II and discuss previous
work in Section III. In Section IV, we describe the setup
and properties of our solution followed by an evaluation of
the effectiveness of our approach in Section V. We provide
discussion of our results, as well as future work in Section VI
and conclude our findings in Section VII.

II. BACKGROUND
A. Side-channel emissions

Side-channel emissions refer to unintended information
leaks from a physical device that occur as byproducts of its
operation. These emissions can include power consumption,
electromagnetic (EM) radiation, timing variations, thermal
signatures, acoustic signals, and optical signals. Electronic
components such as processors, memories, and data buses
emit distinct side-channel data based on their current state,
the instruction being executed, and the data being processed.
Side-channel leakage originates from variations in power from
charging and discharging transistors in hardware. The variation
may both be data dependent but also depend on the set of
active logic gates at the specific time. For example, power
consumption can be correlated to the Hamming weight (the
number of binary ‘1°s) of the current state; another common
leakage mode is to consider the Hamming distance between
current and previous states of the device. Historically, side-
channel emissions of a device have been regarded primarily as
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Figure 1. Overview of side-channel monitoring. Usually there is a profiling phase where e.g. a machine learning model is trained on measurements from
potentially a large set of devices and varying code; and the monitoring phase where the model is used to for inference on monitored targets.

vulnerabilities that attackers could exploit to extract sensitive
information [6]. An attacker can exploit the leakages to infer
sensitive information in a device, e.g., to extract a cryptographic
key used to encrypt data. Side-channel attacks are effective
because there is a measurable correlation between the physical
measurements (power consumption, EM emissions, timing, etc.)
taken at various points during computation with both the data
and the set of active gates of the processing device.

B. Side-channel monitoring

There is a growing interest in using side-channel monitoring
as a method to detect malicious software. In this approach,
a monitor records the device’s side-channel emissions and
determines whether its behavior aligns with predefined expected
criteria. For this type of usage, called side-channel monitoring,
leakage originating from data is of less relevance. Instead,
the activation of components, such as different execution
units and registers in a CPUs, contributes to the side-channel
profile which can be used to determine the executing process.
Activation patterns present in the side-channel measurements
can indicate if a given process is executing on a device.

External monitoring comes with the additional advantage
of not having to solely rely on information originating from
processes in the device, which is a common case for system
control and monitoring. A security monitoring scheme that re-
lies on a device to itself detect deviations and non-compliances,
incorporates the risk that an attacker may remain undetected,
especially if he is able to mimic normality towards the control
system. In this aspect, side-channel monitoring provides a
compelling property of air-gapped monitoring; as the device is
usually not aware if and when it is being monitored externally,
stealthy malware can be detected. This is due to the fact that
any unexpected process running on a device will cause an
abnormal side-channel leakage.

C. Machine Learning (ML) for side-channel monitoring

Physical side-channel data, such as power consumption, can
be captured as a time-series of floating point values. Depending
on what is monitored, as well as the sampling rate such a time-
series typically contain thousands, if not millions, of values and

it would be very challenging to analyze such data without data-
driven methods. In the past decade machine learning models
trained on such data has surpassed prior statistically based
methods when it comes to side-channel attacks [7]. Machine
learning has also been an enabler for side-channel monitoring.
The monitoring can include different tasks such as determining
which process(es) is running as well as determining if a known
process is running as expected. For determining which of
a number of executing programs is running, a classification
model can be trained to perform this classification based on the
obtained side-channel patterns. Although a classification model
produces likelihoods for their respective classes, these are not
reliable to use for determining anomalies since classification
models are often over-confident [8]. Training a specialized
binary classifier to distinguish attacks from normal execution
may be a more straightforward approach for this problem but
in practice attack data is dynamic to its nature and such a
model risks quickly becoming obsolete and failing to classify
new attacks correctly. In anomaly or novelty detection, a
model is instead trained exclusively on side-channel data from
normal program executions with the aim of being able to detect
anything not part of the training distribution.

Side-channel traces, or measurements, are discrete amplitude
samples at regular time intervals, i.e., the data is serial. Hence,
an ML-architecture with the capacity to learn correlations
between different elements of sequences, such as Long-Short
Term Memory (LSTM) or Recurrent Neural Networks (RNN)
has been the architecture of choice for most published work
on using side-channels to monitor processes [9][10]. In recent
years, the Transformer architecture - a key component in the
breakthrough of large language models - has shown success
in a wide range of sequential ML tasks and has recently also
been used with power side-channel data [11].

III. PREVIOUS WORK

Side-channel monitoring using physical side-channels is
well established in the literature [1]-[4][9][12]. However, to
our knowledge, there is no previous attempt at dual process
classification. In [5], a process is classified amid other processes
executing on the device but the authors do not attempt to
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classify the other processes. In [3] instruction-level disassembly
is performed on a process executing on a dual core ARM
Cortex-A9 CPU, however, they schedule the process on a
specific core and surround the payload code with No Operation
(NOP) instructions [3].

Early work on machine learning-based side-channel monitor-
ing used a LSTM-network to classify legitimate Programmable
Logic Controller (PLC) control sequences and used a threshold
on the calculated softmax as an indicator of malicious code
[9]. Vidal et al. use a Dynamic Time Warping with a nearest
neighbor approach to align and match different power side-
channel traces to classify execution blocks [2]. Classification
models on power measurements have also been used to identify
intrusion attacks on IoT devices. In [12], power measurements
on external devices were taken every (0.2 seconds and then
grouped into various feature sets. A last window of features
was used to train a range of simpler models that could run on
resource scarce Internet-of-Things (IoT) systems.

IV. SOLUTION OVERVIEW

We present a solution to enable side-channel monitoring of
devices with multiple processors or processors with multiple
cores. We denote the monitored device as Device-under-
Monitoring (DuM) for the remainder of the paper. The DuM can
run several different benign processes, either distinct programs
or different threads of the same program. Hence, allowing
the software executing on the respective processors to be
simultaneously monitored is desirable.

In the proposed solution, two processor cores execute distinct
software components simultaneously on the DuM. While it
would be possible to monitor the power consumption of these
cores individually, it would require invasive monitoring, probing
power lines to individual processors, and hardware changes.
Instead, the side-channel monitor observes a physical side-
channel using a single probe, e.g., monitoring the main power
line of the device. One of the advantages with such side-channel
monitoring is that it can be retrofitted and be entirely external
to the DuM.

The monitor scans for a start trigger pattern to start
measuring, e.g., a power reset indicating a boot sequence.
Once the trigger is detected, the monitor collects samples until
a pattern indicating an end trigger is found or a pre-defined
number of samples has been collected. From the collected
samples, the monitor must decide whether the measurement
indicates normal behaviour or not. The solution must be able to
extract this information from a set of measurements obtained
during a single execution as repetition of the processes is
infeasible in real-world scenarios. E.g., a boot procedure only
occurs at startup and classification of processes cannot rely on
obtaining measurements from multiple executions. To facilitate
this, the monitor uses a machine learning-enhanced two-step
approach to detect whether the processes execute as expected,
as shown in Figure 1. In a first step, the monitor classifies
which set of processes have been executed by the processors. In
a second step, given the classified set of processes, the monitor

Dual core dual
process trace

Figure 2. Overview of the ML-architecture used for dual trace classification
in Section V.

selects a model trained for said combination and determines
whether the execution was as expected.

In this paper, we focus on evaluating the first step, as this
is a prerequisite for the second step to function. For multi-
core processors which can execute several different allowed
processes, effective anomaly detection cannot be performed
before the monitor has determined what process it is monitoring.
As it has been proven that one can monitor a known process
in the presence of noise sources in a dual-core processor [3],
indicating the feasibility of the second step, we aim to prove
that we can identify which processes are executing. That is,
the goal of our method is to use an obtained set of side-
channel measurements to classify the processing class of both
processors.

A. ML model architecture

The machine learning architecture used in the experiments
consists of four distinct blocks: pretrained encoder, decoupler,
cross-attention and classifier. A schematic overview is shown
in Figure 2. Each component is based on blocks with multi-
head attention, also known as transformers [13]. The purpose
of the separately trained encoder is to produce a contextual
representation of the side-channel traces well-suited for the
classification and that this can use more and varied data without
necessary labeling. The encoder is used both to convert the
trace with two parallel processes running on a dual-core, as well
as to convert prototype examples of a single process running on
each of the cores. The encoded single process traces are used
to produce static input to the decoupler modules as information
of what the respective classes running on the other core could
look like. Cross-attention blocks are used to mix in attention of
the right and left decoupled representations to each other and
finally the separated parallel classifier blocks serve to produce
logits (the unnormalized probability scores) for each of the
process classes of the right and left cores.

1) Pretraining a side-channel encoder with data2vec2:
The encoder is trained using the data2vec2 framework [14]
with a slightly modified feature encoder for side-channel
measurements. Although data2vec supports multiple modalities
each modality requires a specific feature encoder. As power
side-channel measurements are 1D time-series similar to those
of audio data, we reuse the audio encoder from data2vec with a
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Figure 3. Overview of the pretraining process for learning side-channel latent
representations.

M masked samples

stack of convolutional filters but alter the dimensions to adjust
to the sampling frequency. The large share of parameters in the
encoder is, however, resulting from the stack of transformer
layers after these convolutional filters. The transformer layers
enable the model to encode contextual information of the
surrounding into each time step of the encoded sequence and the
output of the encoder is commonly referred to as a contextual
latent representation.

Data2vec implements a self-supervised learning paradigm
where the learning task is to predict masked portions of the
input sample. As depicted in Figure 3, data2vec2 employs a
teacher-student configuration where the task of the student
is to predict masked parts of a sample based on targets
produced by the teacher. The teacher on the other hand is
an exponential moving average of the student encoder. In
order to enable prediction of the masked parts, the student
network has an additional prediction network component which

in this implementation is a stack of 1D convolutional layers.

Each target representation is reused for multiple maskings of
one sample for efficiency as shown in the figure. Note that
the pretraining prediction network is only used during the
pretraining of the encoder and is discarded afterwards.

2) Training a dual-trace classifier with single process
representations: The neural network architecture presented
in this paper has two major differences from a conventional
transformer-based sequence classifier. Firstly, the dual-core
classifier presented here has two output blocks - one for each
core - to enable classifying two processes simultaneously, as
seen in Figure 2. Secondly, with the aim of incorporating
knowledge of the side-channel measurements of single core
processes, it contains novel decoupler blocks that mix in
knowledge of these encodings into separate attention heads.

The idea is that a neural network could learn to separate two
processes in a combined dual-core trace if given the difference
of each process in the encoded representation. To accomplish
this, the decoupler block has been designed as a multi-head
attention block where each attention head takes class-specific
input, as seen in Figure 4. The class-specific input of a processor
are the mean encoded representations of measurements for each
process running on a single core. Each attention head then
performs normal self-attention on the difference between the
class-specific input of that head and its encoded input. By
placing two decouplers, first one left with class-specific inputs

[ etr=ciri]

Y| Attention
headn

| Attention
head 2

- i
head 1
\—T—)

Decoupler self-attention

Figure 4. Overview of the self-attention mechanism in the decoupler block,

incorporating the a priori knowledge of processor classes running on single

cores through separate attention heads with the difference to the encoded dual
trace.

from single processes running on the left processor followed
by one on the right taking the output of the first decoupler and
class-specific input from single processes running on the right
processor, the model could learn to successively separate the
processes present in the dual-core measurements.

The final output from all attention heads in one decoupler
is concatenated and projected back to the input dimension.
After the decouplers, the respective left and right outputs
are separated and continue with cross-attention blocks which
add another possibility to adjust the right and left outputs
with respect to each other. The cross-attention blocks are
identical to the cross-attention blocks in a typical decoder of a
encoder-decoder network [13], where the key and query inputs
are the separated left and right outputs from the decouplers,
respectively. The two parallel classification blocks consist
of multi-headed attention followed by a projection from the
concatenation of the sequence to the number of classes and
ending with a softmax outputting the class probabilities. All of
the components after the encoder contain two identical serial
blocks and the cross-attention and classification blocks have
four attention-heads each in the multi-headed attention.

V. EVALUATION

Our experimental setup comprised a ChipWhisperer Husky
measuring power consumption on targets implemented on a
DuM embodied by a NAE-CW305-04-7A100 FPGA. The
FPGA was configured with two soft-core realizations of Cortex-
M3 cores [15] with 32 kB instruction memory and 32 kB data
memory, both implemented in block RAM. The respective
cores have a three-stage instruction pipeline, which has branch
prediction, and do not have a cache. Moreover, the first
Cortex-M3 (denoted C4) has a trigger signal for informing
the Husky of process start. The first and second Cortex-M3
(denoted Cp) share a reset signal, and therefore start to execute
their respective software programs simultaneously. The cores
are executing at a clock speed of 20 MHz and the monitor
samples at a rate of 80 MS/s. 4x oversampling was selected
as it is sufficient to identify the patterns of the programs
executed on the respective CPU core, but still low enough to
generate reasonable amounts of data. The evaluation utilized
programs from the BEEBS [16] suite and we selected 10
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Figure 5. An example of the contribution of each process to a joint side-channel trace. Each measurement trace indicates the relative power consumption of the

device during 4500 clock cycles. The black trace is a measurement of the FASTA program executing on C 4 and the BUBBLESORT program on Cp. In the

green trace, the FASTA program is executing by itself on C 4, i.e., Cp is idle. In the blue example, the BUBBLESORT program is executing by itself on Cp.
In the red example, a program not present in the black trace, STATEMATE, is executing on Cg.

programs P = {P; | 0 < ¢ < 9} of suitable execution
length. The selected programs have deterministic execution
e.g. without non-deterministic branch conditions. We measured
each program for 18000 samples, i.e., during 4500 clock cycles.
For programs shorter than 4500 clock cycles, the program was
restarted. An example of the collected samples can be seen in
Figure 5.

Let P4 (PA € P) denote a program running on C4, and
P?B a program on Cp respectively.

During the measurement collection phase, we collected
1000 measurements from each combination of programs
({[PA, PB] | YPA, PB ¢ P}), as well as each program running
alone on respective processor. 70% of these were fed to the
evaluation model during training 10% was used as a validation
set and the rest as a held-out independent test set.

A. Training the ML model

The pretraining of the encoder was conducted with the
data2vec framework [14] in an unsupervised manner with
side-channel measurements from 10 different programs on
a single-core, as well as some measurements from two
processes running on a dual-core processors. For the first
convolution layers of the encoder we used four layers of di-
mensions (256, 256, 128, 128). Corresponding kernel
sizes and strides of the layers were: (32, 12, 4, 4) and
(12, 8, 3, 2).The encoder dimension was 48 and in total
the encoder produced 29 time steps for each trace-segment
of length 18,000. The disposable 1D convolutional decoder
only used in the pretraining had 4 layers with 64 dimensions,
8 groups and kernel size 7. In total, the pretraining with a
total of 120120 traces ran for 120000 steps using the Adam
optimizer with a learning rate of 0.0001 and weight decay of
0.01.

The dual classification model is trained without changing
the pretrained model. It starts by calculating the mean of the
encoder output of the single process training traces for each
right and left class, these are then added as static elements in the

right and left decoupler blocks seen in Figure 2. The training
then proceeds with two parallel cross-entropy loss calculations
of the corresponding labels for left and right processor, each
contributing to updating the specific and common weights of
the network. The model was trained for 140 epochs with the
Adam optimizer with a starting learning rate of 0.0002 and
a weight decay of 0.00003. The best model as evaluated by
the loss on the validation set was chosen as the final model of
each run. The seed was changed for each of 5 runs included
in Table I to get a different split of the collected data into
training / validation / test.

B. Classification results

The classification model is evaluated with two accuracy
metrics as seen in Table I. The accuracy listed is the percentage
of test traces where the complete dual label is correct whereas
the single acc. is calculated as the percentage of single labels
being correct. Single acc. is consequently at least as high
as accuracy but usually higher since accuracy will classify
an output as incorrect even when one of the two labels is
correct. The results show the mean and the standard deviation
of five runs with different seeds causing differing splits into
training / validation and test sets. To compress the table only
the aggregation of results for all processes running on the C4
is shown Cp in Table 1.

VI. DISCUSSION

In this paper, we have allowed the simplification of having
synchronous executions by using a single reset signal to both
processors. A natural next step would be to determine how well
the presented solution works for programs which are slightly
displaced in time, as the assumption of deterministic process
start is only viable in very specific situations.

The Cortex-M3 processors does not have any cache and
thus no shared state. The co-varience of processes with shared
caches should be studied further.

Furthermore, we have only considered simple processes
with deterministic execution, without branching. Combining
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TABLE 1. DUAL-CORE CLASSIFICATION ACCURACY LISTED BY THE CLASS
OF THE PROCESS RUNNING ON C 4.

C 4 class Accuracy Single acc. # Test| # Valid| # Train
cnt 96.1% £0.9 | 98.0% 0.5 2200 1100 7700
fasta 91.1% £ 1.1 | 95.6% £0.5 2000 1000 7000
prime 97.5% £0.4 | 98.8% +0.2 2200 1100 7700
ahacompress | 95.8% +4.8 | 97.9% +2.4 2200 1100 7700
bubblesort 973% £42 | 98.6% +2.1 2200 1100 7700
cover 98.2% +£4.1 | 99.1% +2.0 2200 1100 7700
tarai 91.9% £2.0 | 959%+1.0 2200 1100 7700
lcdnum 96.3% £3.6 | 982% +1.8 2200 1100 7700
cre32 854% +3.6 | 92.7% + 1.8 2200 1100 7700
statemate 96.4% £5.0 | 982% +£2.5 2200 1100 7700
idle? 88.5% +5.0 | 94.2% +2.5 2200 1100 7700
Total 94.1% +£22 | 97.0%+ 1.1 | 24000/ 12000 84000

“No process currently executing on C 4.

our multi-process work with control flow graphs has potential
to enable monitoring of the current internal state of multiple
processes simultaneously.

In this paper, we have performed our tests on an FPGA
implementation of the two CPUs. This has enabled us to
make simplifications in order to fine-tune the methodology.
How additional complexity impacts the results, in the form
of executing the software on hard processors, with or without
out-of-order execution and processor optimizations, should be
researched further.

VII. CONCLUSION AND FUTURE WORK

We showed that two distinct processes execution on two
separate ARM Cortex M3 processors can be correctly classified
with an average accuracy of 94.1%. This indicates that the
side-channel monitoring can adapt to more complex devices
and that monitoring can be viable also for use cases going
beyond to single-process CPUs and FPGAs implementations.
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