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Abstract—Besides the majorly investigated two-colored cards, 

there are studies of card-based protocols that use updown cards 

printed with rotationally asymmetric symbols. A card-based 

protocol for updown cards is advantageous in making the 

protocol simple and efficient, but not so much effort has been 

made to develop updown card protocols, and not so much is 

known about the relation between protocols for two-colored 

cards and updown cards. In fact, the number of cards for 

computing an arbitrary function is not known. This study 

discusses the sufficient condition of two-colored cards protocols 

under which the protocol can be converted for updown cards, 

and describes the actual conversion procedure. With the 

conversion, it is clarified that there are updown card protocols 

that compute an arbitrary Boolean function with three 

additional cards, and protocols that compute a symmetric 

Boolean function with only one additional card. 

Keywords-Card-based cryptography; Secure multi-party 

computation; Updown cards. 

I.  INTRODUCTION 

Card-based cryptography is a technique for secure multi-
party computation using physical cards [5][6][7][8][10][12]. 
Participants in a computation encode their input bits by using 
cards with symbols, such as those on playing cards. The cards 
are placed with their faces down so that the input bits are kept 
secret. The cards are shuffled, permuted, and flipped 
according to a specific rule. At the end, the participants learn 
only the information corresponding to the computation's 
output from the cards. 

Card-based cryptography enables secure multi-party 
computation without specialized knowledge or equipment, 
such as a computer. Therefore, card-based cryptography is 
regarded as an appealing material for the lectures of security 
and zero-knowledge proof for puzzles [1][13]. On the other 
hand, the procedure should be as simple as possible because 
all operations must be performed manually by human 
operators. Therefore, reducing the number of cards is an 
important issue, and research has been conducted on the 
minimum number of cards that are required to compute 
meaningful functions and to solve other problems. 

In card-based cryptography, we often consider using two-
colored cards (hereafter called TC cards) that are printed with 

either “♣” or “♡” on their front and “?” on their back. A single 

bit is encoded by a pair of cards placed so that 

♣  ♡ = 0, ♡  ♣ = 1. 

A commitment is a pair of face-down cards that encodes a 
single bit according to the above encoding rule. In this paper, 
the commitment to 𝑥 ∈ {0,1} is denoted as 

?  ?
𝑥

  

which represents nobody can see the faces of the cards. If a bit 
value 𝑥 is represented as a commitment, then its negation 𝑥̅ is 
easily obtained by swapping the places of the two cards of the 
commitment.  

We call a protocol the entire procedure of taking an input 
in the form of a commitment, performing operations, such as 
permutation, flip, and shuffle, and finally determining the 
output from a sequence of cards. A protocol for TC cards in 
this paper follows the Mizuki-Shizuya model [4], which 
allows only these operations: permutation that rearranges the 
position of the cards, flip that faces down or up the cards, and 
shuffle that secretly and probabilistically applies the 
permutation.  

Protocols in which the output is obtained in the form of a 
commitment are called committed-format protocols. 
Committed-format protocols are important because they allow 
us to construct complicated protocols from simpler ones. For 
example, if we have committed-format protocols for basic 
logical operations, such as AND, OR, and NOT and for 
copying a Boolean value, then we can construct a committed-
format protocol for an arbitrary Boolean function. The result 
of the function is obtained by opening the commitment of the 
final result, and no information leaks out about the inputs and 
the intermediate values that are used in the computation. 

In addition to commonly studied TC cards, there is a 
direction of studies of card-based cryptography that uses cards 
of a single type. Such cards are called updown cards (hereafter 
called UD cards) and assumed to have “↑” on the front and 
“(blank)” on the back [5]. Let 

↓ = 0, ↑ = 1 

be the encoding of a single bit on these cards. For UD cards, a 
commitment is defined as a single card representing a single 
bit but its face down, and protocols are realized by performing 
operations, such as the permutation, flip, shuffle (that applies 
the permutations and rotations), and rotation that rotates a 
card by 180 degrees and reverses the upside and the downside 
of a card. The protocol for the logical NOT is realized by 
simply rotating the commitment (a single card) of the input. 

Generally speaking, protocols for UD cards require fewer 
cards than protocols for TC cards. This is especially important 
because cards are operated by a human. Besides the advantage 
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in efficiency, a smaller number of cards is favorable in 
discussing the computational capabilities of the card-based 
protocol. Since two TC cards are expressed by one UD card, 
the number of possible combinations of cards can be reduced, 
though the operation on UD cards are more complex than 
those on TC cards. However, not so many investigations have 
been made for protocols with UD cards, while TC cards are 
eagerly studied. For example, there are TC protocols that can 
safely compute arbitrary 𝑛-variable Boolean functions with 
2𝑛 + 6 cards (2𝑛 cards for the commitments of 𝑛 bits and six 
additional cards for “working memory”), and symmetric 
functions with 2𝑛 + 2 cards [7]. On the other hand, no such 
general protocol is known for UD cards. To promote the study 
of UD protocols, it is convenient if we can transform a TC 
protocol to a corresponding UD protocol. However, it is likely 
that not all TC protocols can be transformed to UD protocols. 

In this study, we illustrate a general method for converting 
a TC protocol that satisfies certain constraints into an UD 
protocol, where the latter uses half the number of cards of the 
former. It is demonstrated that the TC protocols in [7] fulfill 
the constraint described above. Consequently, our conversion 
method brings UD protocols that compute arbitrary 𝑛-variable 
Boolean function with 𝑛 + 3 cards and any 𝑛-variable sym-
metric function with 𝑛 + 1  cards. To avoid possible 
misunderstanding, we remark that this study is a compilation 
of many known results and protocols, rather than a proposal 
of a novel protocol that is based on a new idea. The 
compilation, however, indicates a strong relationship between 
TC protocols and UD protocols, which has not been 
recognized explicitly. 

This paper is organized as follows. In Section Ⅱ, we 
introduce AND and XOR protocols with TC cards. In Section 
Ⅲ, we show the basic idea of converting TC protocols to UD 
protocols. In Section Ⅳ, we introduce AND and XOR 
protocols with UD cards, discussing equivalency to TC cards. 
In Section Ⅴ, using converting constraints, we show the 
example of convertible TC protocols. In Section Ⅵ, this paper 
is concluded. 

II. TC CARDS PROTOCOLS 

This section reviews committed-format TC protocols that 
realize computing AND and XOR of input bits. 

A. TC Cards AND Protocol with Six Cards 

For a pair of bits (𝑥, 𝑦) and a bit value 𝑖, we define the 
functions “get” and “shift” as 

get𝑖(𝑥, 𝑦) = {
𝑥 (𝑖 = 0),
𝑦 (𝑖 = 1),

 

shift𝑖(𝑥, 𝑦) = {
(𝑥, 𝑦) (𝑖 = 0),
(𝑦, 𝑥) (𝑖 = 1).

 

For an input bit 𝑎, 𝑏 ∈ {0,1}, the logical conjunction 𝑎 ∧ 𝑏 

can be written as 

𝑎 ∧ 𝑏 = get𝑎(0, 𝑏) = get𝑎⊕𝑟(shift𝑟(0, 𝑏)) 

with any bit 𝑟 ∈ {0,1}  [8]. This principle describes 

committed-format protocols for AND computation. 
Mizuki and Sone’s AND protocol is realized with six TC 

cards, including four cards for the commitments of two input 
bits [6]. The protocol consists of the following five steps. 

(Hereafter, card positions are given address numbers from left 
to right for clarity.) 

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1} 

as the commitments placed at positions 1 and 3. The 

additional two cards encode 0 and are placed face down at 

position 2. 

① ② ③

?  ? ?  ? ?  ?
𝑎 0 𝑏

 

2. Permute the cards as follows. 

?  ? ?  ? ?  ?
   

?  ? ?  ? ?  ?

 

3. Shuffle the cards in such a way that the left and right 

halves of the cards are each bundled and randomly 

swapped, which is called a random bisection cut and 

denoted by [⋅ | ⋅]. In practice, we can use card sleeves or 

clips and throw them to realize this shuffle. 

[ ?  ?    ?  | ?    ?  ?  ] 

4. Permute the cards as follows.  

?  ? ?  ? ?  ?
   

?  ? ?  ? ?  ?

 

If the random bisection cut in Step 3 does not change the 

order of the cards, then this permutation cancels the 

permutation in Step 2, resulting the commitments to 𝑎, 0, 

and 𝑏  placed in this order from the left. If the random 

bisection cut in the previous Step 3 changes the order of 

the cards, then this permutation brings the commitment to 

the negation of 𝑎, which is written as 𝑎 ⊕ 1, in position 1. 

We can also confirm that the commitment to 𝑏 moves to 

position 2 and the commitment to 0 moves to position 3, 

and hence they swap their positions in the original order. 

Summarizing the two cases, we have the commitments to 

𝑎 ⊕ 𝑟 and shift𝑟(0, 𝑏) after the permutation of this step, 

where 𝑟 = 0 and 1 represent the two different cases of the 

random bisection cut in Step 3. The results is therefore 

illustrated as 

① ②        ③

?  ? ?  ?    ?  ?

𝑎 ⊕ 𝑟 shift
𝑟(0, 𝑏)

. 

5. Flip the cards at position 1 and open the commitment to 

𝑎 ⊕ 𝑟 over. If 𝑎 ⊕ 𝑟 = 0, then the cards at positions 2 

and 3 are the commitments to 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏, respective-

ly. If 𝑎 ⊕ 𝑟 = 1, then the cards at positions 2 and 3 are the 

commitments to 𝑎̅ ∧ 𝑏 and 𝑎 ∧ 𝑏, respectively. Therefore, 

the commitment to 𝑎 ∧ 𝑏 is obtained at position 2 if 𝑎 ⊕
𝑟 = 0, and at 3 if  𝑎 ⊕ 𝑟 = 1. Remark that opening 𝑎 ⊕ 𝑟 

does not reveal the value of 𝑎 because 𝑟 is unknown. 

① ② ③

♣  ♡ ?  ? ?  ?

0 𝑎 ∧ 𝑏 𝑎̅ ∧ 𝑏

   or   
① ② ③

♡  ♣ ?  ? ?  ?

1 𝑎̅ ∧ 𝑏 𝑎 ∧ 𝑏
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Given the commitments to 𝑎 , 0 , and 𝑏 , this protocol 

computes 𝑎 ∧ 𝑏 = get𝑎(0, 𝑏) . If the commitments to 

𝑥, 𝑦, 𝑧 ∈ {0,1} are provided instead of 𝑎, 0, and 𝑏, then this 

same protocol computes get𝑥(𝑦, 𝑧). 

B. TC Cards XOR Protocol with Four Cards 

Here, we introduce committed-format protocols that 
compute exclusive-or 𝑎 ⊕ 𝑏 for bits 𝑎, 𝑏 ∈ {0,1}. Mizuki and 
Sone’s XOR protocol is realized with only four input TC cards, 
thus using no additional cards [6]. 

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1} 

as the commitments. 

?  ? ?  ?
𝑎 𝑏

 

2. Permute the cards as follows. 

?  ? ?  ?
  

?  ? ?  ?

 

3. Make a random bisection cut. 

[ ?  ?    |   ?  ? ] 

4. Permute the cards as follows. The commitment after this 

permutation is represented by a bit 𝑟 that represents the 

result of the bisection cut in the previous step. 

?  ? ?  ?
  

?  ? ?  ?
𝑎 ⊕ 𝑟 𝑏 ⊕ 𝑟

 

5. Flip the cards at position 1. This does not reveal the value 

of 𝑎 because 𝑟 has been chosen randomly. If the cards at 

position 1 were the commitment to 0, then the cards at 

position 2 are the commitment to 𝑎 ⊕ 𝑏. If the cards at 

position 1 were the commitment to 1, then the cards at 

position 2 are the commitment to the complement to 𝑎 ⊕
𝑏. In this latter case, swap the cards at position 2, and we 

obtain the commitment to 𝑎 ⊕ 𝑏. 

① ②

♣  ♡ ?  ?

0 𝑎 ⊕ 𝑏

   or   

① ②

♣  ♡ ?  ?

1 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅

 

The protocol extracts one card from each commitment, 
combines them into one, makes a random bisection cut and 
returns them to their original placement (Steps 2-4). This 
operation adds a common random bit 𝑟 to the two input bits. 
This principle can be easily extended to the case where the 
input is more than two bits. For example, let 𝑎, 𝑏, 𝑐 ∈ {0,1} be 
the input bits and arrange the cards to represent the 
commitments of the three input bits. All commitments can be 
shuffled by dividing them into left and right bundles of cards 
to give them the random bit as well. Finally, the value of 𝑎 ⊕
𝑟 is checked, yielding the commitments to 𝑎 ⊕ 𝑏 and 𝑎 ⊕ 𝑐. 
If the value of 𝑏 and 𝑐 are 0, then 𝑎 ⊕ 𝑏 = 𝑎 and 𝑎 ⊕ 𝑐 = 𝑎. 
Therefore, two copies of the commitments to 𝑎  can be 
obtained while keeping the value of 𝑎 secret. 

III. CONVERSION TO UD PROTOCOLS 

Given an arbitrary UD protocol, it is clearly possible to 
construct a TC card protocol that is computationally 
equivalent to the given UD protocol [11]. Specifically, the 
commitment represented by one UD card is replaced by a pair 
of two TC cards representing the same commitment. Though 
there are some differences between the operations on the UD 
cards and those on the TC cards, a permutation on the UD 
cards can be converted to a permutation on the commitment 
of the TC cards, a rotate operation of a UD card can be 
converted to a swap operation of the two cards that constitute 
a commitment in the TC cards, and so on. 

If we were able to reverse the conversion from the UD 
protocol to the TC protocol, we could obtain an UD protocol 
that can be executed based on the same principles as the TC 
protocol with exactly half the number of cards. It is always 
possible to replace one card in the UD protocol with two cards 
in the TC protocol, while the converse is not always true. For 
example, in the TC protocol, it is possible for the shuffle or 
other operations to separate the two cards of a commitment 
that represent one bit. Obviously, such operations cannot be 
simulated with UD cards. It is strongly conjectured that the 
TC protocols can be converted to the UD protocol only if the 
TC protocols satisfy certain conditions. 

We name a TC protocol commitment-preserving if the 
protocol uses only the following four types of operations. 

1. Permutation that does not destroy the commitment 

2. Shuffle that does not destroy the commitment 

3. Flip operation that turns a card face up or face down 

4. NOT operation that exchanges the cards of the 

commitment 
Note that destroying the commitment means separating 

the two cards that are used to constitute a commitment of a 
single bit. For example, all the permutations in previous 
section’s protocols destroy the commitments, and reversing 
the order of even cards is one of the operations that do not 
destroy the commitments, tracing with UD cards. The 
permutation 1. Prohibits this kind of permutations, and the 
permutations that fulfill this condition 1. can be converted to 
a permutation and a rotation in the UD protocol. The shuffle 
of 2. can be converted to a shuffle that applies a permutation 
and a rotation in the UD protocol. The flip of 3. can face up 
one of two cards that constitute a commitment of a TC 
protocol. Another card of the commitment may not be opened, 
but the operation of opening a single card completely reveals 
the value of the commitment. Therefore, the flip of 3. brings 
the same effect as flipping two cards of a commitment of a TC 
protocol, which is simulated by a simple flip of a UD card 
representing the corresponding commitment. The NOT 
operation in 4. can be converted to a rotation of the cards in 
the UD protocol. 

For TC protocols, we can make use of KWH-tree 
developed by Koch, Walzer, and Härtel for verifying the 
security and the correctness [3]. However, the security and 
correctness of the converted UD protocol depend on the 
original TC protocol because this conversion only traces the 
original. 
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IV. UD CARDS PROTOCOLS 

A commitment-preserving protocol with TC cards can be 
converted to a protocol with half the number of UD cards, but 
many TC protocols do not satisfy those conditions. We can 
see that AND and XOR protocols, illustrated in Section Ⅱ, 
break the commitments by permutations and shuffles, and 
they cannot be converted to UD protocols in a naive manner. 
Fortunately, for the two protocols of AND and XOR, there are 
UD protocols that realize the same computation as the TC 
protocols with half the number of cards [5][12]. These UD 
protocols can lead to commitment-preserving AND and XOR 
protocols with TC cards. This implies that there are non-
commitment-preserving protocols that perform equivalent 
computations of commitment-preserving protocols. Therefore, 
we add these non-commitment-preserving protocols to the 
convertible operations. This section briefly introduces the UD 
cards AND and XOR protocols in [5][12]. 

A. UD cards AND Protocols with Three Cards 

Mizuki and Shizuya’s AND protocol [5] with UD cards 
is designed based on the same principle as the TC protocol in 
the previous section. The only difference is that a commitment 
consists of a single card, and we need just three cards to 
complete the computation. 

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1} 

as the commitments. The additional cards are also placed 

face down. 

𝑎 𝑏 0
 

2. Repeat a shuffle operation for an arbitrary time, where one 

shuffle operation consists of a rotation of the card at 

position 1 and a swapping of the cards at position 2 and 3. 

The commitments after shuffle are represented by a 

random bit 𝑟 ∈ {0,1}  corresponding to this shuffle as 

follows. 

① ②  ③

   

𝑎 ⊕ 𝑟 shift𝑟(0, 𝑏)

 

3. Flip the cards at position 1. The output position can be 

determined by 𝑎 ⊕ 𝑟 while keeping the value of 𝑎 secret. 

① ② ③

↓
0 𝑎 ∧ 𝑏  

   or   

① ② ③

↑

1 𝑎 ∧ 𝑏

 

Since the shuffle in Step 2 is difficult to perform, there is 
another protocol that is easy to implement [12]. 

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1} 

as the commitments. The additional cards are also placed 

face down. 

1 𝑎 𝑏
 

2. Shuffle the entire row of cards in a rotation, which is called 

a tornado shuffle. The value of each commitment is either 

of the following two results. In practice, we can use a 

device something like a turn-table to realize this suffle. 

1 𝑎 𝑏
   or   

𝑏̅ 𝑎̅ 0
 

3. Flip the card at position 2, which was a commitment to 

either of 𝑎 or 𝑎̅. If the opened value is 0, then take the card 

at position 1 and rotate it. If the opened value is 1, then 

take the card at position 3. 

① ② ③

↓

𝑎 ∧ 𝑏̅̅ ̅̅ ̅̅ ̅ 0  

   or   
① ② ③

↑
 1 𝑎 ∧ 𝑏

 

The TC cards AND protocol in Section Ⅱ creates 
commitments 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏 with six cards for the input bits 
𝑎, 𝑏 ∈ {0,1}. The UD cards AND protocol in this section, 
which uses the less realistic shuffle, is based on the same 
principle as the TC cards AND protocol, and it is obviously 
equivalent to the TC cards AND protocol. For the second 
protocol that uses a tornado shuffle in this section, we can 
confirm that the cards are arranged as 

↓

𝑎 ∧ 𝑏̅̅ ̅̅ ̅̅ ̅ 0 𝑎̅ ∧ 𝑏
   or   

↑

𝑎̅ ∧ 𝑏̅̅ ̅̅ ̅̅ ̅ 1 𝑎 ∧ 𝑏
    

after the protocol. Therefore, the equivalent computation to 
the TC protocol is realized. It can be said that the 
commitments to 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏 can be obtained with three 
cards together with the input for input bits 𝑎, 𝑏 ∈ {0,1}. It can 
also be confirmed that get𝑥(𝑦, 𝑧) can be computed for both 
UD protocols. Therefore, the AND protocols with TC cards in 
Section Ⅱ can be added to the convertible operations of 
commitment-preserving protocols in Section Ⅲ. 

B. UD cards XOR Protocol with Two Cards 

Mizuki and Shizuya’s XOR protocol with UD cards can 
be constructed according to the same principle as the TC cards 
case [5]. The protocol uses only two input cards, and no 
additional card is required. 

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1} 

as the commitments. 

𝑎 𝑏
 

2. The cards are shuffled by bundling them and rotating 

them. The commitment after this shuffle is represented by 

a random bit 𝑟 ∈ {0,1} as follows. 

𝑎 ⊕ 𝑟 𝑏 ⊕ 𝑟
 

3. Flip the cards at position 1. If it is 0, then the card at 

position 2 is the commitment to 𝑎 ⊕ 𝑏. If the opened card 

is 1, then the card at position 2 is the commitment to 

𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ . In the latter case, rotate the card at position 2 and 

we obtain the commitment to 𝑎 ⊕ 𝑏. 

① ②

↓

0 𝑎 ⊕ 𝑏

   or   

① ②

↑

1 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅
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This protocol can be extended for three or more input bits 
and used to obtain multiple copies of an input commitment as 
in the TC cards case. 

The UD cards XOR protocol in this section follows the 
same principle as the TC protocol. Then, it clearly achieves an 
equivalent computation with half the number of cards. 
Therefore, the XOR protocols with TC cards in Section Ⅱ can 
be added to the convertible operations of commitment-
preserving protocols in Section Ⅲ. 

 

V. EXAMPLE OF APPLICATIONS OF THE CONVERSION 

METHOD 

The conversion method described in the previous section 
can be applied to any commitment-preserving protocol. In this 
section, we demonstrate that TC card protocols for computing 
arbitrary Boolean function and symmetric functions are 
commitment-preserving, namely, they use only the operations 
that are listed in the previous section. This means that the TC 
protocols can be converted to protocols for UD cards, which 
brings efficient protocols for computing arbitrary Boolean 
functions and symmetric functions by using UD cards. 

   Note that all the permutations of the TC protocols 
discussed in this section are the operations of commitment-
conserving protocols.  

A. Preparation 

To efficiently compute the arbitrary Boolean function and 
the symmetric functions, an improved AND protocol and a 
half adder protocol have been developed [7]. 

The improved AND protocol produces two commitments, 
one for 𝑎 ∧ 𝑏 and one for 𝑏, for given three commitments to 
𝑎, 𝑏, and 0. The protocol is composed of the AND and XOR 
protocols in Section Ⅱ. 

1. For input bits 𝑎, 𝑏 ∈ {0,1}, use the AND protocol to the 

commitments to  𝑎, 𝑏, and 0, which yields the commit-

ments to 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏. 

?  ? ?  ? ♣  ♡
𝑎 𝑏 0

→
♣  ♡ ?  ? ?  ?

0 (or 1) 𝑎 ∧ 𝑏 𝑎̅ ∧ 𝑏
 

2. Use the XOR protocol to the commitments to 𝑎 ∧ 𝑏, 𝑎̅ ∧ 𝑏 

and 0 , which yields the commitments to (𝑎 ∧ 𝑏) ⊕
(𝑎̅ ∧ 𝑏) = 𝑏 and (𝑎 ∧ 𝑏) ⊕ 0 = 𝑎 ∧ 𝑏. 

?  ? ?  ? ♣  ♡
𝑎 ∧ 𝑏 𝑎̅ ∧ 𝑏 0

→
♣  ♡ ?  ? ?  ?

0 (or 1) 𝑎 ∧ 𝑏 𝑏
 

Notice that the two cards that were used as the 
commitment to 0 (or 1) after Step 1 can be used to encode 0 
in this second step, and hence the improved AND protocol is 
realized with six cards. Notice also that the AND and XOR 
protocols are used here. Thus, the improved AND protocol 
can be converted to an UD protocol. 

The half-adder protocol is composed of the XOR, NOT, 
and improved AND protocols. 

1. For input bits 𝑎, 𝑏 ∈ {0,1}, use the XOR protocol to the 

commitments to 𝑎 , 𝑏 , and 0, which yields the commit-

ments to 𝑎 ⊕ 𝑏 and 𝑎. 

?  ? ?  ? ♣  ♡
𝑎 𝑏 0

  →    
♣  ♡ ?  ? ?  ?

0 (or 1) 𝑎 ⊕ 𝑏 𝑎
 

2. The NOT protocol yields the commitment to 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ . 

3. The improved AND protocol yields the commitments to 

𝑎 ∧ (𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ ) = 𝑎 ∧ 𝑏  and 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ , where the two opened 

cards of Step 1 is reused to realize the improved AND 

protocol. 

?  ? ?  ? ♣  ♡

𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ 𝑎 0
  →    

♣  ♡ ?  ? ?  ?

0 (or 1) 𝑎 ∧ 𝑏 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅
 

4. The NOT protocol yields the commitments to 𝑎 ⊕ 𝑏. We 

now have the commitments to 𝑎 ∧ 𝑏 and 𝑎 ⊕ 𝑏. 

Notice that the protocol uses six cards, and that the half 
adder protocol is also the commitment-preserving protocol 
and can be converted to an UD protocol. 

B. Arbitrary 𝑛-variable Boolean Function 

A protocol for computing arbitrary 𝑛 -variable Boolean 
functions with 2𝑛 + 6 two-color cards is proposed by Nishida 
et al. [7]. The Boolean function, say 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) , is 
expressed as 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1𝑥2 ⋯ 𝑥𝑛𝑓(1,1, … ,1)

 ⊕ 𝑥1̅̅̅𝑥2 ⋯ 𝑥𝑛𝑓(0,1, … ,1)
 ⋮  
 ⊕ 𝑥1̅̅̅ 𝑥2̅̅ ̅ ⋯ 𝑥𝑛̅̅ ̅𝑓(0,0, … ,0)

 

from the Shannon expansion [9]. Remark that the values of 
the function 𝑓  in the right-hand side are either of 0  or 1 . 
Terms with 𝑓(⋅) = 0  dismisses from the expression while 
terms with 𝑓(⋅) = 1  brings the AND value of literals of 
𝑥1, … , 𝑥𝑛 . The entire function is therefore obtained as the 
XOR of the AND values of the literals that make the value of 
𝑓(⋅) = 1 . The protocol for computing 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  is 
described as follows. Use 2𝑛 cards to represent 𝑥1, 𝑥2, … , 𝑥𝑛 
as commitments, and additional six cards to represent three 
commitments to 0. Among the three commitments to 0, two 
are used as a working memory to compute an AND value of 
literals of 𝑥1, 𝑥2, … , 𝑥𝑛. The remaining one commitment to 0 
is used to record an intermediate value of the XOR of AND 
values. In the following description, only relevant 
commitments are shown in the explanation. 

1. Assume that 𝑓(1,1, … ,1) = 1. In this case, for input bits 

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ {0,1} , the commitment to 𝑥1𝑥2 ⋯ 𝑥𝑛  is 

created as follows while keeping the input commitments 

unchanged. 

a. Perform the XOR protocol for the commitments to 𝑥1 

and the two commitments of the working memory. The 

protocol yields the two commitments to 𝑥1 and two free 

cards. 

?  ? ♣  ♡ ♣  ♡
𝑥1 0 0

→
♣  ♡ ?  ? ?  ?

0 (or 1) 𝑥1 𝑥1

 

Open the two free cards and reformat the cards as a 

commitment to 0. This brings 2𝑛  cards for the 

commitments to 𝑥1, 𝑥2, … , 𝑥𝑛 , a pair of cards for the 

commitment to a copy of 𝑥1, a pair of cards for the 

commitment to 0 for the working memory and a pair of 
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cards (0 at this moment) to record the intermediate 

value. 

b. The improved AND protocol for the commitments to 

𝑥1, 𝑥2 and 0 yields the commitments to  𝑥1𝑥2, 𝑥2 and 

two free cards. 

?  ? ?  ? ♣  ♡
𝑥1 𝑥2 0

→
♣  ♡ ?  ? ?  ?

0 (or 1) 𝑥1𝑥2 𝑥2

 

Similarly to the previous step, we have a commitment 

to 𝑥1𝑥2 , to 0 for a working memory, and 0 for an 

intermediate value. 

c. Repeatedly use the improved AND protocols like b. 

operations, which yields the commitment to 𝑥1𝑥2 ⋯ 𝑥𝑛. 

These whole operations use four additional cards. 

Regard this commitment as an intermediate value, and 

we still have four free cards for two commitments to 0 

for working memory. 

2. Similarly, create a commitment to 𝑥1̅̅̅𝑥2 ⋯ 𝑥𝑛  if 

𝑓(0,1, … ,1) = 1. This operation uses four cards for the 

working memory. 

3. The XOR protocol yields the commitment to 

𝑥1𝑥2 ⋯ 𝑥𝑛 ⊕ 𝑥1̅̅̅𝑥2 ⋯ 𝑥𝑛 , which is regarded as an 

intermediate value. 

4. In the same way, create the commitment to the term that 

makes the value of 𝑓(⋅) = 1 while the input commitments 

are maintained, and the XOR protocol is repeated. Finally, 

the commitment to 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛)  is obtained at the 

commitment of the result of the XOR protocols. 

From the above, the protocol with 2𝑛 + 6 TC cards for 
any 𝑛-variable Boolean function is commitment-preserving 
and can thus be converted to a protocol with 𝑛 + 3 UD cards. 

C. Arbitrary 𝑛-variable Symmetric Boolean Function 

A Boolean function is said to be symmetric if its function 
value is invariant to the permutation of inputs, that is, 

𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛))  holds for an arbitrary 

permutation 𝜋. For a symmetric Boolean function, we have a 
TC protocol that uses only two extra cards rather than six 
[7][8]. 

The value of a symmetric Boolean function is irrelevant to 
the order of inputs. This implies that the function value is 
determined by the number of 1's contained in the input. 
Consequently, a symmetric Boolean function 𝑓  is 
characterized as 

𝑓(𝑥1, … , 𝑥𝑛) = 𝑔 (∑ 𝑥𝑖

𝑛

𝑖=1

) 

where 𝑔  is a mapping from {0, 1, … , 𝑛}  to {0, 1} . Such a 
mapping 𝑔 is further characterized by 𝑋 ⊆ {0, 1, … , 𝑛} where 
𝑋 is defined as 𝑋 = {𝑠|0 ≤ 𝑠 ≤ 𝑛, 𝑔(𝑠) = 1}. The number of 
subsets of {0, 1, … , 𝑛} is 2𝑛+1, and it is understood that the 
number of symmetric Boolean functions with 𝑛 inputs is 2𝑛+1. 
However, it is not necessary to consider all symmetric 
Boolean functions, since the negation of commitments can be 
easily performed. We will use NPN equivalence classes based 

on input-output negation and input reordering for the 
discussion that follows [9]. 

For 𝑛 ≤ 2, symmetric functions are obviously computed 
by a combination of the AND, XOR, and NOT protocols. 
These protocols use at most two additional cards. 

For 𝑛 = 3, symmetric function 𝑓  for input bits 𝑎, 𝑏, 𝑐 ∈
{0,1} is characterized by 

𝑆𝑋
3(𝑎, 𝑏, 𝑐) = {

1 (𝑎 + 𝑏 + 𝑐 ∈ 𝑋)

0 (otherwise)
. 

where 𝑋 ⊆ {0,1,2,3}. From the NPN equivalence class, the 
symmetric functions are limited to six patterns as follows 

[8][9]. For example, 𝑆{0,1,2,3}
3  can be computed by using the 

negation output of 𝑆∅
3. 

• 𝑆∅
3(𝑎, 𝑏, 𝑐) = 0 

• 𝑆{3}
3 (𝑎, 𝑏, 𝑐) = 𝑎 ∧ 𝑏 ∧ 𝑐 

• 𝑆{1,2}
3 (𝑎, 𝑏, 𝑐) = get𝑎⊕𝑏(𝑎 ⊕ 𝑐, 1) 

• 𝑆{1,3}
3 (𝑎, 𝑏, 𝑐) = 𝑎 ⊕ 𝑏 ⊕ 𝑐 

• 𝑆{2,3}
3 (𝑎, 𝑏, 𝑐) = get𝑎⊕𝑏(𝑎, 𝑐) 

• 𝑆{0,2,3}
3 (𝑎, 𝑏, 𝑐) = get𝑎⊕𝑏⊕𝑐(1, 𝑎 ∧ 𝑐)  

Each of them is constructed by XOR and AND protocols 
in TC cards. These patterns use at most two additional cards. 

When 𝑛 = 4, the value of ∑ 𝑥𝑖
4
𝑖=1  can be encoded in terms 

of 2(⌊log2 4⌋ + 1) = 6 cards by using the half adder protocol 
repeatedly. It uses two additional cards and yields four free 
cards. The function 𝑔 is defined as  

𝑔 (∑ 𝑥𝑖

4

𝑖=1

) = {
𝑔(4) (𝑠1 = 1)

𝑔′(𝑠2, 𝑠3) (𝑠1 = 0)
 

where (𝑠1, 𝑠2, 𝑠3)  is the bits of ∑ 𝑥𝑖
4
𝑖=1 . The function 

𝑔′(𝑠2, 𝑠3) is a Boolean function with the lower two bits of 
∑ 𝑥𝑖

4
𝑖=1  as inputs. This function can be computed with two 

additional cards (using free cards above). Then, it can be 

expressed as 𝑔(∑ 𝑥𝑖
4
𝑖=1 ) = get𝑠1(𝑔′(𝑠2, 𝑠3), 𝑔(4)), which is 

computed by the AND protocol. Thus, the whole protocol uses 
two additional cards. 

When 𝑛 ≥ 5, we define a function 𝑔 similarly. By the half 
adder protocol, the value of ∑ 𝑥𝑖

𝑛
𝑖=1  can be encoded by 

2(⌊log2 𝑛⌋ + 1) cards. Since the total number of cards used in 
the protocol is 2𝑛 + 2 , the number of cards not used to 
represent the value of ∑ 𝑥𝑖

𝑛
𝑖=1  is (2𝑛 + 2) − 2(⌊log2 𝑛⌋ +

1) = 2(𝑛 − ⌊log2 𝑛⌋) . From 𝑛 ≥ 5 , 2(𝑛 − ⌊log2 𝑛⌋) ≥ 6 , 
which is more than 6 cards, can be used freely. Then, by using 
these six cards as additional cards, 𝑔 can be computed using 
the protocol of this section. 

From the above, the protocol with 2𝑛 + 2 TC cards for 
any 𝑛-variable symmetric Boolean function is commitment-
preserving and can thus be converted to a protocol with 𝑛 + 1 
UD cards. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a general method to convert a 
TC protocol to an UD protocol by restricting the operations of 
the TC protocol. It is also shown that the TC protocols, which 
allow multi-party computation of arbitrary 𝑛-variable Boo-
lean function with 2𝑛 + 6  cards and 𝑛 -variable symmetric 
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functions with 2𝑛 + 2  cards, can be converted to an UD 
protocol with half the number of cards. 

We focused on the fact that the AND and XOR protocols 
on the UD cards can perform calculations equivalent to those 
on the TC protocols. Since UD protocols can be converted to 
TC protocols [11], there are the AND and XOR TC protocols 
not destroying commitments, which ignore the ease of 
operations. On the other hand, we did not mention anything 
about the possibility of converting other TC protocols that are 
not commitment-preserving. In fact, a TC protocol [10] that 
computes symmetric functions of 8 or more variables with 
only input cards, i.e., with no additional cards, has been 
proposed, but it has also been shown that AND computation 
is not possible on UD cards without additional cards [2]. Thus, 
the calculation cannot be converted to an UD protocol unless 
it has the commitment-preserving protocol. This gap between 
the two classes is being clarified. In addition, the minimum 
number of cards required for Boolean functions and 
symmetric functions as a computational capability of the TC 
protocols is still unresolved. Such studies are expected to 
contribute to the clear computational capability of TC 
protocols in the future. 
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