
General Conversion Scheme of Card-based Protocols for Two-colored Cards to

Updown Cards

Takumi Sakurai

Nagoya University

Nagoya, Japan

email: sakurai.takumi.j1@s.mail.nagoya-u.ac.jp

Yuichi Kaji

Nagoya University

Nagoya, Japan

email: kaji.yuichi.a0@f.mail.nagoya-u.ac.jp

Abstract—Besides the majorly investigated two-colored cards,

there are studies of card-based protocols that use updown cards

printed with rotationally asymmetric symbols. A card-based

protocol for updown cards is advantageous in making the

protocol simple and efficient, but not so much effort has been

made to develop updown card protocols, and not so much is

known about the relation between protocols for two-colored

cards and updown cards. In fact, the number of cards for

computing an arbitrary function is not known. This study

discusses the sufficient condition of two-colored cards protocols

under which the protocol can be converted for updown cards,

and describes the actual conversion procedure. With the

conversion, it is clarified that there are updown card protocols

that compute an arbitrary Boolean function with three

additional cards, and protocols that compute a symmetric

Boolean function with only one additional card.

Keywords-Card-based cryptography; Secure multi-party

computation; Updown cards.

I. INTRODUCTION

Card-based cryptography is a technique for secure multi-
party computation using physical cards [5][6][7][8][10][12].
Participants in a computation encode their input bits by using
cards with symbols, such as those on playing cards. The cards
are placed with their faces down so that the input bits are kept
secret. The cards are shuffled, permuted, and flipped
according to a specific rule. At the end, the participants learn
only the information corresponding to the computation's
output from the cards.

Card-based cryptography enables secure multi-party
computation without specialized knowledge or equipment,
such as a computer. Therefore, card-based cryptography is
regarded as an appealing material for the lectures of security
and zero-knowledge proof for puzzles [1][13]. On the other
hand, the procedure should be as simple as possible because
all operations must be performed manually by human
operators. Therefore, reducing the number of cards is an
important issue, and research has been conducted on the
minimum number of cards that are required to compute
meaningful functions and to solve other problems.

In card-based cryptography, we often consider using two-
colored cards (hereafter called TC cards) that are printed with

either “♣” or “♡” on their front and “?” on their back. A single

bit is encoded by a pair of cards placed so that

♣ ♡ = 0, ♡ ♣ = 1.

A commitment is a pair of face-down cards that encodes a
single bit according to the above encoding rule. In this paper,
the commitment to 𝑥 ∈ {0,1} is denoted as

? ?
𝑥

which represents nobody can see the faces of the cards. If a bit
value 𝑥 is represented as a commitment, then its negation 𝑥̅ is
easily obtained by swapping the places of the two cards of the
commitment.

We call a protocol the entire procedure of taking an input
in the form of a commitment, performing operations, such as
permutation, flip, and shuffle, and finally determining the
output from a sequence of cards. A protocol for TC cards in
this paper follows the Mizuki-Shizuya model [4], which
allows only these operations: permutation that rearranges the
position of the cards, flip that faces down or up the cards, and
shuffle that secretly and probabilistically applies the
permutation.

Protocols in which the output is obtained in the form of a
commitment are called committed-format protocols.
Committed-format protocols are important because they allow
us to construct complicated protocols from simpler ones. For
example, if we have committed-format protocols for basic
logical operations, such as AND, OR, and NOT and for
copying a Boolean value, then we can construct a committed-
format protocol for an arbitrary Boolean function. The result
of the function is obtained by opening the commitment of the
final result, and no information leaks out about the inputs and
the intermediate values that are used in the computation.

In addition to commonly studied TC cards, there is a
direction of studies of card-based cryptography that uses cards
of a single type. Such cards are called updown cards (hereafter
called UD cards) and assumed to have “↑” on the front and
“(blank)” on the back [5]. Let

↓ = 0, ↑ = 1

be the encoding of a single bit on these cards. For UD cards, a
commitment is defined as a single card representing a single
bit but its face down, and protocols are realized by performing
operations, such as the permutation, flip, shuffle (that applies
the permutations and rotations), and rotation that rotates a
card by 180 degrees and reverses the upside and the downside
of a card. The protocol for the logical NOT is realized by
simply rotating the commitment (a single card) of the input.

Generally speaking, protocols for UD cards require fewer
cards than protocols for TC cards. This is especially important
because cards are operated by a human. Besides the advantage

33Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

in efficiency, a smaller number of cards is favorable in
discussing the computational capabilities of the card-based
protocol. Since two TC cards are expressed by one UD card,
the number of possible combinations of cards can be reduced,
though the operation on UD cards are more complex than
those on TC cards. However, not so many investigations have
been made for protocols with UD cards, while TC cards are
eagerly studied. For example, there are TC protocols that can
safely compute arbitrary 𝑛-variable Boolean functions with
2𝑛 + 6 cards (2𝑛 cards for the commitments of 𝑛 bits and six
additional cards for “working memory”), and symmetric
functions with 2𝑛 + 2 cards [7]. On the other hand, no such
general protocol is known for UD cards. To promote the study
of UD protocols, it is convenient if we can transform a TC
protocol to a corresponding UD protocol. However, it is likely
that not all TC protocols can be transformed to UD protocols.

In this study, we illustrate a general method for converting
a TC protocol that satisfies certain constraints into an UD
protocol, where the latter uses half the number of cards of the
former. It is demonstrated that the TC protocols in [7] fulfill
the constraint described above. Consequently, our conversion
method brings UD protocols that compute arbitrary 𝑛-variable
Boolean function with 𝑛 + 3 cards and any 𝑛-variable sym-
metric function with 𝑛 + 1 cards. To avoid possible
misunderstanding, we remark that this study is a compilation
of many known results and protocols, rather than a proposal
of a novel protocol that is based on a new idea. The
compilation, however, indicates a strong relationship between
TC protocols and UD protocols, which has not been
recognized explicitly.

This paper is organized as follows. In Section Ⅱ, we
introduce AND and XOR protocols with TC cards. In Section
Ⅲ, we show the basic idea of converting TC protocols to UD
protocols. In Section Ⅳ, we introduce AND and XOR
protocols with UD cards, discussing equivalency to TC cards.
In Section Ⅴ, using converting constraints, we show the
example of convertible TC protocols. In Section Ⅵ, this paper
is concluded.

II. TC CARDS PROTOCOLS

This section reviews committed-format TC protocols that
realize computing AND and XOR of input bits.

A. TC Cards AND Protocol with Six Cards

For a pair of bits (𝑥, 𝑦) and a bit value 𝑖, we define the
functions “get” and “shift” as

get𝑖(𝑥, 𝑦) = {
𝑥 (𝑖 = 0),
𝑦 (𝑖 = 1),

shift𝑖(𝑥, 𝑦) = {
(𝑥, 𝑦) (𝑖 = 0),
(𝑦, 𝑥) (𝑖 = 1).

For an input bit 𝑎, 𝑏 ∈ {0,1}, the logical conjunction 𝑎 ∧ 𝑏

can be written as

𝑎 ∧ 𝑏 = get𝑎(0, 𝑏) = get𝑎⊕𝑟(shift𝑟(0, 𝑏))

with any bit 𝑟 ∈ {0,1} [8]. This principle describes

committed-format protocols for AND computation.
Mizuki and Sone’s AND protocol is realized with six TC

cards, including four cards for the commitments of two input
bits [6]. The protocol consists of the following five steps.

(Hereafter, card positions are given address numbers from left
to right for clarity.)

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1}

as the commitments placed at positions 1 and 3. The

additional two cards encode 0 and are placed face down at

position 2.

① ② ③

? ? ? ? ? ?
𝑎 0 𝑏

2. Permute the cards as follows.

? ? ? ? ? ?

? ? ? ? ? ?

3. Shuffle the cards in such a way that the left and right

halves of the cards are each bundled and randomly

swapped, which is called a random bisection cut and

denoted by [⋅ | ⋅]. In practice, we can use card sleeves or

clips and throw them to realize this shuffle.

[? ? ? | ? ? ?]

4. Permute the cards as follows.

? ? ? ? ? ?

? ? ? ? ? ?

If the random bisection cut in Step 3 does not change the

order of the cards, then this permutation cancels the

permutation in Step 2, resulting the commitments to 𝑎, 0,

and 𝑏 placed in this order from the left. If the random

bisection cut in the previous Step 3 changes the order of

the cards, then this permutation brings the commitment to

the negation of 𝑎, which is written as 𝑎 ⊕ 1, in position 1.

We can also confirm that the commitment to 𝑏 moves to

position 2 and the commitment to 0 moves to position 3,

and hence they swap their positions in the original order.

Summarizing the two cases, we have the commitments to

𝑎 ⊕ 𝑟 and shift𝑟(0, 𝑏) after the permutation of this step,

where 𝑟 = 0 and 1 represent the two different cases of the

random bisection cut in Step 3. The results is therefore

illustrated as

① ② ③

? ? ? ? ? ?

𝑎 ⊕ 𝑟 shift
𝑟(0, 𝑏)

.

5. Flip the cards at position 1 and open the commitment to

𝑎 ⊕ 𝑟 over. If 𝑎 ⊕ 𝑟 = 0, then the cards at positions 2

and 3 are the commitments to 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏, respective-

ly. If 𝑎 ⊕ 𝑟 = 1, then the cards at positions 2 and 3 are the

commitments to 𝑎̅ ∧ 𝑏 and 𝑎 ∧ 𝑏, respectively. Therefore,

the commitment to 𝑎 ∧ 𝑏 is obtained at position 2 if 𝑎 ⊕
𝑟 = 0, and at 3 if 𝑎 ⊕ 𝑟 = 1. Remark that opening 𝑎 ⊕ 𝑟

does not reveal the value of 𝑎 because 𝑟 is unknown.

① ② ③

♣ ♡ ? ? ? ?

0 𝑎 ∧ 𝑏 𝑎̅ ∧ 𝑏

 or
① ② ③

♡ ♣ ? ? ? ?

1 𝑎̅ ∧ 𝑏 𝑎 ∧ 𝑏

34Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

Given the commitments to 𝑎 , 0 , and 𝑏 , this protocol

computes 𝑎 ∧ 𝑏 = get𝑎(0, 𝑏) . If the commitments to

𝑥, 𝑦, 𝑧 ∈ {0,1} are provided instead of 𝑎, 0, and 𝑏, then this

same protocol computes get𝑥(𝑦, 𝑧).

B. TC Cards XOR Protocol with Four Cards

Here, we introduce committed-format protocols that
compute exclusive-or 𝑎 ⊕ 𝑏 for bits 𝑎, 𝑏 ∈ {0,1}. Mizuki and
Sone’s XOR protocol is realized with only four input TC cards,
thus using no additional cards [6].

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1}

as the commitments.

? ? ? ?
𝑎 𝑏

2. Permute the cards as follows.

? ? ? ?

? ? ? ?

3. Make a random bisection cut.

[? ? | ? ?]

4. Permute the cards as follows. The commitment after this

permutation is represented by a bit 𝑟 that represents the

result of the bisection cut in the previous step.

? ? ? ?

? ? ? ?
𝑎 ⊕ 𝑟 𝑏 ⊕ 𝑟

5. Flip the cards at position 1. This does not reveal the value

of 𝑎 because 𝑟 has been chosen randomly. If the cards at

position 1 were the commitment to 0, then the cards at

position 2 are the commitment to 𝑎 ⊕ 𝑏. If the cards at

position 1 were the commitment to 1, then the cards at

position 2 are the commitment to the complement to 𝑎 ⊕
𝑏. In this latter case, swap the cards at position 2, and we

obtain the commitment to 𝑎 ⊕ 𝑏.

① ②

♣ ♡ ? ?

0 𝑎 ⊕ 𝑏

 or

① ②

♣ ♡ ? ?

1 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅

The protocol extracts one card from each commitment,
combines them into one, makes a random bisection cut and
returns them to their original placement (Steps 2-4). This
operation adds a common random bit 𝑟 to the two input bits.
This principle can be easily extended to the case where the
input is more than two bits. For example, let 𝑎, 𝑏, 𝑐 ∈ {0,1} be
the input bits and arrange the cards to represent the
commitments of the three input bits. All commitments can be
shuffled by dividing them into left and right bundles of cards
to give them the random bit as well. Finally, the value of 𝑎 ⊕
𝑟 is checked, yielding the commitments to 𝑎 ⊕ 𝑏 and 𝑎 ⊕ 𝑐.
If the value of 𝑏 and 𝑐 are 0, then 𝑎 ⊕ 𝑏 = 𝑎 and 𝑎 ⊕ 𝑐 = 𝑎.
Therefore, two copies of the commitments to 𝑎 can be
obtained while keeping the value of 𝑎 secret.

III. CONVERSION TO UD PROTOCOLS

Given an arbitrary UD protocol, it is clearly possible to
construct a TC card protocol that is computationally
equivalent to the given UD protocol [11]. Specifically, the
commitment represented by one UD card is replaced by a pair
of two TC cards representing the same commitment. Though
there are some differences between the operations on the UD
cards and those on the TC cards, a permutation on the UD
cards can be converted to a permutation on the commitment
of the TC cards, a rotate operation of a UD card can be
converted to a swap operation of the two cards that constitute
a commitment in the TC cards, and so on.

If we were able to reverse the conversion from the UD
protocol to the TC protocol, we could obtain an UD protocol
that can be executed based on the same principles as the TC
protocol with exactly half the number of cards. It is always
possible to replace one card in the UD protocol with two cards
in the TC protocol, while the converse is not always true. For
example, in the TC protocol, it is possible for the shuffle or
other operations to separate the two cards of a commitment
that represent one bit. Obviously, such operations cannot be
simulated with UD cards. It is strongly conjectured that the
TC protocols can be converted to the UD protocol only if the
TC protocols satisfy certain conditions.

We name a TC protocol commitment-preserving if the
protocol uses only the following four types of operations.

1. Permutation that does not destroy the commitment

2. Shuffle that does not destroy the commitment

3. Flip operation that turns a card face up or face down

4. NOT operation that exchanges the cards of the

commitment
Note that destroying the commitment means separating

the two cards that are used to constitute a commitment of a
single bit. For example, all the permutations in previous
section’s protocols destroy the commitments, and reversing
the order of even cards is one of the operations that do not
destroy the commitments, tracing with UD cards. The
permutation 1. Prohibits this kind of permutations, and the
permutations that fulfill this condition 1. can be converted to
a permutation and a rotation in the UD protocol. The shuffle
of 2. can be converted to a shuffle that applies a permutation
and a rotation in the UD protocol. The flip of 3. can face up
one of two cards that constitute a commitment of a TC
protocol. Another card of the commitment may not be opened,
but the operation of opening a single card completely reveals
the value of the commitment. Therefore, the flip of 3. brings
the same effect as flipping two cards of a commitment of a TC
protocol, which is simulated by a simple flip of a UD card
representing the corresponding commitment. The NOT
operation in 4. can be converted to a rotation of the cards in
the UD protocol.

For TC protocols, we can make use of KWH-tree
developed by Koch, Walzer, and Härtel for verifying the
security and the correctness [3]. However, the security and
correctness of the converted UD protocol depend on the
original TC protocol because this conversion only traces the
original.

35Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

IV. UD CARDS PROTOCOLS

A commitment-preserving protocol with TC cards can be
converted to a protocol with half the number of UD cards, but
many TC protocols do not satisfy those conditions. We can
see that AND and XOR protocols, illustrated in Section Ⅱ,
break the commitments by permutations and shuffles, and
they cannot be converted to UD protocols in a naive manner.
Fortunately, for the two protocols of AND and XOR, there are
UD protocols that realize the same computation as the TC
protocols with half the number of cards [5][12]. These UD
protocols can lead to commitment-preserving AND and XOR
protocols with TC cards. This implies that there are non-
commitment-preserving protocols that perform equivalent
computations of commitment-preserving protocols. Therefore,
we add these non-commitment-preserving protocols to the
convertible operations. This section briefly introduces the UD
cards AND and XOR protocols in [5][12].

A. UD cards AND Protocols with Three Cards

Mizuki and Shizuya’s AND protocol [5] with UD cards
is designed based on the same principle as the TC protocol in
the previous section. The only difference is that a commitment
consists of a single card, and we need just three cards to
complete the computation.

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1}

as the commitments. The additional cards are also placed

face down.

𝑎 𝑏 0

2. Repeat a shuffle operation for an arbitrary time, where one

shuffle operation consists of a rotation of the card at

position 1 and a swapping of the cards at position 2 and 3.

The commitments after shuffle are represented by a

random bit 𝑟 ∈ {0,1} corresponding to this shuffle as

follows.

① ② ③

𝑎 ⊕ 𝑟 shift𝑟(0, 𝑏)

3. Flip the cards at position 1. The output position can be

determined by 𝑎 ⊕ 𝑟 while keeping the value of 𝑎 secret.

① ② ③

↓
0 𝑎 ∧ 𝑏

 or

① ② ③

↑

1 𝑎 ∧ 𝑏

Since the shuffle in Step 2 is difficult to perform, there is
another protocol that is easy to implement [12].

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1}

as the commitments. The additional cards are also placed

face down.

1 𝑎 𝑏

2. Shuffle the entire row of cards in a rotation, which is called

a tornado shuffle. The value of each commitment is either

of the following two results. In practice, we can use a

device something like a turn-table to realize this suffle.

1 𝑎 𝑏
 or

𝑏̅ 𝑎̅ 0

3. Flip the card at position 2, which was a commitment to

either of 𝑎 or 𝑎̅. If the opened value is 0, then take the card

at position 1 and rotate it. If the opened value is 1, then

take the card at position 3.

① ② ③

↓

𝑎 ∧ 𝑏̅̅ ̅̅ ̅̅ ̅ 0

 or
① ② ③

↑
 1 𝑎 ∧ 𝑏

The TC cards AND protocol in Section Ⅱ creates
commitments 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏 with six cards for the input bits
𝑎, 𝑏 ∈ {0,1}. The UD cards AND protocol in this section,
which uses the less realistic shuffle, is based on the same
principle as the TC cards AND protocol, and it is obviously
equivalent to the TC cards AND protocol. For the second
protocol that uses a tornado shuffle in this section, we can
confirm that the cards are arranged as

↓

𝑎 ∧ 𝑏̅̅ ̅̅ ̅̅ ̅ 0 𝑎̅ ∧ 𝑏
 or

↑

𝑎̅ ∧ 𝑏̅̅ ̅̅ ̅̅ ̅ 1 𝑎 ∧ 𝑏

after the protocol. Therefore, the equivalent computation to
the TC protocol is realized. It can be said that the
commitments to 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏 can be obtained with three
cards together with the input for input bits 𝑎, 𝑏 ∈ {0,1}. It can
also be confirmed that get𝑥(𝑦, 𝑧) can be computed for both
UD protocols. Therefore, the AND protocols with TC cards in
Section Ⅱ can be added to the convertible operations of
commitment-preserving protocols in Section Ⅲ.

B. UD cards XOR Protocol with Two Cards

Mizuki and Shizuya’s XOR protocol with UD cards can
be constructed according to the same principle as the TC cards
case [5]. The protocol uses only two input cards, and no
additional card is required.

1. The cards are arranged as follows, with input 𝑎, 𝑏 ∈ {0,1}

as the commitments.

𝑎 𝑏

2. The cards are shuffled by bundling them and rotating

them. The commitment after this shuffle is represented by

a random bit 𝑟 ∈ {0,1} as follows.

𝑎 ⊕ 𝑟 𝑏 ⊕ 𝑟

3. Flip the cards at position 1. If it is 0, then the card at

position 2 is the commitment to 𝑎 ⊕ 𝑏. If the opened card

is 1, then the card at position 2 is the commitment to

𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ . In the latter case, rotate the card at position 2 and

we obtain the commitment to 𝑎 ⊕ 𝑏.

① ②

↓

0 𝑎 ⊕ 𝑏

 or

① ②

↑

1 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅

36Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

This protocol can be extended for three or more input bits
and used to obtain multiple copies of an input commitment as
in the TC cards case.

The UD cards XOR protocol in this section follows the
same principle as the TC protocol. Then, it clearly achieves an
equivalent computation with half the number of cards.
Therefore, the XOR protocols with TC cards in Section Ⅱ can
be added to the convertible operations of commitment-
preserving protocols in Section Ⅲ.

V. EXAMPLE OF APPLICATIONS OF THE CONVERSION

METHOD

The conversion method described in the previous section
can be applied to any commitment-preserving protocol. In this
section, we demonstrate that TC card protocols for computing
arbitrary Boolean function and symmetric functions are
commitment-preserving, namely, they use only the operations
that are listed in the previous section. This means that the TC
protocols can be converted to protocols for UD cards, which
brings efficient protocols for computing arbitrary Boolean
functions and symmetric functions by using UD cards.

 Note that all the permutations of the TC protocols
discussed in this section are the operations of commitment-
conserving protocols.

A. Preparation

To efficiently compute the arbitrary Boolean function and
the symmetric functions, an improved AND protocol and a
half adder protocol have been developed [7].

The improved AND protocol produces two commitments,
one for 𝑎 ∧ 𝑏 and one for 𝑏, for given three commitments to
𝑎, 𝑏, and 0. The protocol is composed of the AND and XOR
protocols in Section Ⅱ.

1. For input bits 𝑎, 𝑏 ∈ {0,1}, use the AND protocol to the

commitments to 𝑎, 𝑏, and 0, which yields the commit-

ments to 𝑎 ∧ 𝑏 and 𝑎̅ ∧ 𝑏.

? ? ? ? ♣ ♡
𝑎 𝑏 0

→
♣ ♡ ? ? ? ?

0 (or 1) 𝑎 ∧ 𝑏 𝑎̅ ∧ 𝑏

2. Use the XOR protocol to the commitments to 𝑎 ∧ 𝑏, 𝑎̅ ∧ 𝑏

and 0 , which yields the commitments to (𝑎 ∧ 𝑏) ⊕
(𝑎̅ ∧ 𝑏) = 𝑏 and (𝑎 ∧ 𝑏) ⊕ 0 = 𝑎 ∧ 𝑏.

? ? ? ? ♣ ♡
𝑎 ∧ 𝑏 𝑎̅ ∧ 𝑏 0

→
♣ ♡ ? ? ? ?

0 (or 1) 𝑎 ∧ 𝑏 𝑏

Notice that the two cards that were used as the
commitment to 0 (or 1) after Step 1 can be used to encode 0
in this second step, and hence the improved AND protocol is
realized with six cards. Notice also that the AND and XOR
protocols are used here. Thus, the improved AND protocol
can be converted to an UD protocol.

The half-adder protocol is composed of the XOR, NOT,
and improved AND protocols.

1. For input bits 𝑎, 𝑏 ∈ {0,1}, use the XOR protocol to the

commitments to 𝑎 , 𝑏 , and 0, which yields the commit-

ments to 𝑎 ⊕ 𝑏 and 𝑎.

? ? ? ? ♣ ♡
𝑎 𝑏 0

 →
♣ ♡ ? ? ? ?

0 (or 1) 𝑎 ⊕ 𝑏 𝑎

2. The NOT protocol yields the commitment to 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ .

3. The improved AND protocol yields the commitments to

𝑎 ∧ (𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅) = 𝑎 ∧ 𝑏 and 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ , where the two opened

cards of Step 1 is reused to realize the improved AND

protocol.

? ? ? ? ♣ ♡

𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅ 𝑎 0
 →

♣ ♡ ? ? ? ?

0 (or 1) 𝑎 ∧ 𝑏 𝑎 ⊕ 𝑏̅̅ ̅̅ ̅̅ ̅̅

4. The NOT protocol yields the commitments to 𝑎 ⊕ 𝑏. We

now have the commitments to 𝑎 ∧ 𝑏 and 𝑎 ⊕ 𝑏.

Notice that the protocol uses six cards, and that the half
adder protocol is also the commitment-preserving protocol
and can be converted to an UD protocol.

B. Arbitrary 𝑛-variable Boolean Function

A protocol for computing arbitrary 𝑛 -variable Boolean
functions with 2𝑛 + 6 two-color cards is proposed by Nishida
et al. [7]. The Boolean function, say 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) , is
expressed as

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥1𝑥2 ⋯ 𝑥𝑛𝑓(1,1, … ,1)

 ⊕ 𝑥1̅̅̅𝑥2 ⋯ 𝑥𝑛𝑓(0,1, … ,1)
 ⋮
 ⊕ 𝑥1̅̅̅ 𝑥2̅̅ ̅ ⋯ 𝑥𝑛̅̅ ̅𝑓(0,0, … ,0)

from the Shannon expansion [9]. Remark that the values of
the function 𝑓 in the right-hand side are either of 0 or 1 .
Terms with 𝑓(⋅) = 0 dismisses from the expression while
terms with 𝑓(⋅) = 1 brings the AND value of literals of
𝑥1, … , 𝑥𝑛 . The entire function is therefore obtained as the
XOR of the AND values of the literals that make the value of
𝑓(⋅) = 1 . The protocol for computing 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is
described as follows. Use 2𝑛 cards to represent 𝑥1, 𝑥2, … , 𝑥𝑛
as commitments, and additional six cards to represent three
commitments to 0. Among the three commitments to 0, two
are used as a working memory to compute an AND value of
literals of 𝑥1, 𝑥2, … , 𝑥𝑛. The remaining one commitment to 0
is used to record an intermediate value of the XOR of AND
values. In the following description, only relevant
commitments are shown in the explanation.

1. Assume that 𝑓(1,1, … ,1) = 1. In this case, for input bits

𝑥1, 𝑥2, … , 𝑥𝑛 ∈ {0,1} , the commitment to 𝑥1𝑥2 ⋯ 𝑥𝑛 is

created as follows while keeping the input commitments

unchanged.

a. Perform the XOR protocol for the commitments to 𝑥1

and the two commitments of the working memory. The

protocol yields the two commitments to 𝑥1 and two free

cards.

? ? ♣ ♡ ♣ ♡
𝑥1 0 0

→
♣ ♡ ? ? ? ?

0 (or 1) 𝑥1 𝑥1

Open the two free cards and reformat the cards as a

commitment to 0. This brings 2𝑛 cards for the

commitments to 𝑥1, 𝑥2, … , 𝑥𝑛 , a pair of cards for the

commitment to a copy of 𝑥1, a pair of cards for the

commitment to 0 for the working memory and a pair of

37Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

cards (0 at this moment) to record the intermediate

value.

b. The improved AND protocol for the commitments to

𝑥1, 𝑥2 and 0 yields the commitments to 𝑥1𝑥2, 𝑥2 and

two free cards.

? ? ? ? ♣ ♡
𝑥1 𝑥2 0

→
♣ ♡ ? ? ? ?

0 (or 1) 𝑥1𝑥2 𝑥2

Similarly to the previous step, we have a commitment

to 𝑥1𝑥2 , to 0 for a working memory, and 0 for an

intermediate value.

c. Repeatedly use the improved AND protocols like b.

operations, which yields the commitment to 𝑥1𝑥2 ⋯ 𝑥𝑛.

These whole operations use four additional cards.

Regard this commitment as an intermediate value, and

we still have four free cards for two commitments to 0

for working memory.

2. Similarly, create a commitment to 𝑥1̅̅̅𝑥2 ⋯ 𝑥𝑛 if

𝑓(0,1, … ,1) = 1. This operation uses four cards for the

working memory.

3. The XOR protocol yields the commitment to

𝑥1𝑥2 ⋯ 𝑥𝑛 ⊕ 𝑥1̅̅̅𝑥2 ⋯ 𝑥𝑛 , which is regarded as an

intermediate value.

4. In the same way, create the commitment to the term that

makes the value of 𝑓(⋅) = 1 while the input commitments

are maintained, and the XOR protocol is repeated. Finally,

the commitment to 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) is obtained at the

commitment of the result of the XOR protocols.

From the above, the protocol with 2𝑛 + 6 TC cards for
any 𝑛-variable Boolean function is commitment-preserving
and can thus be converted to a protocol with 𝑛 + 3 UD cards.

C. Arbitrary 𝑛-variable Symmetric Boolean Function

A Boolean function is said to be symmetric if its function
value is invariant to the permutation of inputs, that is,

𝑓(𝑥1, … , 𝑥𝑛) = 𝑓(𝑥𝜋(1), … , 𝑥𝜋(𝑛)) holds for an arbitrary

permutation 𝜋. For a symmetric Boolean function, we have a
TC protocol that uses only two extra cards rather than six
[7][8].

The value of a symmetric Boolean function is irrelevant to
the order of inputs. This implies that the function value is
determined by the number of 1's contained in the input.
Consequently, a symmetric Boolean function 𝑓 is
characterized as

𝑓(𝑥1, … , 𝑥𝑛) = 𝑔 (∑ 𝑥𝑖

𝑛

𝑖=1

)

where 𝑔 is a mapping from {0, 1, … , 𝑛} to {0, 1} . Such a
mapping 𝑔 is further characterized by 𝑋 ⊆ {0, 1, … , 𝑛} where
𝑋 is defined as 𝑋 = {𝑠|0 ≤ 𝑠 ≤ 𝑛, 𝑔(𝑠) = 1}. The number of
subsets of {0, 1, … , 𝑛} is 2𝑛+1, and it is understood that the
number of symmetric Boolean functions with 𝑛 inputs is 2𝑛+1.
However, it is not necessary to consider all symmetric
Boolean functions, since the negation of commitments can be
easily performed. We will use NPN equivalence classes based

on input-output negation and input reordering for the
discussion that follows [9].

For 𝑛 ≤ 2, symmetric functions are obviously computed
by a combination of the AND, XOR, and NOT protocols.
These protocols use at most two additional cards.

For 𝑛 = 3, symmetric function 𝑓 for input bits 𝑎, 𝑏, 𝑐 ∈
{0,1} is characterized by

𝑆𝑋
3(𝑎, 𝑏, 𝑐) = {

1 (𝑎 + 𝑏 + 𝑐 ∈ 𝑋)

0 (otherwise)
.

where 𝑋 ⊆ {0,1,2,3}. From the NPN equivalence class, the
symmetric functions are limited to six patterns as follows

[8][9]. For example, 𝑆{0,1,2,3}
3 can be computed by using the

negation output of 𝑆∅
3.

• 𝑆∅
3(𝑎, 𝑏, 𝑐) = 0

• 𝑆{3}
3 (𝑎, 𝑏, 𝑐) = 𝑎 ∧ 𝑏 ∧ 𝑐

• 𝑆{1,2}
3 (𝑎, 𝑏, 𝑐) = get𝑎⊕𝑏(𝑎 ⊕ 𝑐, 1)

• 𝑆{1,3}
3 (𝑎, 𝑏, 𝑐) = 𝑎 ⊕ 𝑏 ⊕ 𝑐

• 𝑆{2,3}
3 (𝑎, 𝑏, 𝑐) = get𝑎⊕𝑏(𝑎, 𝑐)

• 𝑆{0,2,3}
3 (𝑎, 𝑏, 𝑐) = get𝑎⊕𝑏⊕𝑐(1, 𝑎 ∧ 𝑐)

Each of them is constructed by XOR and AND protocols
in TC cards. These patterns use at most two additional cards.

When 𝑛 = 4, the value of ∑ 𝑥𝑖
4
𝑖=1 can be encoded in terms

of 2(⌊log2 4⌋ + 1) = 6 cards by using the half adder protocol
repeatedly. It uses two additional cards and yields four free
cards. The function 𝑔 is defined as

𝑔 (∑ 𝑥𝑖

4

𝑖=1

) = {
𝑔(4) (𝑠1 = 1)

𝑔′(𝑠2, 𝑠3) (𝑠1 = 0)

where (𝑠1, 𝑠2, 𝑠3) is the bits of ∑ 𝑥𝑖
4
𝑖=1 . The function

𝑔′(𝑠2, 𝑠3) is a Boolean function with the lower two bits of
∑ 𝑥𝑖

4
𝑖=1 as inputs. This function can be computed with two

additional cards (using free cards above). Then, it can be

expressed as 𝑔(∑ 𝑥𝑖
4
𝑖=1) = get𝑠1(𝑔′(𝑠2, 𝑠3), 𝑔(4)), which is

computed by the AND protocol. Thus, the whole protocol uses
two additional cards.

When 𝑛 ≥ 5, we define a function 𝑔 similarly. By the half
adder protocol, the value of ∑ 𝑥𝑖

𝑛
𝑖=1 can be encoded by

2(⌊log2 𝑛⌋ + 1) cards. Since the total number of cards used in
the protocol is 2𝑛 + 2 , the number of cards not used to
represent the value of ∑ 𝑥𝑖

𝑛
𝑖=1 is (2𝑛 + 2) − 2(⌊log2 𝑛⌋ +

1) = 2(𝑛 − ⌊log2 𝑛⌋) . From 𝑛 ≥ 5 , 2(𝑛 − ⌊log2 𝑛⌋) ≥ 6 ,
which is more than 6 cards, can be used freely. Then, by using
these six cards as additional cards, 𝑔 can be computed using
the protocol of this section.

From the above, the protocol with 2𝑛 + 2 TC cards for
any 𝑛-variable symmetric Boolean function is commitment-
preserving and can thus be converted to a protocol with 𝑛 + 1
UD cards.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a general method to convert a
TC protocol to an UD protocol by restricting the operations of
the TC protocol. It is also shown that the TC protocols, which
allow multi-party computation of arbitrary 𝑛-variable Boo-
lean function with 2𝑛 + 6 cards and 𝑛 -variable symmetric

38Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

functions with 2𝑛 + 2 cards, can be converted to an UD
protocol with half the number of cards.

We focused on the fact that the AND and XOR protocols
on the UD cards can perform calculations equivalent to those
on the TC protocols. Since UD protocols can be converted to
TC protocols [11], there are the AND and XOR TC protocols
not destroying commitments, which ignore the ease of
operations. On the other hand, we did not mention anything
about the possibility of converting other TC protocols that are
not commitment-preserving. In fact, a TC protocol [10] that
computes symmetric functions of 8 or more variables with
only input cards, i.e., with no additional cards, has been
proposed, but it has also been shown that AND computation
is not possible on UD cards without additional cards [2]. Thus,
the calculation cannot be converted to an UD protocol unless
it has the commitment-preserving protocol. This gap between
the two classes is being clarified. In addition, the minimum
number of cards required for Boolean functions and
symmetric functions as a computational capability of the TC
protocols is still unresolved. Such studies are expected to
contribute to the clear computational capability of TC
protocols in the future.

REFERENCES

[1] R. Gradwohl, M. Naor, B. Pinkas, and G. N. Rothblum,
“Cryptographic and physical zero-knowledge proof systems
for solutions of sudoku puzzles,” Internatinal Conference on
Fun with Algorithms, pp. 166–182, 2007.

[2] S. Iino, Y. Li, K. Sakiyama, and D. Miyahara, “On the
impossibility of n-card and protocols,” 42nd Symposium on
Cryptography and Information Security, 4D2-3, 2025 (in
Japanese).

[3] A. Koch, S. Walzer, and K. Härtel, “Card-based cryptographic
protocols using a minimal number of cards,” International
Conference on the Theory and Application of Cryptology and
Information Security, pp. 783–807, 2015.

[4] T. Mizuki and H. Shizuya, “A formalization of card-based
cryptographic protocols via abstract machine,” International
Journal of Information Security, 13, pp. 15–23, 2014.

[5] T. Mizuki and H. Shizuya, “Practical card-based cryptography,”
International Conference on Fun with Algorithms, pp. 313–324,
2014.

[6] T. Mizuki and H. Sone, “Six-card secure and and four-card
secure xor,” International Workshop on Frontiers in
Algorithmics, pp. 358–369, 2009.

[7] T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone, “Card-based
protocols for any boolean function,” 12th Annual Conference
on Theory and Applications of Models of Computation, pp.
110–121, 2015.

[8] T. Nishida, T. Mizuki, and H. Sone, “Securely computing the
three-input majority function with eight cards,” Second
International Conference on Theory and Practice of Natural
Computing, pp. 193–204, 2013.

[9] T. Sasao, “Switching theory for logic synthesis,” Kluwer
Academic Publishers, 1999.

[10] H. Shikata, K. Toyoda, D. Miyahara, and T. Mizuki, “Card-
minimal protocols for symmetric boolean functions of more
than seven inputs,” International Colloquium on Theoretical
Aspect of Computing, pp. 388–406, 2022 (in Japanese).

[11] K. Shinagawa, “Card types and encodings of card-based
cryptography,” presentation slide, Organizing Mathematical
Unsolved and New Problems in Card-based Cryptography
through Industry-academia Collaboration. [Online]. Available
from: https://joint.imi.kyushu-u.ac.jp/wp-
content/uploads/2023/06/IMI_shinagawa.pdf (accessed 2025-
07-03) (in Japanese)

[12] K. Shinagawa, K. Nuida, T. Nishide, G. Hanaoka, and E.
Okamoto, “Committed AND protocol using three cards with
more handy shuffle,” 2016 International Symposium on
Information Theory and Its Applications, pp. 700–702, 2016.

[13] K. Shinagawa, “A report on a lecture for elementary and junior
high school using card-based cryptography,” 39th Symposium
on Cryptography and Information Security, 2F4-4, 2022 (in
Japanese).

39Copyright (c) IARIA, 2025. ISBN: 978-1-68558-306-4

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SECURWARE 2025 : The Nineteenth International Conference on Emerging Security Information, Systems and Technologies

https://joint.imi.kyushu-u.ac.jp/wp-content/uploads/2023/06/IMI_shinagawa.pd
https://joint.imi.kyushu-u.ac.jp/wp-content/uploads/2023/06/IMI_shinagawa.pd

