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Abstract—Password-Authenticated Key Exchange (PAKE) pro-
tocols are critical for secure password-based authentication in
various applications, including wireless networking, cloud services,
secure messaging, and Internet of Things (IoT) ecosystems. This
paper presents a systematic performance evaluation of classical
and post-quantum PAKE protocols on a mobile platform, using
a Google Pixel 7 Pro running Android 16. We implement a
representative set of balanced PAKEs as well as augmented
PAKEs. All schemes are implemented in Kotlin/Java using the
Bouncy Castle cryptographic provider and evaluated using the
Android Jetpack Benchmarking suite under controlled conditions.
Our analysis reveals that post-quantum schemes, such as One-
Way Key Encapsulation Method to PAKE (OCAKE) and an
augmented PAKE scheme based on OCAKE, offer competitive or
superior computational performance compared to their classical
counterparts, while incurring significantly larger message sizes.
We further identify mapping functions, cryptographic primitives,
and protocol types as key factors influencing execution time.
These results highlight the feasibility of deploying post-quantum
PAKEs on constrained mobile devices and provide a benchmark
for future optimizations. Future work will examine the impact
of hardware acceleration and energy efficiency trade-offs for
real-world deployment.

Keywords-PAKE; post-quantum cryptography; Android; password-
based authentication; mobile security.

I. INTRODUCTION

Typical credentials for authentication are passwords. They
can be remembered and typed in by humans on various input
devices. In terms of security, however, they are commonly easier
to guess or to brute-force than cryptographic keys. Password-
Authenticated Key Exchange (PAKE) schemes address this
issue. They are interactive protocols for two or more parties
to generate a joint session key based on a shared password.
An adversary eavesdropping on the connection cannot discover
the password. Active attacks are, in the best case, limited to
one possible password guess per protocol run.

Hence, PAKE schemes can improve security in various
cases of password use. For example, a PAKE is employed
for password-based authentication in Wireless Fidelity (Wi-Fi)
networks [1] and the Matter protocol [2]. Different applications,
including 1Password [3] and messengers, such as WhatsApp [4]
and Facebook Messenger [5] make use of such schemes.
Furthermore, Apple relies on PAKE protocols for HomeKit
device enrollment [6], iCloud Keychain escrow [7], and in the
Car Key pairing process [8].

However, the PAKE schemes that are used in practical
applications rely on the discrete logarithm problem, its elliptic-
curve variant, or similar problems. As these problems cannot
be considered secure in the presence of cryptographically

relevant quantum computers, new protocols are required in
this regard. Potential solutions are generic ways to transfer
primitives, such as Key Encapsulation Mechanisms (KEMs)
into secure PAKE protocols [9]. The resulting OCAKE scheme
was recently implemented by Alnahawi et al. on SmartMX3
P71D600 smart card [10]. Lyu et al. published a method to
transfer such schemes in asymmetric or augmented PAKE
schemes to transfer a balanced PAKE scheme, where both
parties know the password, in a client-server setting [11]. The
authors also applied their method to lattice-based schemes,
yielding lattice-based post-quantum-secure protocols.

In general, the design and analysis of PAKE schemes is an
ongoing effort. The work of Alnahawi et al. lists 30 balanced
schemes and 19 augmented schemes that have been published
since 2015 [12]. They come with different security proofs and
various levels of analysis by other researchers. Several also
provide benchmark figures for their specific implementations.

In this paper, PAKES with known real-world applications
are implemented for Android devices and their performance is
measured and compared. In particular, we selected Dragonfly as
a balanced PAKE scheme for its use in Wi-Fi Protected Access
3 (WPA3), Password-Authenticated Connection Establishment
(PACE) as implemented in travel documents, and CPACE as it
is used by Facebook Messenger. We implemented the One-Way
Key Encapsulation Method to PAKE (OCAKE) scheme, using
Module-Lattice Key Encapsulation Mechanism (ML-KEM) and,
for comparison, One-Way Key Encapsulation Method (OEKE)
to also include post-quantum-secure schemes.

For augmented schemes, the Secure Remote Password (SRP)
protocol was chosen due to the possibility of integration
with Transport Layer Security (TLS) [13] and its use with
1Password. In addition, SPAKE2+, together with its balanced
version SPAKE2, was selected as it is used by Apple Homekit,
Apple Car Key, and the Matter protocol. We also applied the
transformation of Lyu et al. to OCAKE, to evaluate a post-
quantum-secure augmented PAKE scheme.

The remainder of the paper is organized as follows. Section II
gives a brief overview of the implemented PAKE schemes and
their properties. The details of the test setup are given in
Section III, before the results, together with implementation-
specific choices, are presented in Section IV. Conclusions are
drawn in Section V.

II. PAKE SCHEMES

Details on how a PAKE achieves its objective of agreeing
on a strong cryptographic key based on a shared password
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Client Server
x ∈R [1, q − 1] y ∈R [1, q − 1]

X = xP X Y = yP

Y ′ = Encpwd(Y )

Y ′

Y = Decpwd(Y
′)

K = xY K = yX

Derive Key Material

Send Authentication Message

Figure 1. Simplified version of OEKE [17], using a shared password pwd
and a generator P of order q of an additive group

differ from scheme to scheme. In general, it is possible to
distinguish between balanced schemes, where both parties
know the password, and augmented schemes, where one party,
often called prover, knows the password and the other party,
often called verifier, possesses a verification value but not the
password itself. This prevents the verifier from impersonating
the prover towards another third party. A discussion of the
properties of PAKE schemes and related security considerations
can be found in [14].

The following notations will be used in the remainder of
the paper. Let Enckey(·) and Deckey(·) denote encryption
and decryption of a message with a symmetric cipher using a
shared key. A hash function is denoted as H(·). The simplified
protocols show only the agreement of a shared secret – in
order to derive key material, further steps, like applying key
derivations, are required. In addition, every protocol requires
a verification phase to ensure that both parties followed the
protocol and agreed on the same key material. This can be
achieved by exchanging hash or message authentication code
(MAC) values over protocol data.

In 1992, Bellovin and Merritt published the first PAKE called
Encrypted Key Exchange (EKE) [15]. It is a balanced scheme.
Following different security analysis, including [16], the variant
One-Encryption Key Exchange (OEKE) was proposed [17]. The
underlying idea of those schemes is to derive a secret key from
the password and use it to encrypt a public key that is used
for key agreement. Hence, the receiver requires the password
to decrypt the public key and continue with the protocol.
Figure 1 gives a simplified version of the scheme. EKE and
OEKE are the inspiration for various post-quantum (PQ) PAKE
schemes, including OCAKE [9]. Instead of encrypting a key
for a (Elliptic Curve) Diffie-Hellman key agreement method
with the password, it uses a KEM and encrypts the related
public key with the password.

Another approach is followed by the protocol Dragonfly,
defined in RFC 7664 [18]. It maps the password to a group
element and uses a random mask to blind it. This blinded value
is exchanged and can be used for the next steps towards key
agreement. The mapping into the group element requires a
specific process. RFC 7664 defines an algorithm called Hunting

Client Server
pc ∈R [1, q − 1] ps ∈R [1, q − 1]

mc ∈R [1, q − 1] ms ∈R [1, q − 1]

sc = (pc +mc)%q ss = (ps +ms)%q

Ec = (mcPpwd)
−1 sc, Ec Es = (msPpwd)

−1

ss, Es

K = pc(Es + ssPpwd) K = ps(Ec + scPpwd)

Derive Key Material

Send Authentication Messages

Figure 2. Simplified version of Dragonfly [18], using a shared password
element Ppwd in an additive group of order q

and Pecking, which searches for such an element. In order
to ensure a time-constant behavior to prevent side-channel
leakage, a constant number of attempts is made. In addition,
critical checks are masked using random values. A Dragonfly
sample run is shown in Figure 2.

Another PAKE that relies on mapping the password to
a group element is the PACE protocol used in travel doc-
uments [19]. PACE relies on a random value that is encrypted
using the shared password. After mapping the value to the
group, a key agreement is performed. For mapping the point
to the group, the standard mandates support of at least two
mechanisms, a) the Generic Mapping based on an (Elliptic
Curve (EC)) Diffie-Hellman key agreement, and b) the Inte-
grated Mapping, which directly maps a value into the group. A
third version, called Chip Authentication Mapping is optional.

A similar approach is followed by the Composable Password
Authenticated Connection Establishment (CPACE) [20] scheme.
Both parties share group parameters and a password. For the
mapping, a function specified in RFC 9380 [21] should be used,
which corresponds to the algorithm used for the Integrated
Mapping. Its first step at both ends is to derive a group element
from the password, instead of choosing a random value as input
for the mapping as in the PACE protocol. The mapped element
is then used for key agreement using a (EC) Diffie-Hellman
protocol.

SPAKE2 follows a different approach [22]. It does not require
such a mapping function but allows one to create two elements
of the used group beforehand. They are defined for the set
of parameters used and are independent of the password. The
password is mapped to a scalar using a memory-hard hash
function (e.g., scrypt or PBKDF2). This scalar is blinded using
random values and the pre-defined elements on both ends. The
results are exchanged, allowing to agree on a shared element.
Its flow is shown in Figure 3.

In applications with a clear client-server relationship, an
asymmetric or augmented PAKE can be beneficial. Those
schemes provide the server or verifier with the possibility to
ensure that the client or prover knows the password, without
being able to impersonate the client. This requires a registration
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Client Server
x ∈R [1, q − 1] y ∈R [1, q − 1]

X = xP Y = yP

pA = wM +X pA pB = wN + Y
pB

K = x(pB − wN) K = y(pA − wM)

Derive Key Material

Send Authentication Messages

Figure 3. Simplified version of SPAKE2 [22], using a password element w,
a generator P of order q of an additive group G and fixed elements M , N

step where a record that is stored by the verifier is generated.
An example of such an augmented PAKE is SRP. The

registration phase of the SRP scheme consists of hashing
the password together with a salt value and generating a
password verifier in a prime field, using the hashed value
as exponent of a group generator. The verifier knows only the
verification value; the prover can generate it using the password
and the salt. This allows the parties to perform a key agreement
based on the password. The flow of the process is shown in
Figure 4. Note that SRP relies on multiplying group elements
and exponentiating elements in a finite field, which does not
map straightforwardly onto elliptic curve groups. Hence, the
protocol does not have a simple elliptic curve analogue.

Registration

s ∈R [1, 264]

x = H(s|H(U |“:”|p))
v = gx

Store(s, v)

Authentication

Client Server
a ∈R [1, q − 1] b ∈R [1, q − 1]

A = ga A B = v + gb

s,B

u = H(A,B) u = H(A,B) x = H(s|pwd))
e = (a+ u ∗ x)
K = (B − gx)e K = (A ∗ vu)b

Derive Key Material

Send Authentication Messages

Figure 4. Simplified version of SRP [23], using a finite field G with a
generator g of order q

SPAKE2+[24] is an augmented version of SPAKE2. The
authentication flow is similar to SPAKE2. The augmented part
is achieved via a registration step, producing a registration

record. This record is used in the protocol by the verifier that
does not know the password itself.

In order to transform a balanced post-quantum PAKE into
an augmented post-quantum PAKE, the transformation of Lyu
et al. can be applied [11]. In addition to the balanced PAKE
scheme, it uses a KEM and authenticated encryption. During
the registration phase, the password is hashed and used to
generate a key pair for the KEM scheme, while only the hash
and public key are stored. During the authentication phase, the
hashed password is used as input to the balanced PAKE to
agree on a key. This is followed by an authentication process
where the client derives the KEM key pair from the password
by following the steps of the registration procedure. Hence, the
client now has the private key to the public key contained in the
registration record. This enables finalization of the protocol by
ensuring that the client knows the password. Using a quantum-
secure balanced PAKE and a post-quantum KEM, the protocol
provides quantum security.

III. TESTING SETUP

All benchmarks were performed on a Google Pixel 7 Pro
smartphone, that is, the physical device, not the emulator. This
device features a Google Tensor G2 SoC, 12GB RAM, and
runs the Android 16 operating system. Its hardware and up-to-
date system software ensure that performance measurements
are representative of modern Android platforms. The Pixel 7
Pro device was connected to a Windows test PC via USB with
developer options enabled, airplane mode turned on, and all
connectivity (Wi-Fi, Bluetooth, mobile data) disabled to reduce
interference. The battery saver mode and adaptive battery
features were kept off. Using the developer options, the limit for
background processes was set to zero. The implementations are
written in Kotlin/JAVA and use, in addition to native libraries, a
Bouncy Castle provider in version 1.81. Their build target was
Android API 34 and ProGuard/R8 minification was enabled.

For performance measurements, microbenchmarking using
the Android Jetpack Benchmark Library (version 1.3.4) was
used [25]. The library orchestrates test runs, performs warm-
up iterations, and leverages the platform’s trace-based timing
mechanism to reliably capture execution durations. The bench-
mark process pins the test process to a foreground priority
and requests sustained performance mode to reduce CPU/GPU
thermal throttling. During this process, 50 measurement runs
are conducted. The whole measurement was repeated 100 times,
leading to 5000 data points per test. However, it turned out
that the measurements contained some outliers, as it was not
possible to prevent all side effects during the measurement
process. In order to cope with those, measurements that took
more than 10 times the mean of the current set are removed.
After this procedure, every set contains between 4,974 and
5,000 data points, on average 4,993 data points. The following
results are the mean values and the 95% confidence interval
of these measurements.

Energy consumption is measured using test functions that
cover the whole scheme, that is, client and server operations.
For every microbenchmark of a test function, which involves
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50 runs of that function, a Perfetto trace [26] is created and
analyzed. In particular, the power rail data for the large central
processing unit (CPU) core is used. The data points associated
with a function run are extracted, yielding an accumulated
energy consumption value. Hence, the delta between the first
and last measurement run a datapoint is available, gives the
number of measurements that are conducted using the energy
given by the value difference of those data points. Note that not
every power trace contains two values that can be associated
with measurement runs. In such cases, the whole run, i.e., this
microbenchmark of all PAKE schemes, is discarded. Otherwise,
this procedure gives an energy consumption datapoint for every
test function, each covering a complete PAKE scheme. In order
to prevent thermal effects on the power consumption, the order
of the tests within a microbenchmark is randomized. Overall,
250 measurements were conducted, 38 of them were discarded
due to missing data points, resulting in 222 energy consumption
results per function to be evaluated.

IV. IMPLEMENTATION AND RESULTS

In order to allow a fair comparison of the different
implementations, all underlying primitives were chosen with
parameters for a 128 bit security level. In particular, Advanced
Encryption Standard (AES) with 128 bit keys for encryption,
Secure Hash Algorithm (SHA) 256 as hash function, a discrete
logarithm group with 3072 bits [27], secp256r1 [28] as 256
bit elliptic curve and ML-KEM512 [29]. For modular opera-
tions, the native BigInteger library is used. For cryptographic
algorithms, native implementations like javax.crypto.Cipher for
AES and java.security.MessageDigest for SHA are employed.
For all others, including HMAC, HKDR, PBKDF2, scrypt,
ML-KEM, and ECC operations, implementations provided by
Bouncy Castle are used. In this context, Bouncy Castle uses a
Window Non-Adjacent Form (WNAF) multiplier for EC scalar
multipication. For the implementations, the client and server
components were tested on the same device. All elements that
require transfer between the parties were encoded as byte array;
compression was used for elliptic curve points.

As described in Section II, several schemes, especially
those based on Elliptic Curve Cryptography (ECC), require
a mapping from a random string to a point in the group
used. Hence, different mapping functions were implemented. In
particular, Hunting and Pecking as specified in RFC 7664 [18],
Generic Mapping, and Integrated Mapping as specified in [19].
A performance comparison can be found in Table I. Note that
the Generic Mapping requires a message exchange between
two parties to agree on a common result of the mapping.
The figures in the table only reflect the computational effort
and not the potential network latency for exchanging those
messages. The Hunting and Pecking was configured with a
minimum of 40 iterations as suggested in the respective RFC.
If the iteration ends as soon as a suitable element is found,
the result is obtained on an average of 645± 0.9µs; however,
this approach does not ensure constant-time execution. As
the integrated mapping computes the result directly–without
iterative steps like Hunting and Pecking or key generation and

exchange as in Generic Mapping–it is, as expected, the most
efficient among the evaluated methods.

TABLE I
PERFORMANCE OF DIFFERENT MAPPING FUNCTIONS FROM A RANDOM

VALUE TO SECP256R1.

Mapping Time in µs

Hunting and Pecking 4352± 4.1
Generic Mapping 700± 0.5
Integrated Mapping 62± 0.0

Note that potential overhead for the generic mapping for exchanging
messages is not reflected in this number.

In order to compare the performance of balanced PAKEs
that provide quantum security and those relying on traditional
asymmetric primitives, OEKE was implemented and tested
using a discrete logarithm group and an elliptic curve. OCAKE
was tested using ML-KEM. The implementation of OEKE fol-
lows the definition in [17]. Instances using a discrete logarithm
group with 3072 bits as defined in RFC 3526[27], and using
secp256r1 [28] are evaluated. Both use AES with Cipher Block
Chaining (CBC) for the encryption of the public key with the
password and SHA256 for computing the authentication tags.
The realization of OCAKE is based on the design of Beguinet et
al. [9]. A secret key is derived from the shared password using
Password-Based Key Derivation Function 2 (PBKDF2) with
Hash-based Message Authentication Code (HMAC) SHA256.
This key is used to encrypt and transfer a ML-KEM512 public
key. Again, SHA256 is used to compute the authentication
tags, ensuring that both parties derive the same key material.
Using elliptic curves has a notable performance advantage
compared to a discrete logarithm group, whereas the OCAKE
implementation is even faster. As the client in the OCAKE
protocol needs to generate a key pair, it requires more
computational effort than the server. In detail, OEKE required
4948 ± 1.1µs/4, 955 ± 1.5µs on the client/server compared
to 535 ± 0.7µs/507 ± 0.6µs when using an elliptic curve.
The OCAKE scheme completed in 242± 0.2µs/151± 0.2µs.
However, this speedup comes at the cost of larger messages,
as OCAKE requires exchanging the encrypted KEM public
key and the ciphertext of 16+816+768 bytes in addition to two
32-byte authentication tags. In contrast, OEKE(ECC)/OEKE
exchanges one public key of 33/384 bytes, one encrypted
public key of 16+48/16+400 bytes in addition to a 32-byte
authentication tag.

Dragonfly was implemented according to RFC [18] using
secp256r1. It uses the Hunting and Pecking mapping with
at least 40 iterations. For derivation of the secret from
the negotiated point, HMAC-based Key Derivation Function
(HKDF) SHA256 is used. In order to blind specific checks of
the protocol, specific elements need to be found. This can be
done once during an initialization phase that took 20± 0.0µs.
As client and server perform the same operations, they require
the same time. If blinding is omitted and a non-constant-time
mapping is used, the agreement process could be reduced from
5, 062 ± 6.8µs to 1, 327 ± 1.5µs. In terms of message size,
Dragonfly exchanges a message containing a scalar and an
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TABLE II
OVERVIEW OF USED PARAMETERS FOR IMPLEMENTED SCHEMES

Scheme Group Cipher Hash Mapping Others
Balanced Schemes
OEKE 3072-bit MODP Group AES-CBC SHA256 - -
OEKE (ECC) secp256r1 AES-CBC SHA256 - -
OCAKE ML-KEM512 AES-CBC SHA256 - PBKDF2-HMAC-SHA256
Dragonfly secp256r1 - SHA256 Hunting and Pecking HKDF-SHA256
SPAKE2 secp256r1 - SHA256 - HKDF-SHA256
PACE (IM) secp256r1 AES-CBC SHA256 Integrated Mapping PBKDF2-HMAC-SHA256
PACE (GM) secp256r1 AES-CBC SHA256 Generic Mapping PBKDF2-HMAC-SHA256
CPACE secp256r1 - SHA256 Integrated Mapping -
Augmented Schemes
SRP 3072-bit MODP Group - SHA1/SHA256 -
SPAKE2+ secp256r1 - SHA256 - HKDF-SHA256/scrypt
aPAKE-PQC ML-KEM512 AES-GCM SHA256 - -

ECC point from server to client and the other way round, i.e.,
2× (33 + 33) bytes in addition to two authentication tags of
32 bytes each.

The implementation of SPAKE2 follows RFC 9382 [22]. It
uses secp256r1 together with the points M ,N as defined in
the RFC. As hash SHA256 is used. The required computation
time is 1, 241 ± 1, 6µs/1, 271 ± 1.7µs for client/server, that
is, around one-fourth of the time required for Dragonfly.
SPAKE2 mutually exchanges 33-byte ECC points and 16-byte
authentication tags.

PACE [19] was implemented with the Generic Mapping
as well as the Integrated Mapping. It uses AES-CBC and
PBKDF2-HMAC-SHA256 to derive an AES key from the
password. For the confirmation tag of the agreed key material,
SHA256 was used. The performance difference from the
different mappings, see Table I, translates to the difference in
the execution time of PACE. The runtime of the protocol using
the Generic Mapping was 1, 463±1.9µs/1, 504±2.0µs on the
client/server, compared to 797± 1.0µs/856± 1.1µs using the
Integrated Mapping. In addition, the Generic Mapping requires
exchanging the related public keys, which is not required
for the Integrated Mapping. Both versions send an encrypted
random of size 16+48 bytes from the client to the server and
mutually exchange an EC Diffie-Hellmann (ECDH) key of
33 bytes. If the Generic Mapping is used, another ECDH
key is mutually exchanged. Note that our implementation
exchanges a serialized SubjectPublicKeyInfo object instead
of the raw points, which increases the message size from 33
to 335 bytes. For the implementation of CPACE [20], the
integrated mapping was used. This scheme performs the same
operations on both parties and outputs a hashed transcript and a
shared point. Hence, no dedicated verification step is performed
in the implementation. Avoiding the exchange of an encrypted
value, as is done in the PACE protocol, reduces the computation
time to 715∓ 0.7µs and the size of the exchanged messages
to two times 33 bytes. For the implementation of CPACE [20],
the integrated mapping was used. This scheme performs the
same operations on both parties and outputs a hashed transcript
and a shared point. Hence, no dedicated verification step is
performed in the implementation. Avoiding the exchange of an

0 1,000 2,000 3,000 4,000 5,000

OEKE

OEKE (ECC)

OCAKE

Dragonfly

SPAKE2

PACE (IM)

PACE (GM)

CPACE

Performance in µs

Client Server

Figure 5. Performance Comparison of the balanced PAKE Schemes

encrypted value, as is done in the PACE protocol, reduces the
computation time to 715∓0.7µs and the size of the exchanged
messages to two times 33 bytes.

A comparison of the performance of the different balanced
schemes is shown in Figure 5. Due to their balanced nature, the
computational effort for both parties is comparable. It should
be noted that the OCAKE post-quantum scheme that uses KEM
is very fast compared to the other schemes at the cost of larger
exchanged messages.

In contrast to balanced schemes, where both parties use the
password, augmented schemes require a registration phase to
construct a verification value that is stored on the server side.

The implementation of the augmented PAKE scheme SRP
uses the 3072-bit MODP Group defined in RFC 3526 [27],
since a direct translation to elliptic curves is not possible.
The measured implementation follows the specification of
RFC 2945 [23]. The RFC specifies the use of SHA-1. In order to
a) follow the specification and b) allow for a comparable result,
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Figure 6. Performance comparison of the augmented PAKE schemes.

an instance using SHA1 and an instance using SHA256 were
considered. The result shows that the registration process for
the SHA256 variant takes about a third longer, 885±1.3µs com-
pared to 1, 148± 1.4µs, while during the authentication phase,
there is only a slight difference, 25, 117±9.3µs/16, 369±4.4µs
for SHA1 compared to 25, 376 ± 9.1µs/16, 438 ± 3.8µs for
SHA256 on the client/server. In terms of message sizes, SRP
requires the storage of a salt value, in our implementation 9
bytes and a group element of 385 bytes. The parties mutually
exchange group 385-byte elements. In addition, the server
shares the salt value with the client. In the verification step,
every party creates a 20-byte challenge value that is confirmed
by the other party with a 20-byte response. When switching
from SHA-1 to SHA256, the size of the messages in the
verification step increases from 20 to 32 byte.

The implementation of SPAKE2+ makes use of secp256r1,
together with SHA256 and an HMAC key derivation function.
The registration phase uses the memory-hard hash function
scrypt with parameters (32768, 8, 1) as recommended in the
RFC. This protects against offline dictionary attacks, but also
leads to a significant effort during registration (115, 966 ±
87.2µs). Hence, Figure 6 does not show the full bar of the
registration phase. The scrypt parameters have a direct impact
on the performance of this first phase. Since the implementation
relies on elliptic curves, it is, with 1, 953 ± 6.1µs/1, 740 ±
6.5µs on the client/server, faster than SRP. Note that the client
measurement does not include the application of the scrypt
function, which could be done during a preparation phase/the
registration. Its execution would add an effort comparable to
the server registration phase. The value that is stored on the
server side for verification consists of a 33-byte compressed
ECC point and a 32-byte value that is computed modulo the
order of the base point. For the key agreement, ECC points
are mutually exchanged, 33 bytes each, while verification uses
32-byte HMAC values on the client and on the server side.

The transformation published by Lyu et al. [11] was applied
to the implemented OCAKE to compare augmented PAKE
schemes with a quantum-secure scheme. In addition to ML-

1.4 1.6 1.8 2 2.2

·105

aPAKE (PQC)
SPAKE2+

SRP (SHA256)
SRP (SHA1)

CPACE
PACE (GM)
PACE (IM)

SPAKE2
Dragonfly

OCAKE
OEKE (ECC)

OEKE

Energy consumption in µWs

Figure 7. Energy consumption of the implemented schemes on the big CPU
power rail with a 95% confidence interval

KEM512, AES-Galois/Counter Mode (GCM) was used for the
additional implementations, while the OCAKE protocol still
employs AES-CBC. The implemented scheme outperforms the
others, requiring 103 ± 0.1µs for registration, 461 ± 0.6µs
on the client, and 292 ± 0.5µs on the server. As it employs
the balanced PQC PAKE scheme OCAKE, the message sizes
are larger compared to the other schemes. The stored record
requires a 32-byte hash value and an 800-byte public key.
The exchanged messages include those required for OCAKE
(16+816+768) plus an encrypted key encapsulation of 16+784
bytes. The verification message uses a 32-byte hash value. It
is called aPAKE (PQC) in Figure 6, where the performance
figures of the different augmented schemes are shown.

The energy consumption of the big CPU powerrail is given
in Figure 7. It shows that, when considering a whole run of
a scheme, OCAKE and its transformation into an augmented
version require the same order of magnitude of energy as the
other schemes. An outlier in this regard is SRP, which does not
use ECC and hence does not require the Bouncy Castle library,
but only native JAVA implementations. The powerrails of the
other CPUs, i.e., mid and little, show significantly smaller
consumption, but the distribution is comparable, e.g., on the
mid CPU, Dragonfly consumes with 12, 669± 1107 µWs the
most energy amoung the schemes.

V. CONCLUSION AND FUTURE WORK

This study provides an implementation-based comparison
of classical and post-quantum PAKE schemes on a modern
Android device, highlighting how protocol structure, mapping
functions, and cryptographic primitives influence performance.
Elliptic curve–based schemes consistently outperform those
based on modular arithmetic, while integrated mapping tech-
niques significantly reduce overhead compared to iterative or
interactive mappings.

Among the evaluated protocols, post-quantum candidates,
such as OCAKE and aPAKE demonstrate strong computational
efficiency, achieving sub-millisecond runtimes even without
hardware acceleration. Although these schemes incur higher
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communication overhead, they show that quantum-secure
PAKEs are practical for mobile environments. In the augmented
setting, the results also emphasize the trade-offs introduced by
memory-hard hash functions and the potential for optimization
through parameter tuning.

Our current dataset is limited to a single flagship device
using the Bouncy Castle library. Generalizing absolute runtimes
across the Android ecosystem requires care, because SoCs
differ substantially. For example, in CPU microarchitecture,
the available instruction set extensions and memory hier-
archy. Future work will explore the impact of different
SoCs, hardware-accelerated cryptographic instructions, energy
profiling under typical usage scenarios, and integration into
complete authentication stacks. In addition, a comprehensive
security and side-channel resilience evaluation will complement
the performance perspective established here.
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