International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Model-Based Development of Code Generators for Use in Model-Driven Development
Processes

Hans-Werner Sehring
Department of Computer Science
NORDAKADEMIE gAG Hochschule der Wirtschaft
Elmshorn, Germany
e-mail: sehring@nordakademie.de

Abstract—Model-driven software development is gaining at-
tention as a software engineering approach due to the various
benefits it offers. Typical approaches start with the modeling of the
application domain at hand and continue with the specification
of the software to be developed. Results are documented by
specific software engineering artifacts. Especially in model-driven
approaches, these artifacts are formal or semi-formal models.
Model transformations are applied to develop and refine artifacts.
In a final step, code is generated from the models. Code can
be source code written in specific programming languages,
configuration files, and the like. Practice shows that model-based
code generators have to bridge a rather large gap between the most
refined software models and the compilable code that implements
these models. This makes the development of code generators
itself an expensive task. In this article, we discuss ways to break
down the development of code generators into smaller steps. Our
discussion is guided by both principles of compiler construction
and by an application of model-driven development itself. Using
a modeling language, we demonstrate how code generation can
be organized to reduce development costs and increase reuse. In
addition, program code becomes part of the model transformation
sequence, allowing code changes to be automated and model
elements to be referenced from code.

Keywords-software development; software engineering; symbolic
execution; top-down programming.

I. INTRODUCTION

Software construction requires methods and processes that
guide development from an initial problem statement through
all stages of the software lifecycle, culminating in the imple-
mentation, testing, rollout, operation, and maintenance of the
software.

Model-Driven Software Engineering (MDSE) strives to
support such development processes by making explicit

« the artifacts created at each stage and possibly intermediate
results
« the decisions that lead to the development of each artifact.

Ideally, MDSE supports the entire software lifecycle from re-
quirements engineering and domain concepts through software
architecture, design, and programming to software operations.

Figure 1 outlines some typical artifacts of software en-
gineering processes. While many of them can be handled
in MDSE processes, executable code must be generated
for a particular target platform, such as a Programming
Language (PL), software libraries, a runtime environment,
and a target infrastructure. Later stages that depend on the
code, such as operations tasks, must also be considered in

code generation. This prepares the code for activities such as
maintenance, monitoring, etc.

The support provided by MDSE approaches has advantages
in many application areas. Models of sufficient formality
can be checked for completeness or correctness to a certain
extent. Traceability between artifacts allows understanding
of design decisions and model transformation steps during
software maintenance. A final step of automated generation
of executable code can save development costs during the
implementation phase. Fully automated generation allows
incremental development through model changes if the software
is generated in an evolution-friendly manner.

Therefore, code generation from software models allows to
take advantage of the potential benefits of modeling in MDSE.
However, experience shows that generator development tends
to be complex and costly. We see several reasons for this.

o The abstraction that models provide over programming
language expressions requires code generators to deal with
a higher level of abstraction than compilers for PLs.

« Implementation details that are not reasonably part of
software models must be added in code during generation.

« Various non-functional requirements of professional soft-
ware development must be satisfied by generated code
in addition to the requirements explicitly reflected by the
software models. A code generator must add code for
these as cross-cutting concerns.

Furthermore, these aspects of code generation typically require
the development of project-specific generators.

Code generators are similar to compilers for high-level
PLs. From this point of view, a model-driven process can
be divided into a frontend and a backend part. In this logical
division, the frontend deals with the more abstract models of
the application domain and software design in model-to-model
transformations (M2MTs). These early phases are covered by
MDSE approaches. The backend activities of code generation,
optimization, and target platform considerations are often
hidden in implementations of comprehensive model-to-text
transformations (M2TTs).

In this article, we propose a structure for decomposing code
generator development for easier development and a higher
level of reuse.

This article extends the presentation of a conference paper
on the topic [1].

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

25

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Subject domain section

Component design
General interfaces Domain

(Business)

Conceptualization Goals Goal quantification
Abstraction Solution hypothesis
Domain Constraints -

Goal selection

7 Requirements _Non-functional requirements

Processes
Data flows Model <

Solution

Product definition
Service design ‘

Architecture —

Communication paths
Component configuration
Product customization
Interface specifications
Services

Software

Concept

\ 4
Systems
Architecture

Runtime environments
Resource demand

Architecture

Language selection
Software design
Choice of libraries

Code

Infrastructure
SLAs

Runtime behavior

» Operations <€——— Monitoing points

Figure 1. Typical software engineering artifacts.

The remainder of this article is organized as follows: In
Section II, we review model-driven software engineering with
a focus on the final step of code generation. A corresponding
approach to code generation is outlined in Section III. We
use a meta modeling language to present some models as
experiments with the approach. This language is introduced in
Section IV. In Section V, we illustrate the model-driven code
generation approach with some sketches of code generation
models. Some remarks on the derivation of code models from
more abstract models are made in Section VI. The paper is
concluded in Section VII.

II. MODEL-DRIVEN SOFTWARE DEVELOPMENT

In this section, we revisit MDSE in general and code
generation in particular in order to lay the foundation for
the discussion of model-based code generation in the following
sections.

A. Subject Domain Modeling

With few exceptions, the purpose of software is to solve
some a real-world problem. For example, software is used to
perform scientific calculations, to support a company’s business
processes, or to control hardware. As a result, a software

project is typically embedded in a project with a broader scope.

Therefore, the analysis and documentation of the task at hand
begins with entities that lie outside the software domain, but
within the broader subject domain, application domain, or
simply domain.

The purpose of a domain model is twofold: it clarifies the
terms and rules of the (real-world) application scenario and it
defines a possible solution to the task at hand in terms of the
application domain. As a model, it furthermore provides an
abstraction by defining the section of the application domain
that is considered by the software to be built.

Figure 1 presents typical stages of a project by naming
the artifacts under consideration. Typically, a project begins
by setting goals. Goals define success criteria for the overall
project. Goals guide the choice of abstraction for the domain
model, which is also defined in an early stage of a project. The
same goes for the requirements (for the software), which are

derived from both the goals and the domain conceptualization.
Subject domain modeling is beyond the scope of this article.

B. Software Modeling

Models of the early steps in the software lifecycle are

formulated from the perspective of the application domain.

From these, models of software from a technical perspective
are derived. The solution architecture typically is the link
between the domain perspective and the software perspective
(see Figure 1).

Software description spans a series of models, starting from
abstract ones to increasingly concrete ones. M2MTs are applied
to derive models, even though mainly design decisions drive
the modeling process.

When software models reach a sufficiently concrete level,
code is finally emitted by M2TTs. The code generation
and maintenance part is often not well represented in an
MDSE process, though. On top of that, in most cases textual
representations of code are decoupled from the models of
earlier design phases.

Ideally, models of the software also support the operations
and maintenance phase. In this case, they must be available at
runtime [2].

The more abstract descriptions of software at the level of
software architecture specifications are not in the focus of this
article. However, it depends on the type of M2TTs or code
generators at which point the transition from abstract software
models to concrete source code takes place.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

26

C. Cases of Code Generation

We see two application scenarios for software construction
with MDSE:

1) approaches for systems of a given application class that
share fixed functionality at some level of abstraction
2) approaches for application-specific functionality

A typical case of an application class with fixed functionality
is the case of information systems, that typically provide only
Create, Read, Update, Delete (CRUD) operations. Models
of information systems, therefore, mainly represent domain
entities and their relationships. Software generation is based
on fixed patterns for code that provides CRUD functionality
for the various entities.

Approaches that can be found in the class of generators
that produce code with fixed functionality work with meta-
programming [3][4], template-based approaches (see below),
and combinations of these two [5]. Since generators for a
specific target implementation can be built in a generic way,
MDSE can be employed comparatively easy in this scenario.

In the general case of software containing custom business
logic, software must be generated according to specified
functionality. To automatically derive working software from
specifications, MDSE approaches for application-specific busi-
ness functionality must include formal models for precise
definitions.

Means for deriving software from formal models are often
built into editing tools for the respective formalisms. With
respect to running software, formal models are typically used
in one of two ways: Either code is generated from such models,
or hand-written code is embedded in formal models at specific
extension points.

For production-grade software systems, code generation is
the only option in order to satisfy nonfunctional requirements.
Depending on the modeling approach chosen, a model inter-
preter may not provide sufficient performance or scalability
at runtime. The coexistence of the higher-level model and the
lower-level PL code can increase maintenance complexity due
to the different roles involved. Since changes to a model can
affect the code [6], it is crucial to be able to trace of code
design decisions.

A practical software system consists of different components,
each of which is typically created by one generator each.
Therefore, multiple code generators need to work in concert.
To this end, different generator runs have to be orchestrated [5],
and information exchange (for example, for identifiers used in
different components) has to be managed [4].

D. Code Generation Techniques

Code is generated in a final step of an MDSE process, often
based on M2TTs [7].

Special attention is paid to code generation, as this step can
be well formalized in an MDSE process. There are several
techniques for code generation, mainly generic code generators,
meta-programming, and template-based techniques. Generative
Al could be an alternative.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

This way, there is reuse of software generators that translate
formal specifications into code in a generic way. Typically,
there is little or no way to direct the code generation for the case
at hand [8]. Therefore, the generated code must be wrapped in
order to be integrated into a production-grade software system,
for example, to add error handling and additional code for
monitoring.

a) Generic Code Generators: Custom functionality gen-
erally needs to be formulated in a Turing-complete formalism.
Although the ability to verify such descriptions is limited, their
expressiveness is required. Formal specifications of software
functionality can be translated into working software by a code
generator, that works like a compiler for a PL.

Code generators of modeling tools provide a well-tested
and generally applicable translation facility. Specifications
according to a given formalism are translated into a supported
target environment. Examples include parser generators that
generate code from grammars, software generators that take
finite state machines as input [9], and those that use Petri Nets
to execute code on firing transitions [10].

Generic code generators require significant development
effort. But they can be developed centrally in a generic way.
Therefore, there is a high degree of code reuse in the form
of generators [11]. However, the models used as input are
application-specific, and they must be more elaborate than the
input for other forms of generators.

b) Meta-Programming: Programs that generate pro-
grams are an obvious means of generating software. Meta-
programming is possible with PLs, that allow the definition of
data structures that represent code and from which code can
be emitted. Since many widely used languages do not include
meta-programming facilities, this capability is added through
software libraries or at the level of development environments.

Meta-programming provides maximum freedom in generat-
ing custom code. Consequently, results can be tailored to the
application at hand, including specific business logic.

However, the development of such generators tends to be
costly, depending on the degree of individuality of code [12].
This is due to the fact that meta-programs are harder to maintain
and to debug due to their abstract nature. In addition, code
reuse is very low for custom code.

c) Templates: Code with recurring structures can be
formulated as templates with parameters for the variations of
this uniform code. Code is generated by applying the templates
with different parameter values.

A prominent example of a template-based approach is used
for the Model-Driven Architecture (MDA). The MOF Model to
Text Transformation Language [13] provides a means to define
code templates based on (UML) models.

Templates are easy to write, depending on the degree of
generics. They allow adaptation to the project at hand by
making changes to templates. The degree of reuse of templates
within a project can be high, depending of the structural
similarities between parts of the code. Cross-project reuse
can be expected to be quite low.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

27

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Global Definitions Application-Specific Definitions

APM ADM
Abstract Programming Model i Application Design Model
A A
CPM AIM

Concrete Programming Model [~ Application Implementation Model

Figure 2. Code models and their relationships.

d) Generative Al: The emerging generative Al approaches
based on large language models provide another way to
generate code from descriptions. Based on a library of examples,
they allow the interactive generation of code from less formal
descriptions, especially natural language expressions.

Generative Al can deal with complex requirements and rules.
It has the advantage of being able to generate code in multiple
PLs from (almost) the same descriptions.

There are indications that generative Al may be particularly
well suited to producing code on a small scale, for example,
individual modules [14]. Final quality assurance and assembly
currently remains a manual task.

Instead of generating the actual software solution, generative
Al can also be used to create code generators [7].

III. MODEL-BASED CODE GENERATION

In this paper, we discuss a way to construct code through
a series of model refinement steps and final code generation.
Thus, it follows the typical theme of M2MTs followed by an
M2TT. However, our goal is to make the code generation step
nearly trivial and fully automatic. To achieve this, we propose
certain code models that bridge the gap between domain or
solution models and executable code.

Our goal is to reduce the complexity of generators through
abstraction and to reduce costs through reuse of abstract code.

Figure 2 gives an overview of the kinds of code models.
Those in Global Definitions are provided centrally as a kind of
modeling framework. Those in Application-Specific Definitions
are models that are provided for each software project.

The four model boxes in the figure represent classes of
models. There will be several concrete models for each of
them.

We describe the models in the following subsections. Exam-
ples are given in the following main section.

The outline of the approach is as follows:

« Abstraction leads to a hierarchy of models.

e An Abstract Program Model (APM) provides a generic

model of code.

o An Application Design Model (ADM) defines the func-

tionality of a software system in terms of an APM.

o A Concrete Program Model (CPM) serves as a technology

model; it maps an APM to a concrete implementation
technology, such as a PL

o An Application Implementation Model (AIM) is used for
code generation; it provides a project-specific association
of the desired functionality and a technology model

With these models, some degree of reuse is achieved on the
level of

1) programming models / building blocks of abstract pro-
grams

2) idioms and design patterns for refactoring and optimizing
abstract programs

3) code generation from abstract representations of the
constructs of a particular PL into code

A. Models of Programming

APMs serve as meta-models for abstract programs. Pro-
gramming paradigms constitute a possible starting point for
describing programming in general. Models of paradigms help
to capture the essence of a class of PLs.

Properties of hybrid languages can be captured by combining
models of programming paradigms. To this end, the modeling
language used should allow models to be combined, and
paradigm models must be set up to allow combinations.

There are differences between existing PLs that cannot
be captured within one central model of programming. For
example, object-oriented PLs have different ways of handling
multiple inheritance. Therefore, there may be coexisting pro-
gramming models, even for the same programming paradigm.

B. Assigning Functionality to Domain Models

In contrast to pure programming, program models in an
MDSE process refer to more abstract models, especially those
formulated from an application domain perspective. Program
models result from M2MTs, or they refer to source models.
Resulting model relationships are a basis for traceability [15].

Figure 3 illustrates a model relationship. A hypothetical
domain model contains a Salarylncrease concept with a Raise
subconcept . This specification is to be implemented using an
imperative programming language, so there is, for example, a
ConditionalStatement. The resulting model of the code for
the software is represented as an ADM with a procedure
ChecklargetSalary.

Application design models are essentially attributed syntax
trees. In a kind of “reverse programming”, we manually
construct syntax trees and generate code from them. This
is not the right level for manual development of software
generators. But program models can be derived from domain
models similar to template-based software generation. The
example in Figure 3 can be viewed this way. The advantage
of abstract models and model relations over code templates is
the independence from concrete programming languages. This
allows us to make an early connection between a domain and
a code model while still having the option of choosing the
implementation details, including the programming language
or other implementation technologies to be used.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

28

Domain Model Programming Model

(from Project) (global)
SalaryIncrease ConditionalStatement <€—
—> Raise
" E N
I
Application Design
CheckTargetSalary
Condition TrueCase FalseCase
GreaterThanComparison StateChange Error
L— Raise 0 + —>» Salary

1 |

Figure 3. Typical software engineering artifacts.

C. Stepwise Refinement of Programming Models

Concrete models define which language constructs are
available in a particular PL that is selected for implementation.
For code generation, the abstract application code (given as an
ADM) is combined with a CPM containing models of typical
programming language constructs / idioms etc. in generalized
form. M2MTs are applied to the combined model to transform
it into an AIM that is suitable for code generation.

Model transformation consists of refining abstract program
models with respect to a concrete PL or other implementation
technology. There are several reasons why concrete models
differ from abstract programming models. For example, there
are different ways to implement abstract code in concrete
PLs, similar PLs may have different best practices, they may
have different constraints, and they may require different
optimizations.

The transformation from an abstract to a concrete program
need not be done in one step. For example, there is typically
a hierarchy of abstractions, from abstract programs at the
programming paradigm level, to classes of PLs and PL families,
to concrete PLs, PL implementations or dialects, or even project-
specific style guides.

D. Generating Code from Abstract Programs

An AIM is a model of a program that is suitable for code
generation. This means that all parts of a model are assigned
a concrete PL expression and thus a syntactic form.

With this model property, code can be generated by assem-
bling pieces of code that each represent model entities.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

IV. M3L OVERVIEW

We use the Minimalistic Meta Modeling Language (ML)
as our modeling notation. This language is briefly introduced
in this section in order to discuss some model sketches in the
remainder of the article.

A. Basic Concept Definitions

The M’L is a (meta) modeling language that has been
reported about. It is minimal in the sense that it is designed
with a sparse syntax that is oriented towards metalogic and a
simple semantics that basically breaks down to set theory.

A model in the ML consists of a series of definitions of
concepts. A concept definition, in its simplest form, just names
one concept:

A

Naming a concept leads to its evaluation (see Section IV-D
below), if it exists, or to its creation otherwise. In the simplest
form, just the name is introduced. Therefore, in either case,
the concept A is defined after the above statement.

A concept can be defined as a refinement of another. For
example, the following statement defines the concept A as a
refinement of the concept B using the “is a” / “is an” clause.

A is a B

A is also called a subconcept of B, B the base concept or
generalization of A. Multiple base concepts can be given at
once:

A is a B, an E

Refinements inherit the definition from their base concept.
This includes base concepts, content (see below), and rules
(see below).

Using the “is the” clause instead defines a concept as the
only specialization of its base concept.

C is the D

The concept C' may have further base concepts, but D has no
refinements other than C.

There may be multiple definitions of one concept. If
definitions refer to the same concept name, their effect is
cumulated.

A is a B
A is an E
defines A as a subconcept of both B and F.

B. Contextual Concept Definitions

A concept C' is defined in the context of a concept A by a
definition of the form

A is a B {
C is a D
}

C is part of the content of A. Each context defines a scope,
and scopes are hierarchical. Concepts like A are defined in

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

29

an unnamed top-level context. A concept A is visible in the
context of a concept C' if A belongs to the content of C or if
there is a concept B such that A is visible in the context of
B and C belongs to the content of B.

There can be multiple statements about a concept with a
given name in different scopes. Contextual definitions are
called redefinitions. All visible statements about a concept are
cumulated. This allows concepts to be defined differently in
different contexts. For example, the statements

A { Cis a D }
C

define C' as a specialization of D in the context of A, but
without base concept in the topmost context.
A concept in a nested context is referenced as

C from A

There are well-defined names that refer to a part of a
concept: “the concept” refers to the concept of a current
definition, “the name” to its name, and “the content” refers to
all content concepts of a concept. These are particularly used
in refinements and redefinitions, such as

ListOfThings {

Head is a Thing

Tail is a ListOfThings

AddTolist {
Elem is a Thing

} is a ListOfThings {
Elem is the Head
the concept is the Tail

}

This code allows adding a element to a singly linked list by
using a current list as the tail of a new list (last line).

C. Semantic Rules

Semantic rules can be defined on concepts, denoted by a
double turnstile (=), in code written as “|=". A semantic rule
references another concept, that is returned when a concept
with a semantic rule is referenced. Like for any other reference,
a non-existing concept is created on demand.

The scope of a semantic rule is specific: concepts referenced
by the rule are resolved in the context of the concept to which
the semantic rule belongs. If the rule leads to the creation of
a new concept. then this concept is placed in the same context
as the concept carrying the rule.

An example of a semantic rule is as follows:

A is a B {
C is a D
} 1= E { C}

In this example, F is defined by the semantic rule. Its content
C is taken from the content of A. Because of the scoping rules,
C' must also be declared in the context of A. Otherwise, the
rule is considered erroneous.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

D. Concept Evaluation

Context, refinements, and semantic rules are employed for
concept evaluation. When an existing concept is referenced, it
is first evaluated, and the result of the evaluation is returned.

A concept evaluates to the result of its semantic rule, if
defined, or else to its narrowing as defined below.

A concept’s semantic rule is determined by the following
steps:

1) If the concept’s narrowing (see below) has a semantic
rule, then this one is taken.

2) Else, if the narrowing inherits a semantic rule, then the
rule of the closest ancestor is used.

3) Else, the set of derived base concepts (see below) is
checked for semantic rules.

4) Else, there is no semantic rule.

A concept B is a narrowing of a concept A, if B is a
transitive “is the” refinement of A.
A concept B is a derived subconcept of a concept A if

« the set of (transitive) base concepts of B is a superset of
the set of (transitive) base concepts of A, and

o the content of A narrows down to content of B; this
means that for every concept C in the content of A, there
exists a concept D in the content of B such that D is C'
or one of its narrowings.

To evaluate a concept, syntactic rules and narrowing are
applied repeatedly, until a concept evaluates to itself. Infinite
evaluation loops are considered erroneous definitions.

An example of concept evaluation is provided by Figure 8
in Section V-B.

E. Syntactic Rules

Concepts can be marshaled/unmarshaled as text by syntactic
rules, denoted by a turnstile (F), in code represented by
“]=". A syntactic rule names a sequence of concepts whose
representations are concatenated, ended by a dot.

The representation of each concept is in turn defined by the
syntactic rule of its evaluation. A concept without a syntactic
rule is represented by its name.

Syntactic rules are used to represent a concept as a string
as well as to create a concept from a string; they define both
an output and a parser.

As an example, consider a definition
A is a B {

C is a D
} |- the name says C

When producing output for
John { hello is the C } is an A

it produces “John says hello”, since John inherits the syntactic
rule. Note that previously undefined concepts like hello and
says are defined on spot, and that they are represented by their
name.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

30

TypedPL is a ProgrammingLanguage {

Type
Boolean is a Type

True is a Boolean
False is a Boolean

Integer is a Type {
Succ is a PositiveInteger {
the concept is the Pred }
}
0 is an Integer
PositiveInteger is an Integer {
Pred is an Integer
}

1 is a PositiveInteger { 0 is the Pred }

Figure 4. Sample base model of typed programming languages.

V. EXAMPLES OF MODEL DEFINITIONS FOR CODE

We outline some models in order to illustrate the approach
presented in Section III. We use the ML as introduced in the
previous section as our modeling notation.

A. Example Programming Models

Sticking with the example of starting the modeling of
programming with programming paradigms, there may be
models that describe typical constructs of PLs of a particular
paradigm. We give short outlines of PL base models for the
most important programming paradigms that may provide
concepts for APMs. Many details are omitted for the discussion
in this article.

As the basis of programming models, assume base concept
ProgrammingLanguage. Different aspects of programming are
derived from that concept.

As a first specialization, Figure 4 sketches some basic
concepts for typed programming languages. The concept
Boolean represents a type for Boolean values; this type as the
finite set of values True and False. The type Integer provides a
definition of numbers based on the Peano axioms. Even though
concrete programming languages offer a builtin type for integers
that supports low-level operations provided by hardware, we
want APMs to have provable properties independently of any
concrete implementation. Please note that Succ is a method of
an Integer object that answers the successor; it will be created
if it does not exist. In contrast, Pred is an attribute that is set
explicitly, for example, by Succ. Other types are omitted in
this article, but may be defined accordingly.

1) Procedural Programming: Descriptions of some typical
constructs of imperative PLs are shown in Figure 5. Typical
control flow constructs, such as conditional statements and
loops are given as ML concepts.

2) Functional Programming: Figure 6 outlines the basic
definitions for functional PLs. Note that this model contains

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

ImperativeProgramming is a TypedPL {

Variable ({
Name
Type from TypedPL }

Statement
Sequence is a Statement {

Statements is a Statement }
CompoundStatement is a Sequence
ParallelExecution is a Statement {

ConcurrentStatements is a Statement }
ConditionalStatement is a Statement {

Condition is a Boolean

ThenStatement is a Statement

ElseStatement is a Statement }

Loop is a Statement ({

Body is a Statement }
HeadControlledLoop is a Loop {

Condition is a Boolean from TypedPL }
CountinglLoop is a Loop ({

Counter is a Variable {

Integer is the Type }

LowerBound is an Integer from TypedPL

UpperBound is an Integer from TypedPL

Step is an Integer from TypedPL}
VariableDeclaration is a Statement ({

Variable

InitialValue is an Expression }

Expression is a Statement

Value is an Expression

VariableReference is an Expression

UnaryExpression is an Expression {
Operand is an Expression }

BinaryExpression is an Expression {
Operandl is an Expression
Operand2 is an Expression }

}

ProceduralProgramming
is an ImperativeProgramming

Procedure {
FormalParameter is a Variable
Body is a Statement }

ProcedureCall is a Statement {
Procedure
ParameterBinding {
FormalParameter from Procedure
ActualParameter is an Expression } }

Figure 5. Sample base model of procedural programming.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

31

FunctionalProgramming {
Expression
Value is an Expression

ConditionalExpression is an Expression {
Condition 1is an Expression
TrueValue 1is an Expression
FalseValue is an Expression

}

Function is a Value {
FormalParameter
FunTerm

}

FunCall is an Expression {
Function
ParameterBinding {
FormalParameter from Function
ActualParameter is an Expression

Figure 6. Sample base model of functional programming.

definitions that may not apply to all functional PLs, so other
APMs exist.

The simple syntax of functional PLs makes the definition of
this programming paradigm quite short. Note, however, that
many properties of functional PLs are covered by the model.
For example, partial function application is expressible since
a function call (FunCall) is an Expression, and a Function is
a Value which is also an Expression. So function calls can
deliver functions. Likewise, higher-order functions are covered
by the model.

The model in Figure 6 omits typical libraries of predefined
functions, for example, the various kinds of recursive higher-
order functions. These differ slightly between concrete PLs,
though, so there will be variations.

3) Object-Oriented Programming: Only some base defi-
nitions for class hierarchies at the instance and class levels
are sketched in Figure 7. The complete model is much more
elaborate, and there are even more variants of PLs than in the
other paradigms.

In particular, typical object-oriented PLs consist of two
“sub-languages”. In a declarative part, objects or classes are
defined, method signatures (message formats) are declared,
etc. Executable code is mainly found in method bodies, which
are implemented depending on the kind of object-oriented PL
used.

Statements as used in imperative programming are one way
of implementing methods. In Figure 7, this is sketeched by the
OOP-imperative concept. In particular, compound statements
are typically used. In contemporary PLs, specific additions to
the set of statements cater for object-oriented structures.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

ObjectOrientedProgramming {

MetaClass is an Object { Method }
Method {

Parameter is an Object

Body
}

Classifier is a MetaClass

Interface is a Classifier
AbstractClass is a Classifier
ConcreteClass is a Classifier

ObjectClass is a ConcreteClass
Object is an ObjectClass
}

OOP-imperative
is an ObjectOrientedProgramming,
an ImperativeProgramming

Method {
LocalVariables is the Parameter,
a Variable
Body is a Statement

}

OOP-functional
is an ObjectOrientedProgramming,
a FunctionalProgramming

Method {
Body is a Function {
FormalParameter is the Parameter

Figure 7. Sample base model of object-oriented programming.

A second option of implementing methods is in a functional
way by assigning a function to a message. This is outlined by
the concept OOP-functional in Figure 7. The parameter(s) of
the function (FormalParameter from Function) that is used as
a method body are passed from the parameters of the method
(Parameter from Method).

B. Programming Language Semantics

For model checking or for model execution, language
constructs as outlined in the previous subsection must be given
semantics. The semantics of specific PLs is abstracted so that
different generalized APMs can be defined to capture the
various interpretations of PL constructs.

As an example, the behavior of the ConditionalStatement
can be defined as shown in Figure 8. A concrete conditional
statement as part of a program may look like

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

32

IfTrueStmt is a ConditionalStatement {
True is the Condition
} |= ThenStatement

IfFalseStmt is a ConditionalStatement {
False is the Condition
} |= ElseStatement

Figure 8. Semantics of conditional statements.

MyConditional is a ConditionalStatement {
SomePredicate is the Condition
Statementl is the ThenStatement
Statement2 is the ElseStatement

}

A concrete conditional statement like MyConditional must not
have a semantic rule defined.

When evaluated, such a conditional statement will match (be-
come a derived subconcept) of either IfTrueStmt or IfFalseStmt,
depending on what SomePredicate evaluates to: MyConditional,
like any refinement of ConditionalStatement, has a superset of
the base concepts of both IfTrueStmt and IfFalseStmt since it
is an explicit subconcept. The content of which one of them
matches is determined by the evaluation of SomePredicate
that should yield either True or False. Then, exactly one of
IfTrueStmt or IfFalseStmt will be a derived base concept of
MyConditional which will inherit the semantic rule that leads
to the correct interpretation of the conditional statement.

The semantic rule is inherited from the derived base concept,
making the statement evaluate to either the “then branch” or
the “else branch”.

This way of attaching semantics is typical for ML models;
other modeling languages may have different ways of attaching
semantics. We will not go into this in detail. However, it is an
important part of the PL base models.

C. Abstract Programs

Based on the programming concepts outlined in the preced-
ing subsections, abstract programs can be formulated using
“instances” of these concepts. This means that refinements of
the concepts of an APM form an ADM. Such a program is
abstract in the sense that it is not written in a concrete PL. It
is more like an attributed abstract syntax tree.

Figure 9 shows an example of an abstract code fragment
for a sample ADM. The code is based on the model shown
in Figure 3. An imperative object-oriented programming style
is chosen. The entire code fragment represents a conditional
statement that checks for a positive raise. The Conditional-
Statement is outlined in Figures 10 and 8. The GreaterThanin-
tegerComparison may be a binary predicate that compares
integers. It is used as the condition. The two branches of the
conditional statement, ThenStatement and ElseStatement, are
set to accordingly. On a positive raise, there is a state change,
assuming that there is some employee object (omitted from
the example; Raise and Salary may be declared outside the
code fragment). On an invalid raise, the code is simply exited.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Domain Model
(from Project)

Program Model
(global)

Salarylncrease ConditiionalStatement

Raise

t

Abstract Program

CheckTargetSalary
is the SalaryIncrease
from SomeSubjectDomainModel
a ConditionalStatement
from ImperativeProgramming {
GreaterThanIntegerComparison from Programming {
Raise is the Valuel
0 is the value2 } is the Condition
StateChangeStatement from OOProgramming {
Salary is the Property
IntegerSum {
Salary is the Summandi
Increase is the Summand2
} is the Expression
} is the ThenStatement
ReturnStatement
from ImperativeProgramming is the ElseStatement

Figure 9. Typical software engineering artifacts.

This allows complete code bases to be formulated in an
abstract way. Starting from a domain model, programming
constructs can be introduced step by step to from an ADM.
Using a CPM, an ADM can be transformed into an AIM.

D. Abstract Program Transformations

In our experimental setup with the M3L, model transforma-
tions can be expressed by relating concepts to each other. In
other modeling languages, the respective model transformation
or model evolution facilities are used [16][17][18]. In the ML,
M2MTs can be implemented by concept refinement, concept
redefinitions, and semantic rules. M2TTs are expressed by
syntactic rules in combination with concept evaluation.

Model transformations are, in the discussion of this article,
transformations of abstract programs. The advantages of
expressing code in abstract forms are manifold.

1) Stepwise Concretization: Many aspects of an implemen-
tation must be considered at once when there is just one
code generation step. Code generation does not only have to
produce code with the correct functionality. It must also respect
nonfunctional requirements. On top of that, there are cross-
cutting concerns like error handling when producing executable
code.

2) Higher Degree of Reuse: Abstract code has a possibly
higher chance of being reusable. In particular, concepts may
serve as prototypes that are redefined to concrete uses. On

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

33

Java is a ProgrammingLanguage ({

ConditionalStatement
|- if (Condition)
ThenStatement
ElseStatement

}
Python is a ProgrammingLanguage ({

ConditionalStatement
|- if Condition
" " ThenStatement
else:
" " ElseStatement

Figure 10. A sample abstract program.

top of that, high-level designs, such as design patterns can be
codified an applied where needed [19].

3) Roundtrip Engineering: When maintaining software,
traceability from models to code is improved over M2TTs
that generate code directly from more abstract models. If a
need for change can be localized in the working software, it
is potentially easier to trace it back to models.

4) Optimization: Code optimization is more effective at
higher levels of abstraction. For example, algorithmic changes

will usually have a greater impact than local code optimizations.

With the ability to optimize code at each model layer, any
generated code will benefit from optimizations without having
to rely on PL-specific tools, such as compilers.

5) Cross-Platform Development: Finally, abstract programs
allow target code to be generated in different PLs. This
facilitates the development of distributed applications in
heterogeneous environments, and the generation of code for
different platforms from the same (abstract) code base.

E. Code Generation

The final M2TTs to produce source code are performed on
models that combine an ADM with the abstract program for
the problem at hand and a CPM that declares concrete PL
constructs.

The CPM comes with predefined translation tables that are
used to generate code. Such translation tables can be formulated
by syntactic rules in the example of the M>L.

For example, rules for language-dependent code generation
for two different languages can be such as sketeched in
Figure 10.

By separating APMs and CPMs, it is possible to generate
different code from the same abstract program. In the ML,
concepts can easily be redefined with different syntactic rules
in the context of a PL. When generating code in such a PL

context, the rules of all language constructs for that PL are used.

Variations for language dialects can be handled in subcontexts
where some rules are redefined.

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Company {
Person { Name Age }
}

CompanyImpl is a Company {
PersonRecord is a Person,
a Record from TypedPL {
Name is a String from TypedPL
Age 1is an Integer from TypedPL

}

Figure 11. Sample of a first application design model for a domain model.

VI. HIGHER PROGRAMMING ABSTRACTIONS

In this article, we focus on models of programming language
code. In an overarching modeling process, there are M2MTs
that lead from domain models to software models and ones
that lead from general software models to code models. Such
M2MTs mark the start of a new development phase.

Depending on the models chosen, the gap between models
of two subsequent phases may be rather large. Reasons are the
change of concepts and the preferred structures that combine
them. In this section, we briefly discuss two kinds of models
that may bridge the gap more gently in the following two
subsections.

Intermediate models that contain concepts from both the
application domain as well as the software domain allow
introducing a subset of the required technical concepts.

There are certain abstractions of code that provide a starting
point for such intermediate models [3]. In particular, software
design approaches for manual software development can be
used as blueprints for the creation of initial code models.

A. Domain Models as Initial Application Design Models

An advantage of a consistent (meta) modeling approach like
the one provided by the M3L is the seamless transformation of
domain-centric models towards code-centric models. This may
be achieved by hybrid models, such as high-level code models
that are based on domain models as data or object models
and that constitute a first ADM. ADMs can be formulated
in the M3L as refinements of APMs. Implementation aspects
are added stepwise to transform such a hybrid model into an
adequate ADM.

Hybrid models provide more abstract software constructs in
the sense of Domain-Driven Development or Domain-Specific
Languages (DSLs) in which implementations relate to domain
concepts directly [20]. They also provide a domain model
that includes a connecting points to an implementation that
may alternatively be added in a generic way. For information
system, for example, typically CRUD operations are added for
a domain-specific data model (see Section II-C). In such an
approach, a first model provides consistent technical types for
the attributes of (domain) entities and operations defined on
them.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

34

Company {

OrgUnit is a Record {...}

BusinessUnit is an OrgUnit {
Departments is an Department

}

Department is an OrgUnit {
Teams is a Team

}

Team is an OrgUnit ({
Members is a Person

}
CompanyImpl is a Company

OrgUnitImplementation
is a CompositePatternApplication

CompanyImpl is
OrgEntity is

the TargetModel

the ComponentClass
OrgUnit is the CompositeClass
Person is the LeafClass

Members is the AggregationRelationship

Figure 12. A sample domain model and design pattern application.

For an example, please consider a concept Person that is
part of a domain model Company. Data about Persons shall
be managed by an aggregated type that consist of a person’s
Name and Age. A first ADM for the example is outlined
in Figure 11 as Companylmpl, where persons are modeled
as Records composed of a String and an Integer. This type
information is assigned on the basis of abstract type information
as sketched in Figure 4.

Depending on the choice for a technology, there will be a
direct mapping of the data types, and (CRUD) functionality
can be added based in that mapping (see Section II-C).

B. Design Patterns

Design patterns provide proven solutions for specific
tasks [21]. Additionally, they provide design standards that
are well known amongst developers. This additional use of
patterns may be codified in model transformations. There are
patterns that are helpful in elaborating code models, and ones
that help bridging the gap from more abstract to more concrete
models.

As an example, assume organizational units in a company
defined by a domain concepts in Figure 12. This sample
company has three organizational layers, BusinessUnit, De-
partment, and Team. A typical implementation will not reflect
these domain concpts directly. Instead, there will probably
be one implementation concept OrgUnit and the Composite
Fattern [21] applied to it.

Figure 13 outlines a formalization of the pattern. A pattern
defined this way can be applied by “instantiating” the pattern

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

PatternDefinitions {

CompositePatternApplication {
TargetModel
ComponentClass
CompositeClass
LeafClass
AggregationRelationship
} |= TargetModel ({
ComponentClass is an AbstractClass
from ObjectOrientedProgramming
LeafClass is a Classifier
from ObjectOrientedProgramming,
a ComponentClass
CompositeClass is a Classifier
from ObjectOrientedProgramming,
a ComponentClass {
AggregationRelationship
is a ComponentClass

Figure 13. Layout of a pattern definition.

CompanyImpl ({

OrgEntity is an AbstractClass
from ObjectOrientedProgramming

Person is a ConcreteClass
from ObjectOrientedProgramming,
an OrgEntity
OrgUnit is a Classifier

from ObjectOrientedProgramming,
an OrgEntity

Members is an OrgEntity

}

Figure 14. Sample implementation resulting an application of the composite
pattern.

concept, CompositePatternApplication in the example of the
company organization as shown in Figure 12.

With the placeholders TargetModel, ComponentClass, Com-
positeClass, and LeafClass set by “is the”, they each evaluate to
the actual concepts given in the pattern application. Therefore,
they will generate the model structure shown in Figure 14.
Please note that the resulting implementation model Company-
Impl amends the definition in Figure 12, which leads to the
concrete OrgUnits being available in the implementation, but
now combinable via the Members relationship.

This resulting software model is not as accurate as the
domain model, but better reflects the generalized way in which
the model will be implemented.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

35

VII. CONCLUSION AND FUTURE WORK

Model-Driven Software Engineering is receiving a lot of
attention for the benefits it brings to software engineering
processes. While model-to-model and model-to-text transfor-
mations are being researched, in practice the final step of code
generation from models is too costly to be applied in many
application scenarios.

In this article, we propose an approach for defining code
generators within the MDSE toolchain based on models.
Generic models lay a foundation for all code generators. To this
end, we studied models of typical programming paradigms with
certain language-specific properties. Code generators consist
of executable models that are derived from the base models.
They should, therefore, be formulated in the same modeling
language. If the models that define a code generator are also
formulated in the same modeling framework as the models for
earlier stages of the software engineering process, then models
of the application domain and models of the software can
be closely related. We use the ML as a consistent modeling
framework.

The proposed approach allows us to achieve the goals of
reduced development costs for code generators and of increased
reuse, of both the base models and of parts of application-
specific models. The use of multiple levels of abstraction makes
each development step easier and less costly. Since the most
abstract models can be applied in a generic way, they can be
reused in different applications.

Future work includes experiments with real-world code
models before pursuing new research directions. Since many
important PLs are hybrid in nature, remaining issues with
combined APMs need to be addressed, such as the mismatch
between imperative and declarative PLs.

ACKNOWLEDGMENTS

The publication of this work was made possible through the
support of NORDAKADEMIE gAG.

REFERENCES

[1] H.-W. Sehring, “Building model-based code generators for
lower development costs and higher reuse”, in Proceedings
Nineteenth International Conference on Software Engineering
Advances, ThinkMind, 2024, pp. 26-31.

[2] R. France and B. Rumpe, “Model-driven development of
complex software: A research roadmap”, in Future of Software
Engineering (FOSE '07), 2007, pp. 37-54.

[3] K. Czarnecki and S. Helsen, “Classification of model trans-
formation approaches”, in Proceedings OOPSLA’03 Workshop
on Generative Techniques in the Context of Model-Driven
Architecture, vol. 45, 2003, pp. 1-17.

[4] H.-W. Sehring, S. Bossung, and J. W. Schmidt, “Content
is capricious: A case for dynamic system generation”, in
Proceedings Advances in Databases and Information Systems,
Springer, 2006, pp. 430—445.

[5] H. Mannaert, K. D. Cock, and J. Faes, “Exploring the creation
and added value of manufacturing control systems for software
factories”, in Proceedings Eighteenth International Conference
on Software Engineering Advances, ThinkMind, 2023, pp. 14—
19.

(6]

(7]

8]

(9]

(10]

(11]

[12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

J. D. Rocco, D. D. Ruscio, L. Iovino, and A. Pierantonio,
“Dealing with the coupled evolution of metamodels and model-
to-text transformations”, in Proceedings of the Workshop on
Models and Evolution, ser. CEUR Workshop Proceedings,
vol. 1331, CEUR-WS.org, 2014, pp. 22-31.

K. Lano and Q. Xue, “Code generation by example using
symbolic machine learning”, SN Computer Science, vol. 4,
2023.

T. Mucci, What is a code generator?, [Online] Available from:
https://www.ibm.com/think/topics/code-generator. 2024.6.28.
Think 2024, 2024.

T. E. Shulga, E. A. Ivanov, M. D. Slastihina, and N. S. Vaga-
rina, “Developing a software system for automata-based code
generation”, Programming and Computer Software, vol. 42,
pp. 167-173, 2016.

K. Radek and J. Vladimir, “Incorporating Petri nets into
DEVS formalism for precise system modeling”, in Proceeding
Fourteenth International Conference on Software Engineering
Advances, ThinkMind, 2019, pp. 184-189.

K. Czarnecki, “Overview of generative software development”,
in Unconventional Programming Paradigms, Springer Berlin
Heidelberg, 2005, pp. 326-341.

S. Trujillo, M. Azanza, and O. Diaz, “Generative metaprogram-
ming”, in Proceedings of the 6th International Conference
on Generative Programming and Component Engineering,
GPCE 07, Association for Computing Machinery, 2007,
pp- 105-114.

Object Management Group, MOF model to text
transformation language, v1.0, [Online] Available from:
https://www.omg.org/spec/MOFM2T/1.0/PDF. 2024.7.4. OMG
Document Number formal/2008-01-16, 2008.

M. Harter, “LLM Assisted No-code HMI Development for
Safety-Critical Systems”, ThinkMind, 2023, pp. 8-18.

S. Hajiaghapour and N. Schlueter, “Evaluation of different
systems engineering approaches as solutions to cross-lifecycle
traceability problems in product development: A survey”,
in Proceedings International Conference of Modern Systems
Engineering Solutions, ThinkMind, 2023, pp. 7-16.

A. Agrawal, “Metamodel based model transformation lan-
guage”, in OOPSLA '03: Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, sys-
tems, languages, and applications, Association for Computing
Machinery, 2003, pp. 386-387.

D. Song, K. He, P. Liang, and W. Liu, “A formal language
for model transformation specification”, in Proceedings of the
Seventh International Conference on Enterprise Information
Systems - Volume 3: ICEIS, INSTICC, SciTePress, 2005,
pp. 429-433.

A. P. Fontes Magalhaes, A. M. Santos Andrade, and R. S.
Pitangueira Maciel, “Model driven transformation development
(mdtd): An approach for developing model to model trans-
formation”, Information and Software Technology, vol. 114,
pp. 55-76, 2019.

A. Kusel et al., “Reuse in model-to-model transformation
languages: Are we there yet?”, Software & Systems Modeling,
vol. 14, pp. 537-572, 2 2015.

D. Thomas and B. M. Barry, “Model driven development:
The case for domain oriented programming”, in OOPSLA '03:
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, Association for Computing Machinery, 2003,
pp. 2-7.

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
1st ed. Addison-Wesley Professional, 1994.

2025, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

36

