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Abstract—Despite the increasing computing power of high-
performance computing (HPC) systems, complex tasks on large-
scale clusters can still be hindered by significant waiting times
when loading large software packages and dependencies. These
delays are often caused by network bandwidth bottlenecks, which
can severely impact application performance. To address this
challenge, this paper presents a new way of distributing software in
HPC systems. Our software pools can hold whole software stacks
in a single file, while our implemented tools can distribute software
pools efficiently to large clusters while reducing bandwidth usage
to a minimum. Software pools offer additional advantages, such
as portability, reproducibility, and security, while seamlessly
integrating into existing environments using Lmod.
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I. INTRODUCTION

This paper extends our previous work on scalable software
distribution for high performance computing systems with MPI-
based file systems in user space, which introduced a design
for a file system with the main goal to reduce bandwidth
usage when reading large files [1]. While the original paper
showed promising results, the presented file system had some
limitations that were caused by the general design approach
to tackle the given problem. Thus, this paper presents the
new concept of software pools, instead of iterating on the
work from the previous paper. Software pools are designed
to improve performance while distributing software in high
performance computing (HPC) environments, by reducing
complex software stacks into compact image files. This
allows the usage of collective communication, instead of one-
sided communication used in the previous paper, potentially
improving the performance and reducing complexity. This paper
also provides new benchmarking results, which are compared
to the results of the previous paper.

The challenge of distributing large files in HPC environments
is becoming more important, as the increase in demand for
computing power in data centers is unbroken. This is especially
true, with the recent surge of artificial intelligence and the
popularization of large language models. Because of the
slowdown of Moore’s law, HPC systems have to keep up
with the demand by increasing the total number of cores and
nodes inside the systems [2]. However, the increasing level of
parallelization also leads to a greater demand for networking
bandwidth inside HPC systems. Distributing data, container
files, or software packages to hundreds or thousands of nodes
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for a single job can lead to long waiting times before any
processing can even begin [3], [4].

We believe that the distribution of large files to many nodes
could be organized more efficiently by using tools such as the
Message Passing Interface (MPI) and Filesystem in Userspace
(FUSE) [5]. In our previous paper [1], we presented a design
for a file system in user space that uses MPI to distribute
data between nodes on demand while the nodes access the
file. This version of our file system used MPI's MPI_Get
method to directly access memory on other nodes, and was
thus called the One-Sided-Reading (OSR) file system. While
this approach reduced bandwidth usage to a minimum and
showed promising scaling in our performance test, it had some
technical limitations, and the performance was not competitive
against optimized file systems. The biggest limitation of the

previous design was the on-demand communication approach.

The overhead introduced by FUSE and MPI were the biggest
performance factors, and both are related to the number of total
read calls to the file system. The amount of individual read
operations on a file is only influenced by the size of the blocks
with which the application is accessing the file. We cannot
control the block size the application is working with, so the
room for improvement is relatively limited. The implementation
of the file system also lacked some basic functionality that
would be needed for real-world applications. Including those
features would have increased complexity and possibly reduced
performance as well.

In this paper, we want to investigate a different approach to
the problem. Instead of distributing data on demand, files will
be efficiently distributed before the user application accesses
them. We will present our concept of software pools, which
are image files containing whole directory trees which can be
easily distributed and mounted anywhere. Multiple tools are

implemented to build, distribute, and mount software pools.

Those tools are benchmarked to evaluate their performance
and viability for real-world applications and to compare this
approach to the design introduced in our previous paper.

The main contributions of this work are:

o Presenting the concept of software pools

o Implementing tools that enable the utilization of software
pools in HPC environments

o Benchmarking these tools and comparing them to previous
designs
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def my_open(path):
file_handler = open(path)

file_buffer = MPI_Win_allocate

(file_handler.size, char)
meta_buffer = int[file_handler.size]
meta_buffer = calculate_distribution

(file_handler.size, world_size)
offset, size = calculate_my_range
(file_handler.size , my_rank)
data = read(offset, size)
file_buffer[offset:offet+size]|] = data

return file_handler

Figure 1. Pseudo code for open method.

def my_read(file_handler , offset, size):

if (in_buffer(offset, size)):
return file_buffer[offset:offset+size]

targets = get_targets (offset, size)
for target in targets:
t_offset, t_size = caclulate_target_range
(meta_buffer, offset, size)

data = MPI_Get(t_offset, t_size, target)
file_buffer[t_offset:t_offset+t_size] = data

meta_buffer[ offset:offset+size] = my_rank

return file_buffer[offset:offset+size]

Figure 2. Pseudo code for read method.

The remainder of the paper is organized as follows: Section
IT presents related work and used technology. Section III

presents the concept of software pools and related tools.

Section IV outlines the methods used for for benchmarking
the implemented tools. The results of these benchmarks are
presented in Section V. In Section VI, we discuss the presented
results. Finally, Section VII contains the conclusion, and we
discuss future work.

II. BACKGROUND

In our previous paper, we presented a file system in user
space, which uses MPI to reduce bandwidth usage when

accessing large files in the context of HPC systems [1].

This design used MPI’s one-sided communication methods
to transfer data between nodes on demand. Upon opening a
file, it is split up between the nodes, and each node loads its
associated part of the file into memory, which is available to
be used with one-sided communication (see Figure 1). When
accessing a certain part of the file, the file system checks
whether it is already in the node’s memory. If that is not
the case, the node will read the missing range of bytes from
the node that initially loaded that part of the file using the
MPI_Get method (see Figure 2).

In our performance tests, the file system was able to match
or even outperform a slower existing file system providing the
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Figure 3. Time measurements on Sofja system.

home directory with about 1.4 Gb/s bandwidth. However, it was
not able to reach the performance level of a more optimized
scratch file system. At least not with the workloads we tested
during our benchmarks (see Figure 3).

We conducted further tests with more granular timing
measurements to analyze what factors were most impacting
the performance of our file system. The goal was to isolate the
impact MPI and FUSE have, specifically. The results show that
the MPI communication calls are the biggest factor affecting
the performance of the file system (see Figure 4). Since the
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Figure 4. Visualization of performance factors for the OSR file system.

overhead by FUSE is only dependent on the file size and block
size while accessing the file, it is constant for varying numbers
of nodes. At the same time, the amount of overhead introduced
by MPI will increase with a larger number of nodes.

Originally, file systems in Linux exclusively operated on the
kernel level. Thus, developing new file systems requires chang-
ing and compiling the kernel, which can be very cumbersome
and is only possible for privileged users. To make developing
new file systems more accessible, the FUSE (Filesystem in
Userspace) kernel module was incorporated into the Linux
kernel with version 2.6.14 [5]. The FUSE project consists of the
kernel module and the libfuse userspace library. By linking the
libfuse library to a program, a non-privileged user can mount
their own file system by writing their own open/read/write,
etc. methods. When the library issues a syscall, the VFS in
the kernel handles it and passes it on to the FUSE kernel
module. The FUSE kernel module then calls the linked user
space program, the FUSE file system, which finally executes
the call.

FUSE is mainly used to implement virtual file systems,
which don’t actually store data but provide a different view or
translation of an existing file system or storage device. Other
accessible resources can also be used by FUSE file systems.
For example, Fuse-archive by Google [6] allows the user to
mount different types of archive file types (.tar, .zip, etc) and
access it like a normal directory while decompressing the data
on the fly. It uses buffers to increase performance and prevent
decompressing the same files multiple times. The file system
implemented later for this work will be a virtual file system
using FUSE. Some popular distributed file systems also use
FUSE, such as GlusterF'S [7].

The most commonly used standard for passing messages
between nodes is the Message Passing Interface (MPI). MPI
provides different concepts for communication like Point-to-
Point communication, Collective communication, and One-
Sided communication. Point-to-point communication involves
two specific processes to send a message from one to the
other. It requires both processes to call respective methods,
such as MPI_Send and MPI_Recv. Developers need to
ensure that these methods are actually called by both processes.
Otherwise, one process may get stuck while waiting for the
other involved process, possibly resulting in a deadlock. There
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are also non-blocking alternatives allowing asynchronous Point-
to-Point communication (MPI_TIsend and MPI_TIrecv).
Collective communication always involves a group (or groups)
of processes to share data. For example, processes can send
a message to all other processes of the specified group
using MPI_Bcast or gather data from all other processes
with MPI_Gather, while MPI_Allgather combines both
operations into one. These examples also have non-blocking
alternatives. For synchronization when using point-to-point
or collective communication, the MPI_ Barrier method
is most commonly used. As the name suggests, it acts
as a barrier for the specified group of ranks, at which
all ranks have to wait until all ranks reach this point in
the program. One-sided communication uses the concept of
Remote Memory Access (RMA), which allows a process
to share data with another process without interrupting it.
During initialization, all processes need to specify a memory
"window’ that will be accessible by other processes. The method
MPI_Win_allocate creates the window and allocates its
memory. For the actual communication, the following two
methods are of main interest. MPI_Get reads a range of bytes
from the window on a specified target, MPI_Put writes into
the memory of a specified target, and MPI_Accumulate
realizes a reduction operation over the same memory over
multiple targets. When using any of these RMA communication
methods, they need to be encapsulated by synchronization
methods, mainly MPI_Win_lock and MPI_Win_unlock.
These methods start and terminate a RMA communication
epoch, in which accessing the specified window is possible.
MPI_Win_lock takes a specifier as an argument with the
options MPI_LOCK_SHARED and MPI_LOCK_EXCLUSIVE.
When using the keyword MPI_LOCK_EXCLUSIVE the win-
dow is completely locked for any other operations on the
window. Other MPI_Win_lock calls trying to access the
window on the same rank have to wait until the current lock is
released again by MPI_Win_unlock. The keyword should
be used when writing operations are executed on the window.
Using MPI_LOCK_SHARED is safe as long as only read
operations are issued during the RMA epoch, and it allows
multiple processes to start an epoch on the same window at
the same time. In this situation, the usage of MPI_Win_lock
is still necessary, as the method also has to initialize the
communication between the two ranks since RMA is not
entirely one-sided in MPI. MPI provides many more methods
and concepts, the ones presented here are a selection that will
be relevant for the rest of this work.

III. RELATED WORK

FUSE is said to significantly affect the performance of file
operations due to the additional context switches introduced
between user space and kernel space, as described above.
Rajgarhia and Gehan evaluated the performance of FUSE
using the Java bindings as an example [8]. They found that for
block sequential output, FUSE adds a lot of overhead when
dealing with small files and a lot of metadata but becomes
quite efficient with larger files. When running the PostMark
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benchmark, FUSE added less than 10% in comparison to native
ext3. Vangoor et al. also analyzed the performance of FUSE
and its kernel module design in greater detail [9]. According to
Vangoor et al., FUSE can perform with only 5% performance
loss in ideal circumstances, but certain workloads can result in
83% performance loss. Additionally, a 31% increase in CPU
utilization was measured. This negative effect on performance
will be relevant when we compare our file system’s performance
to the native file system later.

The performance of MPI can vary depending on the
environment and implementation that is being used. Hjelm
analyzed the performance of one-sided communication in
OpenMPI [10]. OpenMPI has supported one-sided communi-
cation since version 1.8.0 but emulated it using point-to-point
communication. With version 2.0.0, OpenMPI introduced an
implementation of one-sided communication using actual RMA
concepts. The paper provides an overview of OpenMPI’'s RMA
implementation and evaluates its performance by benchmarking
the Put, Get, and MPI_Fetch_and_op methods for latency
and bandwidth. The benchmarks showed basically constant
latency for Put and Get for messages of up to 2'C bytes
and a drastic increase of latency for messages larger than 25
bytes. Analog to the latency results, the bandwidth performance
plateaus with message sizes larger than 2'° bytes.

There are also alternative APIs to MPI for message passing
and I/O management. One of them is Adios2, presented
by Godoy et al. [11]. Adios2 is designed as an adaptable
framework for managing I/O on a wide range of scales, from
laptops to supercomputers. Adios2 provides multiple APIs
with its MPI-based low-level API being designed for HPC
applications. It realizes both, parallel file I/O and parallel
intra/interprocess data staging. Adios2 adopts the Open Systems
Interconnection (OSI) standard and is designed for high
modularity. Each provided component can be mapped to OSI
layers 4 to 7. At the core of its concept are abstract engines,
which describe I/0O workflows by bundling components from
OSI layers 4 to 7. Engines are highly adaptable to different
use cases (mainly parallel file I/O and parallel data staging)
and performance needs.

Also important to mention here is OpenMP (Open Multi-
Processing). OpenMP provides libraries for multi-threaded pro-
cessing using a shared memory model. In C/C++ #pragma’s
are used to start multi-threaded processing, they are often used
to parallelize loops without data dependency, thus multiple
iterations of a loop can be calculated concurrently. OpenMP
is limited to multi-threaded processing on a single node, so
we cannot use it for the current project. However, MPI and
OpenMP are often used together with MPI handling inter-node
communication and OpenMP used for parallelization inside
the nodes.

As High-Performance Computing (HPC) applications be-
come increasingly complex, the size and complexity of the
software packages used to support them have also grown.
Research has shown that the number of package dependencies
in HPC has skyrocketed in recent years [4]. This paper, written
by Zakira et al., explores various software deployment models,
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including store models like Spack, which is used on the HPC
systems hosted by the GWDG. The authors also introduce
their own solution, Shrinkwarp, which aims to reduce loading
times for highly dynamic applications. However, the paper’s
primary focus is on software distribution models and package
management, rather than optimizing loading times through
improved 1I/O efficiency.

The concept of creating file systems in user space to
enhance I/O performance is not a novel idea. Several existing
file systems, such as FusionFS, have already explored this
approach. FusionFS, in particular, is a user-space file system
that optimizes metadata operations by storing remote file
metadata locally and is designed to handle high-volume file
writes [12]. In contrast, in our work, we focus on optimizing
file reads to facilitate the distribution of files and software.

In HPC Systems, resources like memory and CPUs are tightly
coupled into nodes. Systems may offer different configurations
of nodes to serve different use cases. Still, studies show, that
HPC jobs often underutilise the available memory [13]. The
concept of disaggregation in HPC systems aims to decouple
resources like memory and processing power by allowing direct
memory access over network interfaces. Peng et al. conducted
a study on memory utilization, showing that 90% of all jobs
utilized less than 15% of node memory and 90% of the time the
node less than 35% of node memory is used [13]. These results
highlight the under utilization of resources by a majority of
jobs running on HPC Systems, while only few jobs profit from
well equipped compute nodes. A possible approach to improve
resource utilization could be the concept of disaggregated
architectures, as they aim to disconnect different resources
like computing power and memory capacity from each other.
Thus, the paper introduces different disaggregated architectures,
including a centralized design with dedicated memory nodes
and a decentralized design, in which nodes share their local
memory. Finally, Peng et al. present their implementation of a
remote paging library rMap. It uses a centralized approach to
allow nodes with little local memory to run memory-intensive
jobs by requesting memory pages of dedicated nodes and
swapping them into local memory.

Creating and distributing software environments is a common
problem, especially in the HPC environment. A popular
solution for this problem is containerization. A container is
a lightweight and portable way to package an application, its
dependencies, and a runtime environment into a single unit
that can be easily deployed and managed. Containers allow
the execution of software in an environment totally isolated
from the host system. Similar to virtual machines, while not
requiring dedicated resources and using the kernel of the host
operating system. The best containerization software in the
HPC environment is Apptainer. Apptainer is designed with
a focus on security and reproducibility. Rajesh Pasupuleti et.
al. discussed what advantages Apptainer containers offer for
running Al applications on HPC systems [14].

In HPC Systems, software packages are often managed by
module systems. The HPC systems hosted by the GWDG use
Lmod. Lmod is a Lua-based module system that uses module
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files to dynamically change the user’s environment [15]. This
paper aims to offer a solution for distributing software that
seamlessly integrates into the existing Lmod environment on
the GWDG systems.

In this section we reviewed different frameworks for commu-
nication including OpenMP, Adios2 and MPI. OpenMP does not
fit our given problem, as it only allows communication between
processes on the same node, and not between multiple nodes.
Adios2 allows for communication between nodes, but mainly
provides more high level API which is unnecessarily complex
for our use case. We also talked about other file systems that
aim to improve file I/O performance like FusionFS. However,
in contrast to our goal of improving performance when reading
large files, FusionFS is focused on improving performance for
writing to files. Containerization applications like Docker and
Apptainer were also mentioned. They allow running software
in isolated systems, similarly to virtual machines, but with
less overhead by using the same kernel as the host system.
We considered using container files as a base for our software
pools, but decided against it, because container images often
include all the files of a operating system and can be difficult
to handle.

Ultimately, the goal of this paper is to create a tool set that
includes features of many of the before mentioned technologies,
such as file I/O performance improvement, image file handling
and software distribution.

IV. DESIGN

The proposed design of our original paper introduced a
lot of overhead caused by the on-demand communication
approach. Using MPI calls to transfer data while files are
being accessed introduces a lot of extra latency, which is a
problem for performance-critical applications. Especially in
the HPC environment, where users might be charged per used
core hour.

For this reason, we want to investigate whether it is more
efficient to distribute the files before the application starts.
Specifically, we want to use MPI to broadcast the files and
store a copy locally so that the local copy can be accessed
during runtime. However, this becomes quite complicated and
inefficient when dealing with large directory trees and large
amounts of files. For example, simple Python environments can
easily contain tens of thousands of files. To simplify the task
of broadcasting whole software stacks and huge directory trees,
we want to pack them into a single file that is easy to distribute
and mount on the target nodes. These files, which can hold
complex software stacks, will be called software pools. Once
the software pool is mounted on the target nodes, we want
to integrate it automatically into an existing software module
system. In our case, that would be Lmod.

Being able to load multiple software packages by mounting
a single file has multiple other advantages. It reduces the Inode
usage and metadata operations on the original file system. This
is especially true when dealing with a lot of files, as is the case
when using Python, Conda, or similar environments. Software
pools can make it easier to manage collections of software
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# create file pool.ext2 which contains the

# software pool
dd if=/dev/zero of=pool.ext2 bs=<block-size> \
count=<number—blocks> conv=sparse

# create file system and copy given directory
# as root directory into the pool file
mke2fs pool.ext2 —-d <source-directory >

Figure 5. Bash commands for building a software pool.

packages on multiple levels. We plan to provide software pools
on personal, project, and data center level, so that users can
easily modify their environment for their current tasks. Software
pools make sharing and reproducing software collections easy,
as they can include binaries and source code. That allows the
software pools to be shared between users and different HPC
Systems. Software pools offer a simple way to add a trust
factor for integrity and trustworthiness by offering a built-in
method to sign and verify pool files using existing algorithms
with private and public key pairs.

Choosing the correct file format for the project is crucial.
The first idea was to use apptainer containers as software pools.
Being able to quickly build containers from a simple definition
file can be very beneficial for software pools’ use cases. The
directory tree of an apptainer container can be mounted by
dumping the container’s content using apptainer’s sif tool.
The resulting squashFS image could then be mounted using
squashfuse. However, while testing this workflow, multiple
drawbacks became obvious. Most importantly, apptainer images
often take quite a long time to build and cannot be modified
without completely rebuilding them. That makes the process
of creating a software pool unnecessarily cumbersome and
time-consuming.

Instead, we decided to focus on simpler file types and we
used image files as containers for ext2, ext3, or ext4 file systems.
To handle all operations in the context of the files representing
software pools, we implemented our own tool called sw-pool.
This tool offers the following commands: build, sign, verify,
and load.

The build command creates a software pool from a given
source directory. It takes the output file and source directory
as arguments and the file size as an option. This directory
should already include everything the pool should contain,
most importantly, the binaries of the applications included
in the pool. First, a file with a fixed size has to be created.
This file should be sparse to ensure it only occupies as much
disk space as needed. Then, the file can be written to using
the mke2fs tool. It is part of the E2fsprogs package, which
includes various utilities to handle ext2 (or ext3, ext4) file
systems. With mke2fs, we can initialize the file system and
copy the content of the software pool in one step, as you can
see in Figure 5. This image can later be mounted using the
load command.

The sign and verify commands add a factor of trustworthiness
and integrity to the software pools. Internally, we use OpenSSL
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with the —sign and -verify to sign and verify the file with
a given private and public key pair.

The load command broadcasts the given software pool, writes
it to local temporary storage, and mounts it to the given mount
point. The broadcasting and mounting procedures are done
with other standalone tools we implemented for this use case.
These tools are separated from the primary software pool tool,
as broadcasting and mounting files with dedicated tools can
also be very helpful outside of the context of software pools.

When the load command is called, it first determines the
ideal temporary directory to store the local copy of the software
pool. Then, our tool scalable-fs—cp is called. It takes an
input file or directory and the target path as arguments. Before
it does anything else, it checks if the input file already exists in
all of the nodes it is running on. If the file is already present,
nothing has to be done, so the tool can simply exit. Only if
the file doesn’t exist on all nodes does it start the procedure
to broadcast the file using MPIL.

Before the file can be broadcasted, it has to be read into
memory. This is not done by one node, instead the file is split

into IV sections, with /N being the number of nodes in our job.

This is more efficient, as we know from our previous paper.
After the sections of the file are loaded into memory, it can
be broadcasted. For that, we iterate over the nodes, and each
node broadcasts its section to the other nodes. This is not done
with a single big chunk, however. Since our software pools are
sparse files, the file size can be quite large, even though only a
small part of the file was actually written. The rest of the file
is filled with zeros, as we used /dev/zero as input when
creating the file. To avoid broadcasting all the empty parts
of the file, each section is processed block by block, with a
default block size of 4096 bytes. Each will only be broadcasted
if it contains a byte that is not zero. This should significantly
reduce the time it takes to broadcast large pool files that are
partly empty without having a big impact on broadcasting
fully written pools, as we check for the first nonzero byte
for each block. For this to work, the array to store the file in
memory should be initialized to zeros. This can be done easily
by simply using calloc instead of malloc in C.

Once the file is broadcasted, it can simply be written to a
given target location on the nodes. If the tool detects that it
is only running on a single node, it skips the broadcasting
procedure and simply uses the cp command to copy the file
to the given target location. Pseudo code for this procedure is
listed in Figure 6. Copying directories is also supported. This
comes with a performance loss, however, since the directory
has to be compressed to and extracted from an archive file
before and after broadcasting.

Once the distribution of the software pool is done, the
software pool tool uses our scalable—-fs-mount tool to
mount the local copy to a given mount point. This tool supports
different file types, in the case of our software pool file, it uses
fuse2fs, which is also part of the E2fsprogs package.

Now that we have successfully distributed and mounted the
software pool, the included software must be made available
to the user. Theoretically, the user could just add the binary
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def bcast_cp(input_file , output_path,

rank , world_size):
if file_exists:
return 0

if world_size > 1:
file_buffer = zeros(file_size (input_file))
offset, range = get_section (rank)
file_buffer[offset:offset+range] =

input_file[offset:offset+range]
for curr_rank in world_size:
blocks = split(file_buffer ,

if not is_empty(block):
MPI_Bcast(block, curr_rank)
write (output_path , file_buffer)

else:

copy (input_file ,

curr_rank)

output_path)
Figure 6. Pseudo code for scalable-fs-cp.

<Pool-Name>
L,<Pool—Version>
| modulefiles
L,<Pool—Name>
L,<Pool—Version>
L,<SW7Name>
L,<SW—Version>.modulefile
| install
| <sw-Name>
L,<SW—Version>
L,binaries...
| _source
<SW-Name>
L,<SW—Version>
L,source code. ..
| config

Figure 7. Proposed Software Pool Structure.

locations manually to the path. While this might be feasible
for small software pools, it would not work for more complex
software stacks, since most HPC systems already use module
systems that can solve this problem for us, especially. In our
case, the HPC systems hosted by the GWDG use the Lmod
module system. As described in Section II, Lmod uses module
files to load modules into the user’s environment. Lmod looks
for module files based on the MODULEPATH environment
variable. To make our software pool visible for Lmod, we need
to provide the correct module files and add the corresponding
paths to the MODULEPATH variable. This happens in the

gwdg-sw load command after mounting the software pool.

For this process to reliably work, the pools need to have a
standardized format so that the gwdg—sw tool knows where to
find the module files. Our proposed pool structure is presented
in Figure 7.

The directory structure for the module files might seem
unnecessarily complex. However, it is needed for Lmod to
detect the correct module and software package hierarchy. This
is complicated by the fact that Lmod requires the module files
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local
local
local
local
local
local

version = myModuleVersion ()

pkgName = myModuleName ()

mountPoint = os.getenv ("GWDG_SW_MOUNT")

poolName = "test—-pool"

poolVersion = "0.5"

pkg = pathJoin(mountPoint , poolName, poolVersion
,"install" ,pkgName, version ,"bin")

prepend_path ("PATH" ,pkg)

Figure 8. Module File Example.

to be in a different directory than the module that the module
file itself points to. The module file, in this case, would add
the path of the binaries of the corresponding software in the
install directory. An example for what a module file should
look like can be seen in Figure 8.

The source and config directories are optional. However,
pool authors should consider making the pools reproducible.
To support this, any source code would go into the source
directory, and any other files that are required for building the
pool should go into the config directory.

With this in place, all the software packages included in
the software pool are visible for Lmod after loading the pool
with gwdg-sw load <pool-name>/<pool-version>
and can be activated with Lmod using
module load <SW-name>/<SW-version>.

V. METHOD

It is difficult to compare the performance of the tools we
introduced in this paper to the file system we implemented in
our previous paper, as they follow two completely different
approaches. The file system from our previous paper impacted
the latency of each read operation during the execution of the
user’s application. The software pool tools we implemented
in this paper distribute the software packages before the user
application starts. Thus, the effect on read latency is reduced
because we still have overhead caused by FUSE, but no
overhead from MPI. The overhead from MPI is shifted to
the loading procedure which happens before the start of the
user application. To see if this improves the overall situation,
we can compare the total time it takes to read a file with the
OSR file system with the time it takes to distribute the file in
a software pool and read it afterward.

The tests will be run on the Emmy system hosted by the
GWDG [16]. The system consists of 1.423 nodes with 111.464
cores. The system scored 5,95 PetaFlop/s during the LINPACK
benchmark.

For comparison with the OSR file system, the results from
the previous paper will be used. In this paper, we will focus
our benchmarks on files with a size of 1 GB since the project
aims to improve performance with large software stacks, and
the largest test case from the previous paper is 1 GB.

For the first part of our benchmarks, we will measure the time
it takes to distribute a pool using our introduced sw—-pool tool
with 2, 4, 8, 16, and 32 nodes. Ten runs will be conducted for
each number of nodes, and the average of the ten runs will be
calculated to obtain a robust result. To match the benchmarks
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of our previous paper, we will create a software pool, that
holds a file with the size of 1 GB filled with random data.
The commands to create our pool for tests are listed in Figure
9. Note that the file for the software pool has to be slightly
larger than the test file since it needs some space to create the
ext2 file system. To ensure that caching mechanisms do not
affect our testing results, the test data will be regenerated on a
different node before each run.

This software pool will be saved to the scratch file system.
We will measure the overall time the command for mounting
the software pool takes. The exact command we will use to
execute and measure the test is listed in Figure 10. Here, the
$LOCAL_TMPDIR variable points to the local SSDs of the
nodes, and the $SCRATCH variable points to the SSDs of the
remote scratch file system. In order to isolate how much of
the total time is used for reading and broadcasting the file,
additional time measurements are added to the code using the
MPI_Wtime method.

# create test file
head —-c 1GB /dev/urandom > test—-pool/random.data

# create pool inlcuding test file

sw—pool build -s 1020MB test —pool.ext2 test—-pool

Figure 9. Procedure to create software pool for testing.

time mpirun sw—pool —-v load —-m $LOCAL_TMPDIR/mnt \
$SCRATCH/random . ext2

Figure 10. Command to time and execute test for broadcasting and mounting
a software pool.

Secondly, we will measure the time it takes to calculate a
hash sum of the test file inside the container after the software
pool is copied to local SSDs and mounted using our tools. We
only have to run this test on one node since this operation
would always happen independently of all the nodes inside
a bigger job, as the software is copied to local SSDs on the
nodes. The results of this test can then be added to the results
of the previous test for any number of nodes. Again, there will
be 10 runs, to produce a dependable result. The same test will
be conducted, but without accessing the test file through a fuse
mount. By comparing these two results, we can isolate the effect
that the fuse mount has on our setup’s overall performance.

VI. RESULTS

The results of our first benchmark can be seen in Figure 11.

In this figure, we compare the performance of the sw-pool
tool, including the time to calculate a hash sum of the test file

over the mount point, to the results from our previous paper.

We can see a clear improvement when comparing the new
results to the performance of the first implementation of the
OSR file system. The software pool tools are almost twice
as fast overall: 10.224 seconds against 19.606 seconds with
two nodes and 16.159 seconds against 27.866 seconds with
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Time to compute hashsum of 1 GB file
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Figure 11. Timings of Software Pool Tool, OSR, OSR without caching and

native file system.

16 nodes. With more than 2 nodes, the software pools are
almost 25 % faster than the improved OSR implementation
(16.159 seconds against 20.889 seconds with 16 nodes). The
native scratch file system is still much faster than all the other
options.

The results from the performance factor analysis can be
seen in Figure 12. Here we compare the results when using
software pools against the first implementation of the OSR file
system. The biggest difference is clearly the time needed for the
communication procedures. We were able to reduce that from
16.711 seconds to 4.512 seconds for handling a 1 GB sized
file. The overhead caused by using a fuse also seems slightly
improved (3.921 seconds including hash sum calculation against
5.557 seconds excluding hash sum calculation).

VII. DISCUSSION

The software pools and corresponding tools that we presented
in this paper showed much-improved performance compared

to the OSR file system we presented in our previous paper.

This was achieved while still reducing the load put on the
storage nodes and network infrastructure to a minimum. The
performance increase was achieved by shifting the critical

communication procedure to before the user application starts.

That allowed us to use MPI’s broadcasting method instead of
one-sided communication. This change also results in much
better latency during runtime, which can lead to an even bigger
performance advantage in real-world applications. Especially
since with the new approach, existing caching mechanisms in
fuse2fs and the underlying native file system on the node
can have a positive effect, while the OSR file system did not
have a working caching mechanism. Additionally, the concept

International Journal on Advances in Software, vol 18 no 1 & 2, year 2025, http://www.iariajournals.org/software/

Composition of performance factors (1 GB file, 8 nodes)

P

s xmp_open

xmp_read
(MPI overhead)

N FUSE overhead
avax other
== sha256sum

Time in sec.
L/ N\
sw-pool load 7§ = read
Ak vav: broadcast
oo, ww other
‘0 sha256sum
sha256sum :: VA% (incl. fuse overhead)
e

o
N
w

5 10 15 2

o -

30

Figure 12. Composition of performance factors for the OSR file system and
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of software pools and the implemented tools are much more
mature than the existing implementation of the OSR file system.
This was possible since we were able to use existing tools,
such as make2fs and fuse2fs for handling and mounting
our software pool image files and openss1 for signing and
verifying our software pools. With our integration into the
existing Lmod environment, the software pool tools are almost
ready to go into production, while the OSR implementation is
missing basic features, such as a working caching mechanism,
handling multiple files at once, and multi-threading.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we presented a new way to distribute software
in HPC environments with our software pools. Software
pools offer a simple way to create software environments
on HPC systems. By being able to represent whole software
stacks in a single file, software pools offer multiple additional
benefits. Software pools can be shared easily between users
and HPC systems, are reproducible, and reduce the load on
stage nodes and network infrastructure. By using a single
file, software pools also reduce the usage of Inodes and offer
an additional trust factor by being able to sign and verify
them with private/public key pairs. The corresponding tools
we implemented showed greatly improved performance when
compared to the OSR file system from our previous paper. This
was achieved by shifting the critical communication procedures
to before the user application runs. We were able to seamlessly
integrate software pools into the existing module management
software Lmod. The tools we presented are already very mature
and can go into production without much additional work.

In the future, we want to put software pools into production
on the HPC systems hosted by GWDG. To that end, we need
to work on documentation, user support, and user training.
The implemented tools should also be further improved and
expanded. For example, we want to explore other file types,
such as squashFS images, that could be used as software pools.
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