Weakly Uniformly Rotund Banach spaces

A. Moltó, V. Montesinos, J. Orihuela and S. Troyanski *

Abstract

The dual space of a WUR Banach space is weakly K-analytic.

A Banach space is said to be weakly uniformly rotund (WUR -for short) if given sequences (x_n) and (y_n) in the unit sphere with $||x_n + y_n|| \to 2$ we should have weak- $\lim_{n}(x_n-y_n)=0$. This notion has become more important since Hájek proved that every WUR Banach space must be Asplund [8]. To obtain this result he uses ideas of Stegall for the equivalence between being an Asplund space and having the Radon-Nikodym property on its dual. Using this result and the Fabian-Godefroy [4] projectional resolution of the identity in the dual of an Asplund space, Fabian, Hájek and Zizler have recently showed that for a WUR Banach space E the dual space E^* is a subspace of a WCG Banach space. Indeed they proved that for a Banach space E to have an equivalent WUR norm is equivalent to the fact that the bidual unit ball $B_{E^{**}}$, endowed with the weak-* topology, will be a uniform Eberlein compact [5]. Consequently they obtain that E must be LUR renormable, too [7]. The aim of this note is to provide a direct proof of the fact that every WUR Banach space E has a dual space E^* which is weakly K-analytic. This provides a topological approach to Hájek's result on the Asplundness of the space E as well as the LUR renorming consequence on E after [6].

This paper was prepared during the visit of the forth named author to the University of Valencia in the Spring term of the Academic Year 1995-96. He acknowledges his gratitude to the hospitality and facilities provided by the University of Valencia.

In this paper, E will denote a Banach space, E^* its dual, B_E its closed unit ball, S_E its unit sphere.

Definition 1 A Banach space $(E, ||\cdot||)$ is said to be uniformly Gâteaux differentiable (UGD -for short) if for every $0 \neq x \in E$,

$$\lim_{t \to 0} \sup_{\|y\|=1} \frac{\|y+tx\|+\|y-tx\|-2}{t} = 0.$$

^{*}The first named author has been supported in part by DGICYT Project PB91-0326, the second named author by DGICYT PB91-0326 and PB94-0535, the third named author by DGICYT PB95-1025 and DGICYT PB91-0326, the fourth named author by a grant from the "Conselleria de Cultura, Educacio i Ciencia de la Generalitat Valenciana" and by NFSR of Bulgaria Grant MM-409/94.

The following theorem is the main result of this note:

Theorem 1 Let E be a Banach space such that E^* has an equivalent (not necessarily dual) UGD norm (in particular, let E be WUR Banach space). Then E^* is weakly K-analytic.

The proof is based on the following assertions

Fact 1 (Šmulyan, see [3, Theorem II.6.7]) The Banach space E is WUR if and only if E^* is UGD.

Theorem 2 (Talagrand [9]) Let K be a compact space. The following assertions are equivalent:

- 1. C(K) is weakly K-analytic.
- 2. There is an increasing mapping $\sigma \to S_{\sigma}$ from $\mathbb{N}^{\mathbb{N}}$ (endowed with the product order) in the family of compact subsets of C(K) endowed with the topology of pontwise convergence, such that $\cup \{S_{\sigma} : \sigma \in \mathbb{N}^{\mathbb{N}}\}$ separates points of K.

Remark 1 In [1] the validity of the previous theorem for an arbitrary topological space is studied. In particular, for every subset W of a Banach space E it follows that (W, weak) is K-analytic if and only if $W = \bigcup \{S_{\sigma} : \sigma \in I\!\!N^{I\!\!N}\}$ and every S_{σ} is weakly compact with $S_{\sigma} \subset S_{\gamma}$ whenever $\sigma \leq \gamma$ in the product order. This will be the only tool necessary here from the theory of K-analytic spaces.

Remark 2 From Theorem 1 and [6], see also [3, p. 296], we get that every WUR Banach space admits an equivalent LUR norm.

Remark 3 From Theorem 1 it follows Hájek's [8] result asserting that every WUR Banach space is Asplund. Indeed, if we assume that E is also separable the K-analytic structure of (E^*, weak) should imply that E^* is separable too. Let us explain here an easy argument following ideas from [2]: Assume (E^*, weak) is K-analytic. Let T be an usco mapping from $\mathbb{N}^\mathbb{N}$ into the set of subsets of (E^*, weak) with $T(\mathbb{N}^\mathbb{N}) = E^*$ (T can be assumed to be increasing by Remark 1). Let P be the natural projection from $(E^*, \text{weak}^*) \times \mathbb{N}^\mathbb{N}$ onto (E^*, weak) . Consider the restriction Q of P to $\Sigma := \{(x, \alpha) : (x, \alpha) \in E^* \times \mathbb{N}^\mathbb{N}, \ x \in T(\alpha)\}$. It is easy to prove that Q is continuous: let (x_i^*, α_i) be a net in Σ such that $(x_i^*, \alpha_i) \to (x, \alpha) \in \Sigma$. As $\alpha_i \to \alpha$ we can find $\beta \in \mathbb{N}^\mathbb{N}$ such that $\alpha \leq \beta$ and $\alpha_i \leq \beta$, $\forall i$. Then $x_i \in T(\beta)$, $x \in T(\beta)$, and $x_i \stackrel{\text{weak}^*}{\longrightarrow} x$, hence $x_i \stackrel{\text{weak}}{\longrightarrow} x$. Therefore E^* is separable too. See also theorem 2.4 in [9]. With more generality, any submetrizable topological space X is analytic if and only if there is a family of compact sets $\{S_\sigma : \sigma \in \mathbb{N}^\mathbb{N}\}$ in $X, S_\sigma \subset S_\gamma$ whenever $\sigma \leq \gamma$ in the product order and $X = \cup \{S_\sigma : \sigma \in \mathbb{N}^\mathbb{N}\}$, [2, theorem 7].

Proof of Theorem 1. It is well known that E admits an equivalent WUR norm. Then E^* has an equivalent dual UGD norm. Then given $x^* \in S_{E^*}$ and $\epsilon > 0$, there exists $\delta_{\epsilon}(x^*) > 0$ such that

$$||y^* + tx^*|| + ||y^* - tx^*|| \le 2 + \epsilon |t|$$
, if $|t| < \delta_{\epsilon}(x^*)$ and $y^* \in S_{E^*}$.

Given a positive integer p define

$$S_p(\epsilon) := \{ x^* \in S_{E^*} : \delta_{\epsilon}(x^*) > \frac{1}{p} \}.$$

Obviously,

$$S_1(\epsilon) \subset S_2(\epsilon) \subset \ldots \subset S_p(\epsilon) \subset S_{p+1}(\epsilon) \subset \ldots$$

and $\bigcup_{p=1}^{\infty} S_p(\epsilon) = S_{E^*}$. Let $\alpha = (a_n) \in \mathbb{N}^{\mathbb{N}}$. Define

$$S_{\alpha} := \bigcap_{n=1}^{\infty} S_{a_n}(\frac{1}{n}).$$

We have

$$S_{E^*} = \bigcup \{ S_\alpha : \ \alpha \in \mathbb{N}^{\mathbb{N}} \},$$

and

$$S_{\alpha} \subset S_{\beta}$$
, whenever $\alpha = (a_n) \leq \beta = (b_n)$ (i.e., $a_n \leq b_n$, $\forall n$).

This sets will give us the K-analytic structure of E^* in the weak topology. Indeed, we have the following

Claim 1 Given $x^{**} \in B_{E^{**}}$, $\epsilon > 0$ and $\alpha = (a_n) \in \mathbb{N}^{\mathbb{N}}$, there is $x \in B_E$ such that

$$|\langle x^{**} - x, x^* \rangle| < \epsilon, \ \forall x^* \in S_{\alpha}.$$

Proof of the claim: Find $n \in \mathbb{N}$ such that $\frac{3}{n} < \epsilon$. Pick $y^* \in S_{E^*}$ such that

$$\langle x^{**}, y^* \rangle > 1 - \frac{1}{n a_n}.$$

Find $x \in B_E$ such that

$$\langle x, y^* \rangle > 1 - \frac{1}{na_n}$$
.

Let $x^* \in S_{\alpha}$. Since $x^* \in S_{a_n}(\frac{1}{n})$

$$||y^* + \frac{1}{a_n}x^*|| + ||y^* - \frac{1}{a_n}x^*|| \le 2 + \frac{1}{na_n}.$$

In particular we have

$$\langle x^{**}, y^* + \frac{1}{a_n} x^* \rangle + \langle x, y^* - \frac{1}{a_n} x^* \rangle \le 2 + \frac{1}{na_n}$$
 (1)

hence

$$\frac{1}{a_n}\langle x^{**} - x, x^* \rangle \le 2 + \frac{1}{na_n} - \langle x^{**}, y^* \rangle - \langle x, y^* \rangle < \frac{3}{na_n} < \frac{\epsilon}{a_n}$$

and so

$$\langle x^{**} - x, x^* \rangle < \epsilon, \ \forall x^* \in S_{\alpha}.$$

By interchanging x^{**} and x in (1), we get

$$|\langle x^{**} - x, x^* \rangle| < \epsilon, \ \forall x^* \in S_{\alpha}.$$

and this proves the claim.

To finish the proof of the Theorem, observe that, by the Claim, each S_{α} is weakly relatively compact since it is weak*-relatively compact. Thus, we have

$$S_{E^*} \subset \bigcup \{\overline{S_{\alpha}}^{\text{weak}} : \alpha \in \mathbb{N}^{\mathbb{N}}\} := W$$

and W is weakly K-analytic in E^* [Theorem 2 and Remark 1]. Consider the map

$$(W, \text{weak}) \times [0, +\infty[\xrightarrow{\Psi} (E^*, \text{weak})$$

given by $\Psi(x^*,t) := t.x^*$. Ψ is continuous, $[0,+\infty[$ is a Polish space, $(W,\text{weak}) \times [0,+\infty[$ is K-analytic and $\Psi(W \times [0,+\infty[) = E^*, \text{ so } (E^*,\text{weak})$ is itself K-analytic. q.e.d.

References

- B. Cascales: On K-analytic locally convex spaces. Arch. Math. 49 (1987), 232-244.
- [2] B. Cascales and J. Orihuela A Sequential Property of Set-Valued Maps. J. Mathematical Analysis and Appl. 156 (1991), 86-100.
- [3] R. Deville, G. Godefroy and V. Zizler: Smoothness and renormings in Banach spaces. Longman Scientific and Technical, 1993.
- [4] M. Fabian and G. Godefroy: The dual of every Asplund admits a projectional resolution of the identity. Studia Math. **91** (1988), 141-151.
- [5] M. Fabian, P. Hájek and V. Zizler: On uniform Eberlein compacta and uniformly Gâteaux smooth norms. Serdica Math. J. 23 (1997) 351-362.
- [6] M. Fabian and S. Troyanski: A Banach space admits a locally uniformly rotund norm if its dual is a Vašák space. Israel J. Math. 69 (1990), 214-224.
- [7] G. Godefroy, S. Troyanski, J. H. M. Whitfield and V. Zizler: Smoothness in weakly compactly generated Banach spaces. J. Functional Anal. 52 (1983), 344-352.
- [8] P. Hájek: *Dual renormings of Banach spaces*. Commentationes Matematicae Universitatis Carolinae. **37** (1996), 241-253.

[9] M. Talagrand: Espaces de Banach faiblement K-analytiques. Annals of Mathematics, **110** (1979), 407-438.

Address: Departament d'Anàlisi Matemàtica. Universitat de València. Dr. Moliner, 50. 46100 Burjassot (València), Spain

Address: Departamento de Matemática Aplicada. E.T.S.I. Telecomunicación. Universidad Politécnica de Valencia. C/ Vera, s/n. 46071-Valencia, Spain

Address: Departamento de Análisis Matemático. Universidad de Murcia. Campus de Espinardo. Murcia, Spain.

Address: Faculty of Mathematics and Informatics. Sofia University. 5, James Bourchier blvd. 1126 Sofia, Bulgaria.