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Abstract

It is known that if a Banach space is quasi smooth (i.e. its duality
mapping is restricted weak upper semicontinuous) then its dual has no
proper closed norming subspace. Moreover if a Banach space has an
equivalent norm whose duality mapping has a graph which contains
the graph of a restricted weak upper semicontinuous mapping then
the space is Asplund. We prove here that if a Banach space has an
equivalent norm whose duality mapping has a graph which contains
the graph of a restricted weak upper semicontinuous mapping then
its dual has no closed proper norming subspace. We shall apply this
theorem in order to give two new characterizations of reflexivity.

È noto che se uno spazio di Banach è quasi-smooth (cioè, la sua
applicazione dualità è ristretta debole semicontinua superiormente),
allora il suo duale non ha subspazi chiusi normanti propri. Inoltre, se
uno spazio di Banach ha una norma equivalente la cui applicazione du-
alità ha un grafo che contiene superiormente un’applicazione ristretta
debole semicontinua superiormente, allora lo spazio è Asplund. Dimos-
triamo che se uno spazio di Banach ha una norma equivalente la cui
applicazione dualità ha un grafo che contiene quello di un’applicazione
ristretta debole semicontinua superiormente, allora il suo duale non ha
subspazi chiusi normanti propri. Questo teorema viene applicato per
dare nuove caratterizzazioni di riflessività.

∗Supported in part by DGICYT Grant PB94-0535. AMS Subject classification: 46B10,
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1 Introduction.

One important tool in Banach space theory is the study of several forms of
the continuity of the duality mapping. For a Banach space X this mapping
is defined by

∂‖ · ‖X(x) = {x∗ ∈ SX∗ : 〈x, x∗〉 = 1} , x ∈ SX ,
where SX denotes its unit sphere. This is a particular case of a general
definition: If f is a convex continuous function defined on an open subset
D of X and x ∈ D, then the subdifferential of f at x is defined by

∂f(x) = {x∗ ∈ SX∗ : 〈y − x, x∗〉 ≤ f(y)− f(x), ∀y ∈ D} .
Through this paper we shall denote by BX the closed unit ball of a

Banach space and by SX its unit sphere. When there is no confusion the
duality mapping will be denoted by ∂‖ · ‖(x).

A set valued mapping Φ from a topological space X into nonempty sub-
sets of a topological vector space Y endowed with the topology τ is said to be
τ -upper semicontinuous at x ∈ X if given an open subset W of Y containing
Φ(x) there exists an open neighbourhood U of x such that Φ(U) ⊂ W . Fo-
llowing [G-M] we say that Φ is restricted τ -upper semicontinuous at x ∈ X
if given W a neighbourhood of 0 ∈ Y there exists an open neighbourhood
U of x such that Φ(U) ⊂ Φ(x) +W . In this paper we shall always consider
X a Banach space endowed with the norm topology.

Contreras and Payá proved that a Banach space X is an Asplund space
if ∂‖ ·‖ is restricted weak upper semicontinuous (they called a Banach space
with this property quasi-smooth [C-P]). There they proved also several char-
acterizations of reflexivity; see also [F-P] and [G-G-S] for the study of the
restricted norm upper semicontinuity of the duality mapping. Giles and
Moors [G-M] proved a similar result under a (formally) more general condi-
tion: A Banach space X is an Asplund space if it has an equivalent norm
whose duality mapping has a graph which contains the graph of a restricted
weak upper semicontinuous mapping.

In this paper this weakened condition is used to prove that in such a
case the dual of a Banach space has no closed proper norming subspace. A
closed subspace N of X∗ is norming if

‖x‖ = sup {|〈x, x∗〉| : x∗ ∈ BN} .
By the Hahn-Banach Theorem, a closed subspace N of X∗ is norming if and
only if BN is w*-dense in BX∗ . Observe that the property that for some
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equivalent norm the dual contains no proper norming subspace and the
property of being Asplund are independent, as is shown in [J-M]. We shall
apply this result to give two new characterizations of reflexivity, improving
the aforesaid results of Payá and Contreras.

2 A sufficient condition for the dual of a Banach
space containing no closed proper norming sub-
space.

First of all we will prove the separable case. We need the following results:

Theorem 2.1 ([G-M] Theorem 4.3) A Banach space is an Asplund space if
it has an equivalent norm whose duality mapping has a graph which contains
the graph of a restricted weak upper semicontinuous mapping.

The following lemma is a slight improvement of a lemma of Godefroy.

Lemma 2.1 ([C-P] Lemma 2.2) Let B be a boundary (i.e. a subset of SX∗
with B∩∂‖·‖(x) 6= ∅ for all x ∈ X) such that B ⊂ co‖·‖(F+αBX∗) for some
countable subset F ⊂ X∗ and some 0 ≤ α < 1. Then lin(F ) is norm-dense
in X∗.

The following theorem is the separable case of Theorem 2.3 below.

Theorem 2.2 (Separable case) Let X be a separable Banach space such
that there exists Φ : SX → P(X∗) restricted weak upper semicontinuous
with the property Φ(x) ⊂ ∂‖ · ‖(x), ∀ x ∈ X. Then X∗ has no closed proper
norming subspace.

Proof : By Theorem 2.1 X is an Asplund space, so there exists (xn)∞n=1

dense in SX such that ‖ · ‖ is Fréchet differentiable at each xn. Let

{x∗n} = Φ(xn) = ∂‖ · ‖(xn).

Let N be a norming subspace of X∗. Since BN is w*-dense in BX∗ and BX∗
is metrizable in the w*-topology, there exists

(
x∗n,m

)∞
m=1

⊂ BN such that

w∗ − lim
m→∞x

∗
n,m = x∗n , ∀n ∈ IN.

Let F =
{
x∗n,m : n,m ∈ IN

}
, A = co‖·‖

(
F + 1

2BX∗
)

and B = A ∩ SX∗ .
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It is easy to prove that B 6= ∅. If B were not a boundary, there would
exist x ∈ SX such that B ∩ ∂‖ · ‖(x) = ∅ , that is A ∩ ∂‖ · ‖(x) = ∅. Since
A is convex with nonempty ‖ · ‖-interior and ∂‖ · ‖(x) is convex, there exists
z∗∗ ∈ SX∗∗ such that

sup {〈z∗∗, a∗〉 : a∗ ∈ A} ≤ inf {〈z∗∗, x∗〉 : x∗ ∈ ∂‖ · ‖(x)} .

We claim that

f∗ ∈ F ⇒ 1
2

+ 〈z∗∗, f∗〉 ≤ inf {〈z∗∗, x∗〉 : x∗ ∈ ∂‖ · ‖(x)} .

Let η > 0, f∗ ∈ F . There exists z∗ ∈ BX∗ such that 1− η < 〈z∗∗, z∗〉. Since
f∗ + 1

2z
∗ ∈ A, we have

inf {〈z∗∗, x∗〉 : x∗ ∈ ∂‖ · ‖(x)} ≥ 〈z∗∗, f∗ +
1
2
z∗〉 =

= 〈z∗∗, f∗〉+
1
2
〈z∗∗, z∗〉 > 〈z∗∗, f∗〉+

1
2

(1− η),

and it is enough to let η → 0+ in order to prove the claim.
Let W :=

{
y∗ ∈ X∗ : |〈z∗∗, y∗〉| < 1

2

}
, a weak neighbourhood of 0 in X∗.

By the claim we have F ∩ (∂‖ · ‖(x) +W ) = ∅.
Since Φ is restricted weak upper semicontinuous at x, there exists ε > 0

such that Φ(B(x, ε)) ⊂ Φ(x) + 1
2W .

As (xn) is dense in SX , there exists n ∈ IN such that ‖xn−x‖ < ε. Since
‖ · ‖ is Fréchet differentiable at xn and limm→∞〈xn, x∗n,m〉 = 〈xn, x∗n〉 =
1, then by the S̆mulyan characterization of Fréchet differentiability we get
limm→∞ ‖x∗n,m − x∗n‖ = 0. It follows that there exists f∗ ∈ F such that
‖f∗ − x∗n‖ < 1

4 , hence 〈z∗∗, f∗ − x∗n〉 ≤ ‖f∗ − x∗n‖ < 1
4 , so f∗ ∈ x∗n + 1

2W .
Since ‖xn − x‖ < ε and ‖ · ‖ is Fréchet differentiable at xn

{x∗n} = ∂‖ · ‖(xn) = Φ(xn) ⊂ Φ(B(x, ε)) ⊂ Φ(x) +
1
2
W.

It follows that f∗ ∈ Φ(x) + 1
2W + 1

2W ⊂ Φ(x) + W . This contradicts
F ∩ (∂‖ · ‖(x) + W ) = ∅. Hence B is a boundary. By Lemma 2.1 lin(F ) is
norm-dense in X∗. Since F ⊂ BN we have lin(F ) ⊂ N and because N is
‖ · ‖-closed, we get N = X∗.

We need the following simple lemma in order to prove the general case:
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Lemma 2.2 Let Φ : SX → P(X∗) be a restricted weak upper semiconti-
nuous mapping such that Φ(x) ⊂ ∂‖ · ‖X(x) for all x ∈ X. Let Y be a closed
subspace of X. Define Ψ : SY → P(Y ∗) as Ψ(y) = {x∗|Y : x∗ ∈ Φ(y)}.
Then

i) Ψ(y) ⊂ ∂‖ · ‖Y (y) for all y ∈ Y .
ii) Ψ is restricted weak upper semicontinuous.

Proof : i) Let x∗ ∈ Φ(y) ⊂ ∂‖ · ‖X(y). Then 〈y, x∗|Y 〉 = 〈y, x∗〉 = 1.
Moreover,

1 = ‖x∗‖ ≥ ‖x∗|Y ‖ ≥ 〈y, x∗|Y 〉 = 1.

This implies x∗|Y ∈ SY ∗ .
ii) Let y ∈ Y and W a weak neighbourhood of 0 in Y ∗. Since x∗ 7→ x∗|Y

is continuous for the weak topologies there exists V , a weak neighbourhood
of 0 in X∗, such that {x∗|Y : x∗ ∈ V } ⊂ W . Since Φ is restricted weak
upper semicontinuous, there exists δ > 0 such that Φ(B(y, δ)) ⊂ Φ(y) + V .
Now it is easy to prove that Ψ(B(y, δ)) ⊂ Ψ(y) +W.

We will use several results of Godefroy and Kalton relative to the ball
topology. Given a Banach space we define the ball topology bX as the coarsest
topology in X so that every closed ball is bX -closed (see, for instance, [G-K]
and [D-B]).

Lemma 2.3 ([G-K] Theorem 2.4 and Proposition 2.5) Let X be a Banach
space and let x∗ ∈ X∗. Then

i) If x∗|BX is bX-continuous then x∗ belongs to all norming subspaces.
ii) If x∗ belongs to all norming subspaces and X is separable, then x∗|BX

is bX-continuous.
iii) If for all separable closed subspaces Y of X, x∗|BY is bY -continuous,

then x∗|BX is bX-continuous.

This lemma says, in particular, that the property “the dual of a Banach
space contains no proper norming subspace” is separably determined: Let
X a Banach space such that for every closed separable subspace, its dual
has no proper norming subspaces. Let N be a proper norming subspace of
X∗. Given x∗ ∈ X∗ \ N , x∗|BX is not bX -continuous, hence there exists a
closed separable subspace Y of X such that x∗|BY is not bY -continuous. It
follows that Y ∗ contains a proper norming subspace, a contradiction.

Theorem 2.3 Let X be a Banach space such there exists Φ : SX → P(X∗)
restricted weak upper semicontinuous such that Φ(x) ⊂ ∂‖ · ‖(x) ∀x ∈ SX .
Then X∗ has no closed proper norming subspace.
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Proof : Let Y be a closed separable subspace of X. By Lemma 2.2
we get that there exists a restricted weak upper semicontinuous mapping
Ψ : SY → P(Y ∗), such that Ψ(y) ⊂ ∂‖ · ‖Y (y). By Theorem 2.2, Y ∗ has no
proper closed norming subspace. By Lemma 2.3, X∗ has no proper closed
norming subspace either.

3 Two characterizations of reflexivity.

We shall use the following well known fact: If f is a convex continuous
function defined on an open convex subset of a Banach space X then ∂f is
always upper semicontinuous for the w*-topology.

A Banach space X has the finite-infinite intersection property (IPf,∞)
if for every collection of closed balls in X with empty intersection there is a
finite subcollection with empty intersection. It is easy to prove that if X is
reflexive then has the property IPf,∞: Let {Bα}α∈I be a collection of balls
such that for every finite F ⊂ I, ∩α∈FBα 6= ∅. By w*-compactness there
exists x∗∗ ∈ ∩α∈IBαw

∗
. Since X is reflexive we get ∩α∈IBα 6= ∅.

The following lemma is due to Godefroy [G]:

Lemma 3.1 Let X be a Banach space which has the property IPf,∞ and X∗

has no closed proper norming subspace. Then X is reflexive.

Now we are ready to prove the first characterization of reflexivity:

Theorem 3.1 Let X be a Banach space. Then X is reflexive if and only if
X has the property IPf,∞ and there exists a restricted weak upper semicon-
tinuous mapping Φ : SX → P(X∗) such that Φ(x) ⊂ ∂‖ · ‖(x) ∀x ∈ X.

Proof : If X is reflexive, then X has the property IPf,∞ and ∂‖ · ‖(x)
is weak upper semicontinuous ∀x ∈ SX .

The converse follows from Lemma 3.1 and Theorem 2.3.

Now the following fact is obvious:

Corollary 3.1 Let X be a Banach space with the property IPf,∞. Then
the following statements are equivalent:

i) X is reflexive.
ii) X is quasi smooth.
iii) There exists Φ : SX → P(X∗) restricted weak upper semicontinuous

such that Φ(x) ⊂ ∂‖ · ‖(x) ∀x ∈ X.
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In order to prove the second characterization of reflexivity we will use
the following lemma due also to Godefroy and Kalton.

Lemma 3.2 ([G-K] Theorem 8.2) Let X be a Banach space and W a bounded
subset of X such that for every equivalent norm in X, W is closed in the
respective ball topology. Then W is w-compact.

Theorem 3.2 A Banach space X is reflexive if and only if for all equiva-
lent norm ‖ · ‖ in X there exists Φ : SX → P(X∗) restricted weak upper
semicontinuous such that Φ(x) ⊂ ∂‖ · ‖(x) ∀x ∈ X.

Proof : The only if part is obvious. To prove the converse, assume
first that X is separable. By Lemma 3.2 it is enough to prove that BX is
bX -closed for all equivalent norm in X. Let ‖ · ‖ be an equivalent norm
in X. By hypothesis there exists Φ : SX → P(X∗) restricted weak upper
semicontinuous such that Φ(x) ⊂ ∂‖ ·‖(x) ∀x ∈ X. Hence X∗ has no proper
closed norming subspace, so, by Lemma 2.3, x∗|BX is bX -continuous for all
x∗ ∈ X∗.

Let (xn)∞n=1 ⊂ BX , such that xn → x in the bX -topology. It follows
that xn → x in the w-topology, hence x ∈ BX so BX is bX -closed for all
equivalent norm, and the theorem is proved in the separable case.

In the general case, by Eberlein’s Theorem, it is enough to prove that if
Y is a closed separable subspace then Y is reflexive. Let ‖ · ‖Y an equivalent
norm in Y . Let ‖ · ‖ be an equivalent norm in X which extends ‖ · ‖Y . By
Lemma 2.2 there exists a restricted weak upper semicontinuous mapping
Ψ : SY → P(Y ∗) such that Ψ(y) ⊂ ∂‖ · ‖Y (y), and by the separable case Y
is reflexive.

References

[C-P] M. D. Contreras, R. Payá: On upper semicontinuity of duality map-
pings. Proc. Amer. Math. Soc 121 (1994), 451-459.

[D-B] Dongjian Chen, Bor-Luh Lin: Ball topology on Banach spaces. Hous-
ton Journal of Maths. 22, 4 (1996), 821-823.

[D-G-Z] R. Deville, G. Godefroy, V. Zizler: Smoothness and renormings in
Banach spaces. Pitman Monographs and Surveys in Pure and Appl.
Math., 64 (Longman Scientific & Technical, Harlow, 1993).
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