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Duality for Some Large Spaces of Analytic Functions

H. Jarchow (1), V. Montesinos (2), K.J. Wirths and J. Xiao (3)

Abstract. We characterize the duals and biduals of the Lp-analogues N p
α of the

standard Nevanlinna classes Nα, α ≥ −1 and 1 ≤ p < ∞. We adopt the convention
to take N p

−1 to be the classical Smirnov class N+ for p = 1, and the Hardy-Orlicz
space LHp (= (Log+H)p) for 1 < p < ∞. Our results generalize and unify earlier
characterizations obtained by C.M. Eoff [7] for α = 0 and α = −1, and by N.
Yanigahara [20] for the Smirnov class.
Each N p

α is a complete metrizable topological vector space (in fact, even an algebra);
it fails to be locally bounded and locally convex but admits a separating dual. Its
bidual will be identified with a specific nuclear power series space of finite type; this
turns out to be the ‘Fréchet envelope’ of N p

α as well.
The generating sequence of this power series space is of the form (nθ)n∈N for some

0 < θ < 1. For example, the θ’s in the interval (1/2, 1) correspond in a bijective
fashion to the Nevanlinna classes Nα, α > −1, whereas the θ’s in the interval
(0, 1/2) correspond bijectively to the Hardy-Orlicz spaces LHp, 1 < p < ∞. By
[20], θ = 1/2 corresponds to N+.

As in [20], we derive our results from characterizations of coefficient multipliers
from N p

α into various smaller classical spaces of analytic functions on ∆.
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0. Introduction

We denote by ∆ the unit disk {z ∈ C : |z| < 1} in C and by H(∆) the space of all

analytic functions ∆ → C. With respect to uniform convergence on compact subsets of ∆

(= local uniform convergence), H(∆) is a Fréchet space.

Let m be normalized area measure on ∆; so dm(x + iy) = π−1dxdy. We shall work

with the probability measures dmα(z) := (α + 1)(1 − |z|2)αdm(z) on (the Borel sets of)
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∆ (−1 < α < ∞). Given 1 ≤ p < ∞, we define N p
α to consist of all f ∈ H(∆) such that

log+ |f | is in Lp(mα). With respect to the F -norm |||f |||α,p :=
( ∫

∆
[log(1 + |f |)]p dmα

)1/p,

this is a complete metrizable topological vector space (even an algebra). If p = 1 then we

obtain the usual weighted area Nevanlinna class Nα discussed e.g. in [11].

The Hardy-Orlicz space LHp, 1 < p < ∞, consists of all f ∈ H(∆) such that

‖f‖LHp := sup0≤r<1

[ ∫ 2π

0

(
log(1 + |f(reit)|))p (dt/2π)

]1/p is finite. Again we get a com-

plete metrizable topological vector space (also an algebra) with F -norm ‖ · ‖LHp; see M.

Stoll [19], where LHp is denoted (Log+H)p.

The case p = 1 is a bit delicate. The Nevanlinna class N consists of all f ∈ H(∆)

such that sup0≤r<1

∫ 2π

0
log(1 + |f(reit)|) (dt/2π) < ∞. This is still an algebra on which a

complete metric is defined by dN (f, g) := sup0≤r<1

∫ 2π

0
log(1 + |(f − g)(reit)|) (dt/2π). But

dN does not generate a linear topology on N (J.H. Shapiro and A.L. Shields [16]). The

largest subspace of N on which dN defines a linear topology is the Smirnov class, denoted

by N+. For more on N and N+, see P. Duren’s book [6].

For the purposes of this paper, it is convenient to set

LH1 := N+ , and N p
−1 := LHp for 1 ≤ p < ∞ .

It is clear that N p
α ⊂ N q

β for all β ≥ α ≥ −1 and p ≥ q. If (α, p) 6= (β, q) then these

inclusions are clearly proper.

Let β > −1 and 0 < q < ∞. The corresponding weighted Bergman space is defined to

be Aq
β := Lq(mβ) ∩ H(∆). This is a closed subspace of Lq(mβ). We denote the canonical

norm (q -norm if q < 1) on Aq
β by ‖ · ‖β,q. Again, it will be convenient to include the

classical Hardy spaces Hq by labeling them Aq
−1. Clearly, Aq

β embeds continuously into N p
β ,

for any 0 < q < ∞ and 1 ≤ p < ∞.

Point evaluations are easily seen to be continuous on any N p
α, so that the dual (N p

α)∗

separates points. This dual has been characterized by N. Yanagihara [20] in case α = −1,

p = 1. Using somewhat different methods, C.M. Eoff [7] extended this to characterize the

duals (LHp)∗ for p > 1 and (N q
0 )∗ for 1 ≤ q < ∞. In this paper, we settle the case of

arbitrary N p
α’s by returning to Yanagihara’s approach. However, we need to use stronger

tools. The (N p
α)∗ coincide for all (α, p) on any straight line p = c · (α + 2), c > 0 a constant,

and they are also duals of specific nuclear power series spaces of finite type, Fθ say. Here θ

varies over the interval (0, 1). Fθ is the ‘Fréchet envelope’ of N p
α; its topology is obtained
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by convexifying the neighbourhoods of zero in N p
α and then passing to the completion. If we

take into account only the spaces N 1
α and LHp, then the full interval is covered in this way

in a one-to-one fashion: θ = 1/2 corresponds to the Smirnov class [20], θ = (α + 2)/(α + 3)

corresponds to the scale of spaces N 1
α (α > −1), and θ = 1/(p + 1) corresponds to the

classes LHp (1 < p < ∞).

1. Main Results

As in [20], the key result is a characterization of the coefficient multipliers from N p
α

into various small spaces of analytic functions.

Suppose that X and Y are complete and metrizable topological vector spaces which

consist of analytic functions on ∆ and whose topology is finer than that of local uniform con-

vergence. Let [[X, Y ]] be the collection of all sequences (λn)∞0 in C such that
∑∞

n=0 λnanzn

belongs to Y whenever
∑∞

n=0 anzn is a member of X. This is a linear space whose elements

are called the (coefficient) multipliers from X into Y . By the Closed Graph Theorem, each

(λn)n ∈ [[X, Y ]] gives rise to a continuous linear operator

Λ : X −→ Y :
∞∑

n=0

anzn 7→
∞∑

n=0

λnanzn .

The case of interest is when X is a space N p
α and Y is a ‘small’ space of analytic functions,

such as Aq
β. We shall also consider multipliers from X into Y if one of the spaces is as

above, and the other is a complete metrizable sequence space. Such multipliers are defined

in an anlogous fashion, and they also form a linear space [[X, Y ]].

The first main result of this paper is the following:

Theorem 1. Let α ≥ −1 and 1 ≤ p < ∞. For every sequence (λn) in C, the following are

equivalent:

(i) (λn) ∈ [[N p
α ,Aq

β ]] for some β ≥ −1 and some 0 < q < ∞.

(ii) (λn) ∈ [[N p
α ,Aq

β ]] for all β ≥ −1 and all 0 < q < ∞.

(iii) (λn) ∈ [[N p
α ,W ]].

(iv) λn = O
(
exp

[−c · n α+2
α+2+p

])
for some c > 0.

Here W is the Wiener algebra consisting of all f ∈ H(∆) whose Taylor coefficients f̂(n)

form an `1 -sequence. It is a Banach algebra with respect to the norm ‖f‖ =
∑

n |f̂(n)|.
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Other Banach algebras, such as the disk algebra, and even appropriate F -algebras, can be

used instead.

In case p = 1, we are dealing with the function α 7→ α+2
α+3 which maps the interval

[−1,∞) onto [1/2, 1). If α = −1, we are dealing with p 7→ 1
p+1 , and [1,∞) is mapped onto

(0, 1/2]. As mentioned before, C.M. Eoff [7] has settled this case earlier, as well as the case

α = 0. It doesn’t seem, however, that her approach can easily be modified to deal with the

general case.

Theorem 1 shows that our multipliers on N p
α are largely independent of the range

space. (iv) reveals a certain independence of the domain space as well: N p
α can be replaced

by N q
β as long as (α+2)/p = (β +2)/q. We shall see below that certain power series spaces

can be used instaed of N p
α. This complements a number of similar results presented in the

survey article [3] by D.M. Campbell and R.J. Leach.

The second result characterizes the duals (N p
α)∗ of our spaces. As to be expected,

these spaces are rather small. Let Fθ be the collection of all sequences (an)n in C such that,

for each k ∈ N, the sequence
(|an|2 · exp(−n

θ
θ+1 /k)

)
n

belongs to `1. In a natural fashion,

Fθ is a Fréchet space (see below). We are interested in the case θ =
α + 2

p
.

Theorem 2. Let α, β ≥ −1 and 1 ≤ p, q < ∞ be given.

(a) N p
α embeds densely and continuously into Fα+2

p
.

(b) The duals of N p
α and of Fα+2

p
coincide and can be identified with the space of all

g∈H(∆) whose Taylor coefficients satisfy bn =O
(
exp

[−c n
α+2

α+2+p
])

. The action of g

on

f(z) =
∞∑

n=0

anzn in N p
α is given by 〈g, f〉 =

∑
n

anbn = lim
r→1−

∫ 2π

0

g(reit)f(re−it)dt/(2π) .

(c) Fα+2
p

induces on N p
α the Mackey topology µ(N p

α , (N p
α)∗).

(d) Fα+2
p

is the Fréchet envelope of N p
α.

(e) N p
α is neither locally bounded nor locally convex; in particular, N p

α 6= Fα+2
p

.

As for (a) (in special cases), see [19], Corollaries 5.6 and 4.4.

Our third result is related to earlier investigations in [11] on composition operators

with domain a space N 1
α. Given an analytic map ϕ : ∆ → ∆, we write Cϕ for the associated

composition operator f 7→ f ◦ ϕ, acting on appropriate spaces of functions.

Theorem 3. With α and p as in Theorem 2 and ϕ : ∆ → ∆ an analytic function, the

following are equivalent statements:
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(i) Cϕ exists as a bounded operator N p
α → Aq

β for some β ≥ −1 and 0 < q < ∞.

(ii) Cϕ exists as a nuclear operator N p
α → Aq

β for every β ≥ −1 and 0 < q < ∞.

(iii) For some c > 0,
∞∑

n=0

exp
[
c n

α+2
α+2+p

] · ‖ϕn‖β,1 < ∞ .

(iv) The sequence (‖ϕn‖β,1)n belongs to [[N p
α ,Aq

β ]] for some 0 < q < ∞.

(v) The sequence (‖ϕn‖β,1)n belongs to [[N p
α , W ]].

Of course, ϕn is the usual multiplicative n-th power of ϕ.

Nuclear and order bounded operators on F -spaces will be defined later in this paper.

Since, for appropriate range spaces, nuclearity implies order boundedness, Theorem 3 also

provides access to some of the results in [11]. Whereas composition operators with domain

N+, and even N , have already been investigated by J.W. Roberts-M. Stoll [14] and in

particular by N. Jaoua [9] and by J.S. Choa, H.O. Kim and J.H. Shapiro [2], the general

case doesn’t seem to have received attention so far.

2. Nuclear Power Series Spaces of Finite Type

Before we get to the proofs, we recall some basic facts on nuclear power series spaces

of finite type. We refer to [10] for any unexplained terminology and notation on topological

vector spaces.

Let (πn)n∈N0 be an unbounded increasing sequence of positive numbers. For each

k ∈ N and (an) ∈ CN0 put qk((an)) :=
[ ∑∞

n=0 |an|2 · exp
(−πn/k

)]1/2. It is clear that each

F (k) :=
{
(an) ∈ CN0 : qk((an)) < ∞}

is a Hilbert space with norm qk, that F (k+1) ⊂ F (k)

(densely) with qk ≤ qk+1, and that the canonical embedding F (k+1) ↪→ F (k) is even a

nuclear (= trace class) operator. Consequently, F :=
⋂

k∈N F (k) is a nuclear Fréchet space

with respect to the corresponding projective limit topology: a so-called nuclear power series

space of finite type (see [10], Ch. 21). In the canonical fashion, the dual of F (k) can be

identified with (F (k))∗ =
{
(an) ∈ CN0 :

∑∞
n=0 |an|2 exp(πn/k) < ∞}

, and the dual of F

can be written F ∗ =
⋃

k(F (k))∗. By nuclearity, the natural locally convex inductive limit

topology on F ∗ is the strong topology β(F ∗, F ) ([10], 13.4.5/6). Moreover, the strong dual

of [F ∗, β(F ∗, F )] is the original space F .

Multipliers from F into weighted Bergman spaces can be characterized as follows:

Proposition. Let (λn) ∈ CN0 be given. The following are equivalent:
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(i) For some −1 ≤ β < ∞ and 0 < q < ∞, (λn) ∈ [[F,Aq
β ]].

(ii) For all −1 ≤ β < ∞ and 0 < q < ∞, (λn) ∈ [[F,Aq
β ]].

(iii) (λn) ∈ [[F, W ]].

(iv) There exist k ∈ N and C > 0 such that |λn| ≤ C · exp
(−πn/k)

)
for every n ∈ N0 .

It follows from (iv) that F ∗ is just the space [[F, W ]] of multipliers from F to W .

For the spaces F related to the N p
α’s, the proposition will also be a consequence

of results to be proved below. Nevertheless, we believe that the following direct proof is

interesting enough to be included here.

Proof. (iv)⇒ (iii) follows from the definition of F whereas (iii)⇒ (ii) and (ii)⇒ (i) are

trivial. So we are left with proving that (i) implies (iv).

Fix β ≥ −1. We settle the case q = 2 first. Set κn :=
√

(n!)−1 · (β + 1) · · · (β + n + 1),

so that (κnzn)n is an orthonormal basis in A2
β. Use Stirling’s formula to find a constant

C = C(β) such that κ2
n ≤ C · (n + 1)β+2 for all n.

By continuity, the adjoint Λ∗ of the multiplier Λ generated by (λn) maps A2
β into

some (F (k))∗. The induced operator is also a multiplier, and is given by (λn). Accordingly,

there is a C > 0 such that, for all (an) ∈ C(N0),

∞∑
n=0

|λnan|2 · exp (πn/k) ≤ C ·
∞∑

n=0

κn|an|2 .

This is equivalent to
∑

n

[
(|λn|2/κn) · exp

(
πn/k)

]2
< ∞. So |λn| ≤ c ·κ1/2

n · exp
(−πn/(2k)

)

holds for all n with some constant c, and our claim follows from what was observed above.

To settle the general case we only need to look at 0 < q ≤ 1. It was shown by J.H.

Shapiro [15] that Aq
β ↪→ A1

σ where σ = ((β + 2)/q) − 2, and from a result in [4] we know

that A1
σ ↪→ A2

τ , where τ = 2(σ + 1). Here we use ‘↪→’ to denote continuous set theoretic

inclusion.

The analogy with Theorems 1 is by no means accidental. The spaces F of relevance

for our topic are obtained by choosing πn = n
θ

θ+1 for 0 < θ < ∞. M. Stoll [19] labeled

these spaces Fθ and derived several of their properties. Note that (an) 7→ ∑
anzn defines

a continuous embedding of Fθ into H(∆) and that H(∆) itself can be identified with the

nuclear power series space of finite type obtained by taking πn = n for each n. Hence,

allowing θ = ∞, we can write F∞ = H(∆).
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3. Proof of Theorem 1

We require three lemmas. They are essentially known but of different degree of

difficulty.

Lemma A. Let β ≥ −1 and 0 < q < ∞ be given. Then there is a constant C = C(β, q)

such that if g =
∑∞

n=0 anzn belongs to Aq
β then

|an| ≤ C · ‖g‖β,q · n
β+2

q for all n .

This is easily derived from Cauchy’s Theorem; see e.g. Lemma 2.5 in W. Smith [18].

Lemma B. Let α ≥ −1, 1 ≤ p < ∞. If f(z) =
∑∞

n=0 anzn belongs to N p
α, then

an = O
(
exp

[
o(n

α+2
α+2+p )

])
.

Special cases of this are treated in in [17] and [19]; the proof of the general case

requires only minor changes.

The last lemma is crucial and is technically the most difficult one. Up to an inessential

modification (we require an extra parameter), an even more precise version was obtained

by E. Beller. We refer to [1] for a proof.

Lemma C. Let a > 0 and r0 > 0 be given. For 0 < r ≤ r0, define f(z) = exp
[ r

(1− z)a

]
.

Then there exists a constant K, depending only on a and r0 such that the Taylor coefficients

an of f satisfy

an ≥ K · exp
[
r

1
a+1 · a− a

a+1 · n a
a+1

]
(n ∈ N0) .

(The an are in fact positive: power series expansion!)

Proof of Theorem 1. For notational convenience, we confine ourselves to the case α > −1.

Up to natural changes caused by the definition, the (known) case α = −1 can be settled in

a similar fashion.

We start by showing that (i) implies (iv). For this, we look at the functions

f(s)(z) = exp
[

c (1− s)
α+2

p

(1− sz)
2α+4

p

]
− 1 .
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By 4.2.2 in [21], there is a constant K0 = K0(α) such that

|||f(s)|||pα,p =
∫

∆

[
log(1 + |f(s)|)

]p
dmα ≤ cp ·

∫

∆

(1− s)α+2

|1− sz|2α+4
dmα(z)

= cp · (α + 1) · (1− s)α+2 ·
∫

∆

(1− |z|2)α

|1− sz|2l+4
dm(z) ≤ cp ·Kp

0 .

Let Λ : N p
α → Aq

β be the multiplier induced by (λn) and let C > 0 be such that ‖Λ(g)‖β,q ≤
1 for all g ∈ N p

α with |||g|||α,p ≤ C. Hence, if we choose c ≤ C/K0 in our definition of f(s),

then ‖Λ(f(s))‖β,q ≤ 1 for all 0 < s < 1. Put

R := c · (1− s)
α+2

p

and consider the function

f(z) = exp
[

R

(1− z)
2α+4

p

]
− 1 .

Note that f(s)(z) = f(sz). Writing f(s)(z) =
∑∞

n=0 an,sz
n and f(z) =

∑∞
n=0 cnzn we see

that an,s = sncn for all n ∈ N0 and 0 < s < 1 . Recall from Beller’s Lemma C that these

are positive numbers and that there is a constant C1 such that

an,s ≥ C1 · sn · exp
[
L · (1− s)

α+2
2α+4+p · n 2α+4

2α+4+p

]
;

here

L = c
p

2α+4+p ·
( p

2α + 4

) 2α+4
2α+4+p

Next we choose 0 < b, d < 1 such that

d < b <
L

2
· d α+2

2α+4+p

and let N0 ∈ N be so big that b ≤ (3/4)N
p

α+2+p

0 . For N ≥ N0 and for all s satisfying

d ·N− p
α+2+p ≤ 1− s ≤ b ·N− p

α+2+p we get (since 1− t > e−2t for 0 < t ≤ 3/4)

aN,s ≥ C1 · (1− bN− p
α+2+p )N · exp

[
L(dN− p

α+2+p )
α+2

2α+4+p ·N 2α+4
2α+4+p

]

≥ C1 · exp
[
− 2bN1− p

α+2+p + Ld
α+2

2α+4+p ·N α+2
α+2+p

]
= C1 · exp

[
C2 ·N

α+2
α+2+p

]

where C2 := Ld
α+2

2α+4+p − 2b (> 0) .

By Lemma A there is a constant C3 such that |λnan,s| ≤ C3 · n
β+2

q for all n and s. It

follows that

|λN | ≤ C3

C1
·N β+2

q · exp
[
− C2 ·N

α+2
α+2+p

]
.

8



for N ≥ N0. From here our claim is immediate.

(iii)⇒ (ii)⇒ (i) are trivial. To prove that (iv) implies (iii) consider any function

g(z) =
∑∞

n=0 anzn in N p
α. By Lemma B, there are a constant C ′ and a null sequence of

positive numbers bn such that |an| ≤ C ′ · exp
[
bn · n

α+2
α+2+p

]
for all n. It follows that

∞∑
n=0

|λnan| ≤ C · C ′ ·
∞∑

n=0

exp
[
(bn − c) · n α+2

α+2+p

]
< ∞ .

Remark 1. There is no problem in extending Theorem 1 to analytic X-valued functions

when X is a Banach space, i.e. to functions f : ∆ → X for which there are xn ∈ X such

that f(z) =
∑∞

n=0 znxn on ∆. It is also possible to obtain a version of Theorem 1 when X

is a quasi-Banach space. Let A(X) consist of all continuous functions f : ∆ → X which are

analytic on ∆ (in the above sense). In a natural fashion, A(X) is a quasi-Banach space. An

argument of C.M. Eoff [8], which is based on a theorem by N.J. Kalton [12], can be used to

show that a sequence (xn) is a multiplier from N p
α into A(X) (definition as before) if and

only if there are constants C, c > 0 such that ‖xn‖ ≤ C · exp
[− c · n α+2

α+2+p
]

for all n. The

problem here is to overcome the fact that Cauchy’s formula, on which Lemma A relies, is

not available for analytic functions with values in a quasi-Banach space. Kalton’s theorem

just provides an appropriate substitute of Lemma A for functions in A(X).

3. Proof of Theorem 2

We begin by showing that N p
α is in fact a linear subspace of Fα+2

p
. Let f ∈ N p

α be

given, f(z) =
∑∞

n=0 anzn. By Lemma B, there are a null sequence of scalars sn > 0 and a

constant C such that |an| ≤ C · exp (sn n
α+2

α+2+p ). Our claim follows since, for each k ∈ N,

∞∑
n=0

|an| · exp
[−n

α+2
α+2+p /k] ≤ C ·

∞∑
n=0

exp
[
(sn − (1/k)) n

α+2
α+2+p

]
< ∞ .

It is clear that the resulting embedding N p
α ↪→ Fα+2

p
has dense range (polynomials) and

is continuous (closed graph theorem). Accordingly, F ∗
α+2

p

can be identified with a linear

subspace of (N p
α)∗.

To show that this is all of (N p
α)∗, take any g ∈ (N p

α)∗. Clearly, the monomials zn

belong to N p
α. Given s > 0 we can choose λ > 0 in such a way that log (1 + |λzn|) ≤ s.

It follows that (zn) is a bounded sequence in N p
α, and so the λn := g(zn) form a bounded

sequence of scalars.
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Take any f(z) =
∑∞

n=0 anzn from N p
α. Clearly, lim|w|→1 |||f − fw|||α,p = 0 where

fw(z) = f(wz) for w, z ∈ ∆. It follows that g(fw) = limm→∞
∑m

n=0 λnanwn =
∑∞

n=0 λnanwn,

and so g(f) = lim|w|→1 g(fw) = lim|w|→1

∑∞
n=0 λnanwn. Since g ∈ (N p

α)∗, the right hand

side defines an element of H∞. Moreover, (λn) multiplies N p
α into H∞ (which embeds into

any Aq
β). By Theorem 1, there is a constant c > 0 such that supn |λn| · exp

[
c n

α+2
α+2+p

]
< ∞

which signifies that (λn) belongs to (Fα+2
p

(k))∗ for sufficiently large integers k (see Section 2

for notation). Therefore the corresponding analytic function
∑∞

n=0 λnzn, which is nothing

but g, belongs to F ∗
α+2

p

, and for f(z) =
∑∞

n=0 anzn in N p
α we obtain what was asserted:

∑
n

anλn = lim
r→1

1
2π

·
∫ 2π

0

f(reit) g(re−it) dt .

This proves (a) and (b). Statements (c) and (d) are easy consequences. Let X be any

metrizable topological vector space, let τ be its topology and ||| · ||| a defining F -norm. The

sets U(s) := {x ∈ X : |||x||| ≤ s}, s > 0, form a 0-basis for τ. Their convex hulls, conv U(s),

form a 0-basis for the finest locally convex topology on X which is coarser than τ; we label

it τ0. If Y is any locally convex space, then every continuous linear map [X, τ ] → Y is also

continuous as a map [X, τ0] → Y . In particular, [X, τ ] and [X, τ0] have the same dual, X∗.

τ0 has a countable 0-basis since τ has. It is metrizable whenever X∗ separates the

points in X. In that case, it coincides with the Mackey topology µ(X,X∗) determined by

the dual pairing 〈X, X∗〉. The completion of [X, µ(X, X∗)] is a Fréchet space, the so-called

Fréchet envelope of X. Typically, this envelope is strictly bigger than X: if τ is complete but

not locally convex, then τ0 cannot be complete.

Let again X be N p
α, let β(X∗, X) be the usual strong topology on X∗ and let X∗∗

be the dual of [X∗, β(X∗, X)]. We endow X∗∗ with the strong topology β(X∗∗, X∗). It

is a simple consequence of our considerations and standard duality theory that X∗∗ can

naturally be identified with Fα+2
p

.

To prove (e), observe that if N p
α is locally bounded then µ(N p

α , (N p
α)∗) is locally

bounded, too. But this is impossible, since we are dealing with an infinite dimensional

nuclear space.

N p
α is properly contained in Fα+2

p
: it is in fact easy to construct sequences in Fα+2

p

which do not satisfy the conclusion of Lemma B. Thus N p
α cannot be locally convex.

Remark 2. By the extension of Theorem 1 mentioned in Remark 1, even every continuous

linear map from N p
α into a quasi-Banach space X admits an extension to a continuous
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operator Fα+2
p
→ X. It follows that N p

α even fails to be locally pseudoconvex: no matter

how we choose a sequence (sn) in (0, 1], N p
α doesn’t admit a 0-basis (Un)n consisting of

sn-convex sets. In other words, N p
α cannot be represented as a projective limit of quasi-

Banach spaces.

Since locally bounded spaces are locally s-convex for some 0 < s ≤ 1, this also

improves upon (e) in Theorem 2. That the spaces N p
α cannot be locally bounded can also

be derived from general results; see M. Nawrocki [13], p.170.

Let α, β ≥ −1 and 1 ≤ p, q < ∞ are such that (α, p) 6= (β, q). Then Ap
α 6= Aq

β, and so

N p
α 6= N q

β (take exponentials). On the other hand:

Corollary 1. The spaces N p
α and N q

β have the same Fréchet envelopes if and only if
α + 2

p
=

β + 2
q

.

This has an interesting consequence. Let X be a Banach space. Every continuous

linear map N p
α → X extends uniquely to an operator Fα+2

p
→ X, so that we may identify

the corresponding spaces of continous linear maps, L(N p
α , X) and L(Fα+2

p
, X).

Corollary 2. If
α + 2

p
=

β + 2
q

, then L(N p
α , X) and L(N q

β , X) can be identified in a

canonical fashion.

By the preceding remarks, this remains true even if X is only a quasi-Banach space.

Several questions remain open. For example, it is easy to check that every locally

convex quotient space of N p
α is nuclear. In particular, no infinite-dimensional Banach space

can be isomorphic to a quotient of N p
α. But we do not know if any infinite-dimensional

Banach space can be isomorphic to a subspace of N p
α.

4. Proof of Theorem 3

Let X be an F -space with a separating dual and with F -norm ||| · |||, and let Y

be a quasi-Banach space with quasinorm ‖ · ‖Y . Extending the standard Banach space

definition (compare e.g. with [5]), we say that a linear map u : X → Y is nuclear if it admits

a representation

ux =
∞∑

n=1

〈x∗n, x〉 · yn for all x ∈ X

11



(convergent series in Y ) where (x∗n) and (yn) are sequences in X∗ and Y , respectively, such

that, for some s > 0, all Ix∗nIs := supx∈U(s) |〈x∗n, x〉| exist and satisfy

(◦)
∞∑

n=1

Ix∗nIs · ‖yn‖Y < ∞ .

Since Ix∗nIs = sup {|〈x∗n, x〉| : x ∈ conv U(s)} for each s > 0, u is nuclear as an operator

[X, τ0] → Y as well, and even admits a nuclear extension mapping the completion of [X, τ0]

into Y . Here τ0 is as before.

Let now X be a space N p
α, α ≥ −1, p ≥ 1, and let u be a continuous linear map from

N p
α to a Banach space Y . Its continuous extension, ũ : Fα+2

p
→ Y , is a nuclear operator in

the usual sense since the domain is a nuclear locally convex space.

Let ϕ : ∆ → ∆ be analytic and let β ≥ −1, 0 < q < ∞. If f 7→ f ◦ϕ defines a bounded

linear map (‘composition operator’) Cϕ : N p
α → Aq

β for some 0 < q < ∞, then it does so

for every q, and in such a case, Cϕ has the additional property of being ‘order bounded’:

every N p
α-ball {f ∈ N p

α : |||f |||α,p ≤ s} (s > 0) is mapped into an order interval in the lattice

Lq(mβ). (For order boundedness of Banach space operators, see [5].) We can always assume

that Cϕ maps into a Banach space. This was proved in [11] for p = 1. The proof could be

carried over to the general case, but the following provides another argument.

Proof of Theorem 3. By Theorem 1, (iii), (iv) and (v) are equivalent. We are going to prove

(i)⇒ (ii)⇒ (iii)⇒ (i).

(i)⇒ (ii). Suppose that Cϕ : N p
α → Aq

β exists as a bounded operator for some 0 < q < ∞.

We want to show that Cϕ(N p
α) ⊂ Aq′

β , for any q < q′ < ∞. To this end, let N ∈ N be

such that q′ ≤ Nq. By assumption, there is a c > 0 such that ‖Cϕf‖β,q ≤ 1 whenever

f ∈ N p
α satisfies |||f |||α,p ≤ c. But since log(1+ |f |N ) ≤ N · log(1+ |f |), we have |||fN |||α,p ≤ c

whenever |||f |||α,p ≤ c/N. The assertion is now immediate from

‖Cϕf‖β,q′ ≤ ‖Cϕf‖β,Nq = ‖(Cϕf)N‖1/N
β,q = ‖Cϕ(fN )‖1/N

β,q ≤ 1 .

Since we may take q′ ≥ 1, Cϕ maps Fα+2
p

into Aq′

β , and so Cϕ : N p
α ↪→ Fα+2

p
→ Aq′

β ↪→ Aq
β

is nuclear.

(ii)⇒ (iii). Recall from Section 2 that Fα+2
p

is projective limit of the Hilbert spaces Fα+2
p

(k).

Suppose that Cϕ exists as a map N p
α → A1

β. Then there is a k ∈ N such that Cϕ extends to

12



a bounded operator u : Fα+2
p

(k) → A1
β. For a = (an) ∈ Fα+2

p

(k) (⊂ Fα+2
p

(2k)) we have, with

C2 =
∞∑

n=0

exp
[
− n

α+2
α+2+p

2k

]
,

∞∑
n=0

qk(anen) =
∞∑

n=0

|an| · exp
[
−n

α+2
α+2+p

2k

]
≤ C · q2k(a) < ∞ ;

here en is the n’th standard unit vector in Fα+2
p

(k). But uen = ϕn for each n so that,

by continuity of u, the sequence (‖anϕn‖β,1)n belongs to `1. This holds for every (an) for

which
∑∞

n=0 |an|2 · exp
[−n

α+2
α+2+p /k

]
< ∞. Hence supn exp

[
n

α+2
α+2+p /(2k)

] · ‖ϕn‖β,1 < ∞,

and taking c = (2k + 1)−1 we get what we wanted.

(iii)⇒ (i). By our hypothesis, c2
k :=

∑∞
n=0 exp

[
n

α+2
α+2+p /k

] · ‖ϕn‖2β,1 is finite for some k.

It follows that ‖Cϕf‖β,1 ≤ ck · qk(f) for all f ∈ Fα+2
p

: Cϕ maps Fα+2
p

, and a fortiori N p
α,

continuously into A1
β.

As mentioned above, the N 1
α -part of Theorem 3 can also be derived from Theorem

1.4 in [11]. But an operator between Hilbert function spaces is order bounded if and only

if it is Hilbert-Schmidt, so that conversely Theorem 1.4 in [11] appears as a consequence

of Theorem 3 as well.
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13 M. Nawrocki: The Fréchet envelopes of vector -valued Smirnov classes. Studia Math. 94

(1989) 163-177.
14 J.W. Roberts, M. Stoll: Composition operators on F+. Studia Math. 57 (1976) 217-228.
15 J.H. Shapiro: Mackey topologies, reproducing kernels, and diagonal maps on the Hardy

and Bergman spaces. Duke Math.J. 43 (1976) 187-202.
16 J.H. Shapiro, A.L. Shields: Unusual topological properties of the Nevanlinna class. Amer.

J. Math. 97 (1976) 915-936.
17 S.V. Shvedenko: Rate of increase and Taylor coefficients of functions of the Nevanlinna

area class. Izvestiya VUZ. Matematika 30 (6) (1986) 40-43.
18 W. Smith: Composition operators between Bergman and Hardy spaces. Trans. Amer. Math.

Soc. 348 (1996) 2331-2348.
19 M. Stoll: Mean growth and Taylor coefficients of some topological algebras of holomorphic

functions. Ann. Polon. Math. 35 (1977) 141-158.
20 N. Yanagihara: Multipliers and linear functionals for the class N+. Trans. Amer. Math.

Soc. 180 (1973) 449-461.
21 K. Zhu: Operator Theory in Function Spaces. Marcel Dekker, Inc., New York and Basel,

1990.

H. Jarchow, Institut für Mathematik,
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