Restricted weak upper semicontinuous differentials of convex functions

Julio Benítez, Vicente Montesinos *

Abstract

We characterize the restricted *w*-upper semicontinuity of the subdifferential of convex functions in terms of the Fenchel biconjugate mapping.

1 Introduction.

Given a convex lower semicontinous function f defined on a real Banach space X, the *subdifferential* of f at $x \in X$ is defined by

$$\partial f(x) := \{ x^* \in X^* : \langle y - x, x^* \rangle \le f(y) - f(x), \forall y \in X \},\$$

if $x \in \text{dom}(f)$, while $\partial f(x) = \emptyset$ if $x \in X \setminus \text{dom}(f)$.

A set-valued mapping Φ from a topological space (X, τ') into subsets of another topological space (Y, τ) is said to be $[\tau' - \tau]$ -upper semicontinuous at $x \in X$ if given a τ -open subset W of Y such that $\Phi(x) \subset W$, there exists a τ' -neighbourhood U of x such that $\Phi(U) \subset W$. In this paper we shall always consider X a real Banach space endowed with the norm topology and $Y = X^*$ endowed with a topology τ . We shall write τ -upper semicontinuous instead of $[\|\cdot\| - \tau]$ -upper semicontinuous.

Given a convex function f on an open subset D of a Banach space X and a point of continuity $x_0 \in D$ of f, it can be proved that $\partial f(x_0)$ is a nonempty,

^{*}The second named author has been supported in part by DGICYT PB96-0758.

²⁰⁰⁰ MS Classification 46B20, 46B10, 46T20, 46G05. Key words: Convex functions, differentiability, Fenchel conjugacy.

 w^* -compact and convex subset of X^* , and the mapping $x \mapsto \partial f(x)$ is w^* -upper semicontinuous at x_0 .

Gâteaux differentiability and Fréchet differentiability can be characterized in terms of the continuity of the subdifferential mapping: Given a continuous convex function f on an open subset D of a Banach space X and a point $x_0 \in$ D, f is Gâteaux differentiable at $x_0 \in A$ if and only if $\partial f(x)$ is a singleton, and f is Fréchet differentiable at x_0 if and only if $\partial f(x)$ is a singleton and the subdifferential mapping $x \mapsto \partial f(x)$ is $\|\cdot\|$ -upper semicontinuous at x_0 (for these and related concepts see, for example, [P93]).

If the one sided limit in the definition of the derivative of f at a point x_0 is uniform in every direction, we get a weaker concept than the Fréchet differentiability. More precisely, given a continuous function f defined on an open subset D of a Banach space X, we say (following [FP93] and [GS96]) that f is strongly subdifferentiable at $x_0 \in D$ if

$$d^{+}f_{x_{0}}(u) := \lim_{t \to 0+} \frac{f(x_{0} + tu) - f(x_{0})}{t}$$

is uniform in ||u|| = 1. This non-smooth extension of the Fréchet differentiability have found several applications (see for example, [AOPR86], [FP93], [GGS78], [G87], [GMZ95]).

The following definition was introduced in [GGS78]: A set-valued mapping Φ from a Banach space X into the subsets of X^{*} endowed with the topology τ is said to be *restricted* τ -upper semicontinuous at $x \in X$ if given a τ -neighbourhood W of 0 in X^{*} there exists an open neighbourhood U of x in X such that $\Phi(U) \subset \Phi(x) + W$.

In [G87] it was proved that given a continuous convex function f defined on an open subset D of a Banach space X, f is strongly subdifferentiable at $x_0 \in D$ if and only if ∂f is restricted $\|\cdot\|$ -upper semicontinuous at x_0 .

In this note we provide, in the spirit of [GGS78], a characterization of the restricted w-upper semicontinuity of the subdifferential mapping of a convex function by using the Fenchel biconjugate mapping. Notice that a partial characterization was obtained in [GGS78] for the duality mapping (i.e. $x \mapsto \partial \|\cdot\|(x)$). For the use of the concept of restricted w-upper semicontinuity of the subdifferential mapping in questions related to the Asplundness and reflexivity of a Banach space we refer to [BM99], [CP94], [GGS78], [GM96] and references therein.

Given a continuous convex function f on an open convex subset D of a Banach space X we can extend f to a lower semicontinuous convex function on X, denoted again by f, by defining

$$f(x) := \begin{cases} \liminf_{y \to x} f(y) & \text{for } x \in \overline{D}, \\ +\infty & \text{otherwise.} \end{cases}$$

Given a convex, proper, lower semicontinuous function $f : X \to \mathbb{R} \cup \{+\infty\}$ the *Fenchel conjugate* of f is defined by

$$f^*(x^*) := \sup\{\langle x, x^* \rangle - f(x) : x \in X\}.$$

Now f^* is again convex, proper and lower semicontinuous (in fact, lower w^* -semicontinuous). Obviously $\langle x, x^* \rangle \leq f(x) + f^*(x^*)$ for all $x \in X$, $x^* \in X^*$ (and the inequality becomes equality if and only if $x^* \in \partial f(x)$). Moreover, if $\epsilon \geq 0$, then $x^* \in \partial_{\epsilon} f(x)$ if and only if $f(x) + f^*(x^*) \leq \langle x, x^* \rangle + \epsilon$ (where $\partial_{\epsilon} f$ denotes de ϵ -subdifferential). Also, $f^{**}|_X = f$ (see [B83] and [P93]).

2 Preliminary results.

We shall need the following results:

THEOREM 2.1 (BRØNDSTED-ROCKAFELLAR) Suppose that f is a convex proper lower semicontinuous function on the Banach space X. Then given any point $x_0 \in \text{dom}(f)$, $\epsilon > 0$ and any $x_0^* \in \partial_{\epsilon} f(x_0)$, there exists $x_{\epsilon} \in \text{dom}(f)$ and $x_{\epsilon}^* \in X^*$ such that

$$x_{\epsilon}^* \in \partial f(x_{\epsilon}), \quad ||x_{\epsilon} - x_0|| \le \sqrt{\epsilon}, \quad ||x_{\epsilon}^* - x_0^*|| \le \sqrt{\epsilon}.$$

The Brøndsted-Rockafellar Theorem, together with the local boundedness of the subdifferential mapping at a point of continuity x_0 , allows us to interweave the ϵ -subdifferential at x_0 and the subdifferential at a neighbourhood of x_0 . The precise relationship is formulated in the next result:

LEMMA 2.2 Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Let x_0 be a point of continuity of f. Then $\forall \epsilon > 0$ there exists $\delta > 0$ such that

$$\partial f[B(x_0;\delta)] \subset \partial_{\epsilon} f(x_0) \subset \partial f[B(x_0;\sqrt{\epsilon})] + \sqrt{\epsilon} B_{X^*}.$$

Proof: ∂f is locally bounded at x_0 , i.e., there exists M > 0 and $N(x_0)$, a neighbourhood of x_0 , such that

$$||x^*|| \le M, \quad \forall x^* \in \partial f(x), \quad \forall x \in N(x_0).$$

Given $\epsilon > 0$, choose $\delta > 0$ such that

$$B(x_0;\delta) \subset N(x_0), \quad M\delta < \frac{\epsilon}{2}, \quad |f(x) - f(x_0)| < \frac{\epsilon}{2}, \ \forall x \in B(x_0;\delta).$$

Let $x^* \in \partial f[B(x_0; \delta)]$, say $x^* \in \partial f(x)$ for some $x \in B(x_0; \delta)$. Then

$$\begin{aligned} \langle y - x_0, x^* \rangle &= \langle y - x, x^* \rangle + \langle x - x_0, x^* \rangle \leq \\ &\leq f(y) - f(x) + \|x^*\| \|x - x_0\| < f(y) - f(x_0) + |f(x_0) - f(x)| + M\delta < \\ &< f(y) - f(x_0) + \frac{\epsilon}{2} + \frac{\epsilon}{2} = f(y) - f(x_0) + \epsilon, \end{aligned}$$

hence $x^* \in \partial_{\epsilon} f(x_0)$.

The second inclusion is the Brøndsted-Rockafellar Theorem, and does not need the continuity of f at x_0 .

The following proposition can be found in [P93]:

PROPOSITION 2.3 Let $f : D \to \mathbb{R}$ be a convex function on D (a non-empty open and convex subset of X), continuous at $x_0 \in D$. Then, for all $y \in X$,

$$d^+f_{x_0}(y) = \sup\{\langle y, x^* \rangle : x^* \in \partial f(x_0)\}$$

and this supremum is attained at some point $x^* \in \partial f(x_0)$.

PROPOSITION 2.4 Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a convex, proper and lower semicontinuous function. Then $\operatorname{epi}(f^{**}) = \overline{\operatorname{epi}(f)}^{w^*}$.

Proof: First, assume $f \ge 0$. The inclusion $\overline{\operatorname{epi}(f)}^{w^*} \subset \operatorname{epi}(f^{**})$ follows from $\operatorname{epi}(f) \subset \operatorname{epi}(f^{**})$ and the lower w^* -semicontinuity of f^{**} . Let $(x_0^{**}, \lambda_0) \in \operatorname{epi}(f^{**})$. Suppose that $(x_0^{**}, \lambda_0) \notin \overline{\operatorname{epi}(f)}^{w^*}$. By the Hahn-Banach Theorem, there are $x_0^* \in X^*$, k, α , $\beta \in \mathbb{R}$ such that:

$$\langle x_0^{**}, x_0^* \rangle + k\lambda_0 < \alpha < \beta < \langle x^{**}, x_0^* \rangle + k\lambda, \quad \forall \ (x^{**}, \lambda) \in \overline{\operatorname{epi}(f)}^{w}.$$
(1)

From (1) we get $k \ge 0$ (if k < 0, it is enough to take $x \in \text{dom}(f)$ and $\lambda \to +\infty$ in order to obtain a contradiction). In particular, from (1), we get $\langle x, x_0^* \rangle + kf(x) > \beta$, for all $x \in \text{dom}(f)$. Take $\epsilon > 0$. Since $f \ge 0$, we get

$$\langle x, -\frac{x_0^*}{k+\epsilon} \rangle - f(x) < -\frac{\beta}{k+\epsilon}, \quad \forall x \in \operatorname{dom}(f),$$

hence $f^*(-\frac{x_0^*}{k+\epsilon}) \leq -\frac{\beta}{k+\epsilon}$. Then

$$\begin{aligned} f^{**}(x_0^{**}) &\geq \langle x_0^{**}, -\frac{x_0^*}{k+\epsilon} \rangle - f^*(-\frac{x_0^*}{k+\epsilon}) \geq \\ &\geq \langle x_0^{**}, -\frac{x_0^*}{k+\epsilon} \rangle + \frac{\beta}{k+\epsilon} = \frac{1}{k+\epsilon} [\beta - \langle x_0^{**}, x_0^* \rangle] > \frac{\beta - \alpha + k\lambda_0}{k+\epsilon}. \end{aligned}$$

If k = 0, then $f^{**}(x_0^{**}) > (\beta - \alpha)/\epsilon$. As $\epsilon > 0$ was arbitrary, we get $x_0^{**} \notin \text{dom}(f^{**})$, a contradiction. If $k \neq 0$, since $\epsilon > 0$ was arbitrary, we get $f^{**}(x_0^{**}) \ge (\beta - \alpha + k\lambda_0)/k > \lambda_0$. This contradicts $(x_0^{**}, \lambda_0) \in \text{epi}(f^{**})$.

Now, if $f: X \to \mathbb{R} \cup \{+\infty\}$ is an arbitrary proper semicontinuous convex function, choose $x_0^* \in \text{dom}(f^*)$. Consider $g: X \to \mathbb{R} \cup \{+\infty\}$ given by $g(x) = f(x) + f^*(x_0^*) - \langle x, x_0^* \rangle$. This function, obviously, is proper, lower semicontinuous and convex. Moreover dom(f) = dom(g) and $g \ge 0$. Now, a simple calculation shows $g^{**}(x^{**}) = f^{**}(x^{**}) + f^*(x_0^*) - \langle x^{**}, x_0^* \rangle$ for all $x^{**} \in X^{**}$. By the first part of the proof, the proposition holds for g, and hence for f.

Remarks:

1. Note that Goldstine's Theorem is a particular case of the former proposition: It is enough to take as f the indicator function δ_{B_X} of the closed unit ball of X (i.e., $\delta_{B_X}(x) = 0$ if $||x|| \leq 1$, $\delta_{B_X}(x) = +\infty$ if ||x|| > 1), a proper lower semicontinuous convex function. Obviously, f^* is the dual norm. Let $x^{**} \in B_{X^{**}}$. As

$$f^{**}(x^{**}) = \sup\{\langle x^{**}, x^* \rangle - \|x^*\| : x^* \in X^*\} \le 0 < +\infty,$$

we get $x^{**} \in \operatorname{dom}(f^{**})$. By Proposition 2.4, $\operatorname{dom}(f^{**}) = \overline{\operatorname{dom}(f)}^{w^*} = \overline{B_X}^{w^*}$.

2. This proposition gives a description of f^{**} , sometimes simpler than the original one.

COROLLARY 2.5 Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Then, given $x_0 \in X$,

1.
$$\partial f(x_0) = \partial f^{**}(x_0) \cap X^*$$
.

2. If f is continuous at x_0 , f^{**} is also continuous at x_0 .

Proof: (1) is a consequence of two well-known facts (see [P93]): f^{**} induces f on X, and $x_0^* \in \partial f(x_0)$ if and only if $\langle x_0, x_0^* \rangle = f(x_0) + f^*(x_0^*)$.

To prove (2), assume f (but not f^{**}) is continuous at x_0 . Let \mathcal{N} be a basis of w^* -open neighbourhoods of 0 in X^{**} . Then there exists $\epsilon > 0$ and $x_N^{**} \in x_0 + N, N \in \mathcal{N}$, such that $|f^{**}(x_N^{**}) - f(x_0)| \ge \epsilon$. As $\overline{\operatorname{epi}(f)}^{w^*} = \operatorname{epi}(f^{**})$ and f^{**} is lower semicontinuous, it is possible to choose $x_N \in (x_0 + N) \cap X$ such that $f^{**}(x_N^{**}) \le f(x_N) < f^{**}(x_N^{**}) + \frac{\epsilon}{2}, N \in \mathcal{N}$. It follows that $x_N \xrightarrow{w} x_0$ and $|f(x_N) - f(x_0)| \ge \frac{\epsilon}{2}$, a contradiction.

COROLLARY 2.6 Let $f: X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Then, given $x_0^{**} \in \text{dom}(f^{**})$,

$$f^{**}(x_0^{**}) = \inf\{\liminf_i f(x_i) : x_i \subset \operatorname{dom}(f), x_i \xrightarrow{w^*} x_0^{**}\}.$$

Proof: By Proposition 2.4 it is obvious that $\operatorname{dom}(f^{**}) = \overline{\operatorname{dom}(f)}^{w^*}$. Now, given a net $(x_i)_{i \in I} \subset \operatorname{dom}(f)$, $x_i \xrightarrow{w^*} x_0^{**}$, by the w^* -lower semicontinuity of f^{**} we get $f^{**}(x_0^{**}) \leq \liminf_i f(x_i)$. On the other hand, again by Proposition 2.4, given $\epsilon > 0$ we can find a net $(x_i)_{i \in I} \subset \operatorname{dom}(f)$ and $\lambda_i \in \mathbb{R}$ such that $x_i \xrightarrow{w^*} x_0^{**}$, $(x_i, \lambda_i) \in \operatorname{epi}(f)$ and $\lambda_i < f^{**}(x_0^{**}) + \epsilon$. As $f(x_i) \leq \lambda_i$, $i \in I$, we get the conclusion.

COROLLARY 2.7 Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Then, given $x_0 \in \text{dom}(f)$ and $\epsilon > 0$,

$$\partial_{\epsilon} f^{**}(x_0) \subset \overline{\partial_{\epsilon+k} f(x_0)}^{X^{***}[w^*]}, \quad \forall k > 0.$$

Proof: Let $x^{***} \in \partial_{\epsilon} f^{**}(x_0)$. Then $f^{**}(x_0) + f^{***}(x^{***}) \leq \langle x_0, x^{***} \rangle + \epsilon$. It follows that

$$f^{***}(x^{***}) \le \langle x_0, x^{***} \rangle - f^{**}(x_0) + \epsilon < \langle x_0, x^{***} \rangle - f^{**}(x_0) + \epsilon + \frac{k}{2}.$$

By the previous corollary, there exists a net $(x_i^*)_{i \in I}$ in X^* such that $x_i^* \to x^{***}$ in $X^{***}[w^*]$, $f^*(x_i^*) < \langle x_0, x^{***} \rangle - f^{**}(x_0) + \epsilon + \frac{k}{2}$, $\forall i \in I$ and $|\langle x_0, x_i^* - x^{***} \rangle| < \frac{k}{2}$. We get

$$f(x_0) + f^*(x_i^*) < \langle x_0, x^{***} \rangle + \epsilon + \frac{k}{2} < \langle x_0, x_i^* \rangle + \epsilon + k.$$

Then, $x_i^* \in \partial_{\epsilon+k} f(x_0), \forall i \in I$. The conclusion follows.

3 A characterization of the restricted *w*-upper semicontinuity.

If $x \in X$ and $\delta > 0$, we shall denote by $B^{**}(x_0; \delta)$ the open ball in X^{**} of radius δ and centered at x_0 .

Now we are ready to prove the main result in this note:

THEOREM 3.1 Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Let x_0 be a point of continuity of f. Then the following assertions are equivalent:

- 1. ∂f is restricted w-upper semicontinuous at x_0 .
- 2. For all N, a w-neighbourhood of 0 in X^* , there is $\epsilon > 0$ such that $\partial_{\epsilon} f(x_0) \subset \partial f(x_0) + N$.
- 3. $\partial f(x_0)$ is dense in $\partial f^{**}(x_0)$ in $X^{***}[w^*]$.
- 4. $d^+ f_{x_0}^{**}(\cdot) = \sup\{\langle \cdot, x^* \rangle : x^* \in \partial f(x_0)\}.$

Proof: (1) \Rightarrow (2): Let N be a convex w-neighbourhood of 0 in X^{*}. By hypothesis there is $\delta > 0$ such that $\partial f[B(x_0; \delta)] \subset \partial f(x_0) + \frac{1}{2}N, \, \delta B_{X^*} \subset \frac{1}{2}N.$ Now, by Lemma 2.2,

$$\partial_{\delta^2} f(x_0) \subset \partial f[B(x_0;\delta)] + \delta B_{X^*} \subset \partial f(x_0) + \frac{1}{2}N + \frac{1}{2}N \subset \partial f(x_0) + N.$$

It is enough to choose $\epsilon = \delta^2$.

(2) \Rightarrow (3): Given a closed neighbourhood N^{**} of 0 in $X^{***}[w^*]$, let $\epsilon > 0$ be as in (2). Then, using Corollary 2.5, Corollary 2.7 and the fact that $\overline{\partial f(x_0)}^{X^{***}[w^*]}$ is compact and $N := N^{**} \cup X^*$ is closed in $X^{***}[w^*]$,

$$\partial f(x_0) \subset \partial f^{**}(x_0) \subset \partial_{\epsilon/2} f^{**}(x_0) \subset \overline{\partial_{\epsilon} f(x_0)}^{X^{***}[w^*]} \subset \overline{\partial f(x_0)}^{X^{***}[w^*]} \subset \overline{\partial f(x_0)}^{X^{***}[w^*]} + N^{**}.$$

This proves (3).

 $(3) \Rightarrow (1)$: Let N a w-neighbourhood of 0 in X^{*}. Take a convex w^{*}-neighbourhood of 0 in X^{***}, N^{*}, such that $N^* \cap X^* \subset N$. By Corollary 2.5, f^{**} is continuous at x, so ∂f^{**} is upper w^{*}-semicontinuous at x, hence there exists $\delta > 0$ such that

$$\partial f^{**}(B^{**}(x;\delta)) \subset \partial f^{**}(x) + \frac{1}{2}N^*.$$

By hypothesis, $\partial f^{**}(x) \subset \partial f(x) + \frac{1}{2}N^*$. It follows that

$$\partial f^{**}(B^{**}(x;\delta)) \subset \partial f^{**}(x) + \frac{1}{2}N^* \subset \partial f(x) + \frac{1}{2}N^* + \frac{1}{2}N^* \subset \partial f(x) + N^*.$$

It is now enough to use Corollary 2.5 to get $\partial f(B(x; \delta)) \subset \partial f(x) + N$.

(3) \Leftrightarrow (4): By Proposition 2.3 and Corollary 2.5,

$$d^{+}f_{x_{0}}^{**}(\cdot) = \sup\{\langle \cdot, x^{***} \rangle : x^{***} \in \partial f^{***}(x_{0})\}.$$

Now, using the Hahn-Banach Theorem, the equivalence should be obvious.

Note that the equivalence $(1) \Leftrightarrow (2)$ is valid not only for the restricted wupper semicontinuity, but for the τ -upper upper semicontinuity, τ a Hausdorff topology weaker than the norm-topology. More precisely:

THEOREM 3.2 Let $f : X \to \mathbb{R} \cup \{+\infty\}$ be a proper lower semicontinuous convex function. Let $x_0 \in X$ be a point of continuity of f. If τ is a topology on X^* weaker than the norm topology, then the following assertions are equivalent:

1. ∂f is restricted τ -upper semicontinuous at x_0 .

2. For every τ -neighbourhood N of 0 in X^{*}, there is $\epsilon > 0$ such that $\partial_{\epsilon} f(x_0) \subset \partial f(x_0) + N$.

Proof: For $(1) \Rightarrow (2)$ the same proof used in the previous theorem, $(1) \Rightarrow (2)$, works. To prove $(2) \Rightarrow (1)$, use Lemma 2.2.

This characterization can be considered as the analogue of the Smulyan Test.

It is well known that if the dual norm of X^* is locally uniformly rotund, then the norm of X is Fréchet differentiable. The next proposition, that uses the previous theorem, extends this result. Note that the Fenchel conjugate of the norm of a Banach space X is the indicator function of B_{X^*} .

PROPOSITION 3.3 Let $f : D \to \mathbb{R}$ be a convex, continuous function defined on D, a non-empty open subset of X. Let $x_0 \in D$. If τ is a Hausdorff topology on X^* weaker than the norm topology, then the following assertions are equivalent:

- 1. f is Gâteaux differentiable at x_0 and ∂f is restricted τ -upper semicontinuous at x_0 .
- 2. For all τ -neighbourhood N of 0 in X^* and $x^* \in \partial f(x_0)$, there exists $\delta = \delta(x^*, N)$ such that

$$f(x_0) + \frac{1}{2}(f^*(x^*) + f^*(y^*)) - \delta < \frac{1}{2}\langle x_0, x^* + y^* \rangle \Rightarrow y^* \in x^* + N.$$

Proof: (1) \Rightarrow (2). Let N be a τ -neighbourhood of 0 in X^* and $\{x^*\} = \partial f(x_0)$. By the previous theorem there exists $\epsilon > 0$ such that $\partial_{\epsilon} f(x_0) \subset x^* + N$. Take $y^* \in X^*$ such that

$$f(x_0) + \frac{1}{2}(f^*(x^*) + f^*(y^*)) - \frac{\epsilon}{2} < \frac{1}{2} \langle x_0, x^* + y^* \rangle.$$

A simple calculation shows that $f(x_0) + f^*(y^*) < \langle x_0, y^* \rangle + \epsilon$. It follows that $y^* \in \partial_{\epsilon} f(x_0) \subset x^* + N$.

 $(2) \Rightarrow (1)$. First, we shall prove that f is Gâteaux differentiable at x_0 . If not, there would exist $x_1 \neq x_2$ in $\partial f(x_0)$. Choose a τ -neighbourhood N of 0 in X^* such that $(x_1^* + N) \cap (x_2^* + N) = \emptyset$. Let $\delta_i = \delta_i(x_i^*, N)$ be as in (2) (i = 1, 2) and let $\delta := \min{\{\delta_1, \delta_2\}}$. Take $y^* \in \partial_{\delta} f(x_0)$. A simple calculation shows that

$$f(x_0) + \frac{1}{2}(f^*(x_i^*) + f^*(y^*)) - \delta_i < \frac{1}{2} \langle x_0, x_i^* + y^* \rangle,$$

for i = 1, 2. By hypothesis, $y^* \in (x_1^* + N) \cap (x_2^* + N)$, a contradiction.

Now, let N be a τ -neighbourhood of 0 in X^* . Since f is Gâteaux differentiable at x_0 , $\partial f(x_0) = \{x_0^*\}$. Given N and x_0^* , we get $\delta = \delta(x_0^*, N)$ as in (2). It is easy to prove that $\partial_{\delta} f(x_0) \subset x_0^* + N = \partial f(x_0) + N$. By Theorem 3.2, ∂f is restricted τ -upper semicontinuous at x_0 .

References

- [AOPR86] C. Aparicio, F. Ocaña, R. Payá, A. Rodríguez: A non-smooth extension of Fréchet differentiability of the norm with applications to numerical ranges. Glasgow Math. J. 28 (1986), 121-137.
- [BM99] J. Benítez, V. Montesinos: On restricted weak upper semicontinuous set valued mappings and reflexivity. Bollettino U. M. I. 8, 2-B (1999), 577-583.
- [B83] H. Brezis. Analyse Fonctionelle: Theorie et Applications. Masson et Cie. 1983.
- [CP94] M.D. Contreras, R. Payá: On upper semicontinuity of duality mapping. Proc. Amer. Math. Soc. 121 (1994), 451-459.
- [FP93] C. Franchetti, R. Payá: Banach spaces with strongly subdifferentiable norm. Bolletino U.M.I. 7, B (1993), 45-70.
- [GGS78] J. Giles, D. Gregory, B. Sims: Geometrical implications of upper semicontinuity of the duality mapping on a Banach space. Pac. J. Math. 79 (1978), 99-108.
- [GM96] J. Giles, W. B. Moors: Generic continuity of restricted weak upper semicontinuous set valued mappings. Set Valued Analysis. 4 (1996), 25-39.

- [GS96] J. Giles and S. Sciffer: Fréchet directional differentiability and Fréchet differentiability. Comment. Math. Univ. Carolinae 37 (1996), 489-497.
- [G87] G. Godefroy: Some applications of Simons' inequality. Seminar of Functional Analysis. Vol. 1. Universidad de Murcia, 1987.
- [GMZ95] G. Godefroy, V. Montesinos, V. Zizler: Strong subdifferentiability of norms and geometry of Banach spaces. Commentationes MathematicæUniversitatis Carolinæ. 36, 3 (1995), 493-502.
- [P93] R. Phelps: Convex Functions, Monotone Operators and Differentiability. Lecture Notes in Math. 1364 Springer Verlag, 2nd ed. 1993.

Julio Benítez.	Vicente Montesinos.
Depto. Matemática Aplicada	Depto. Matemática Aplicada
(ETSIT), Apartado 22012,	(ETSIT), Apartado 22012,
E-46071 Valencia (SPAIN).	E-46071 Valencia (SPAIN).
${ m email:}$ jbenitez@mat.upv.es	email:
	vmontesinos@mat.upv.es