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Abstract

We characterize the restricted w-upper semicontinuity of the sub-
differential of convex functions in terms of the Fenchel biconjugate
mapping.

1 Introduction.

Given a convex lower semicontinous function f defined on a real Banach
space X, the subdifferential of f at x ∈ X is defined by

∂f(x) := {x∗ ∈ X∗ : 〈y − x, x∗〉 ≤ f(y)− f(x), ∀y ∈ X},

if x ∈ dom(f), while ∂f(x) = ∅ if x ∈ X \ dom(f).
A set-valued mapping Φ from a topological space (X, τ ′) into subsets of

another topological space (Y, τ) is said to be [τ ′-τ ]-upper semicontinuous at
x ∈ X if given a τ -open subset W of Y such that Φ(x) ⊂ W , there exists
a τ ′-neighbourhood U of x such that Φ(U) ⊂ W . In this paper we shall
always consider X a real Banach space endowed with the norm topology and
Y = X∗ endowed with a topology τ . We shall write τ -upper semicontinuous
instead of [‖ · ‖-τ ]-upper semicontinuous.

Given a convex function f on an open subset D of a Banach space X and
a point of continuity x0 ∈ D of f , it can be proved that ∂f(x0) is a nonempty,
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w∗-compact and convex subset of X∗, and the mapping x 7→ ∂f(x) is w∗-
upper semicontinuous at x0.

Gâteaux differentiability and Fréchet differentiability can be characterized
in terms of the continuity of the subdifferential mapping: Given a continuous
convex function f on an open subset D of a Banach space X and a point x0 ∈
D, f is Gâteaux differentiable at x0 ∈ A if and only if ∂f(x) is a singleton,
and f is Fréchet differentiable at x0 if and only if ∂f(x) is a singleton and
the subdifferential mapping x 7→ ∂f(x) is ‖ · ‖-upper semicontinuous at x0

(for these and related concepts see, for example, [P93]).
If the one sided limit in the definition of the derivative of f at a point

x0 is uniform in every direction, we get a weaker concept than the Fréchet
differentiability. More precisely, given a continuous function f defined on an
open subset D of a Banach space X, we say (following [FP93] and [GS96])
that f is strongly subdifferentiable at x0 ∈ D if

d+fx0(u) := lim
t→0+

f(x0 + tu)− f(x0)

t

is uniform in ‖u‖ = 1. This non-smooth extension of the Fréchet differentia-
bility have found several applications (see for example, [AOPR86], [FP93],
[GGS78], [G87], [GMZ95]).

The following definition was introduced in [GGS78]: A set-valued map-
ping Φ from a Banach space X into the subsets of X∗ endowed with the
topology τ is said to be restricted τ -upper semicontinuous at x ∈ X if given
a τ -neighbourhood W of 0 in X∗ there exists an open neighbourhood U of x
in X such that Φ(U) ⊂ Φ(x) + W .

In [G87] it was proved that given a continuous convex function f defined
on an open subset D of a Banach space X, f is strongly subdifferentiable at
x0 ∈ D if and only if ∂f is restricted ‖ · ‖-upper semicontinuous at x0.

In this note we provide, in the spirit of [GGS78], a characterization of
the restricted w-upper semicontinuity of the subdifferential mapping of a
convex function by using the Fenchel biconjugate mapping. Notice that a
partial characterization was obtained in [GGS78] for the duality mapping (i.e.
x 7→ ∂‖·‖(x)). For the use of the concept of restricted w-upper semicontinuity
of the subdifferential mapping in questions related to the Asplundness and
reflexivity of a Banach space we refer to [BM99], [CP94], [GGS78], [GM96]
and references therein.

Given a continuous convex function f on an open convex subset D of a
Banach space X we can extend f to a lower semicontinuous convex function
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on X, denoted again by f , by defining

f(x) :=

{
lim infy→x f(y) for x ∈ D,

+∞ otherwise.

Given a convex, proper, lower semicontinuous function f : X → IR ∪
{+∞} the Fenchel conjugate of f is defined by

f ∗(x∗) := sup{〈x, x∗〉 − f(x) : x ∈ X}.

Now f ∗ is again convex, proper and lower semicontinuous (in fact, lower w∗-
semicontinuous). Obviously 〈x, x∗〉 ≤ f(x) + f ∗(x∗) for all x ∈ X, x∗ ∈ X∗

(and the inequality becomes equality if and only if x∗ ∈ ∂f(x)). Moreover,
if ε ≥ 0, then x∗ ∈ ∂εf(x) if and only if f(x) + f ∗(x∗) ≤ 〈x, x∗〉 + ε (where
∂εf denotes de ε-subdifferential). Also, f ∗∗|X = f (see [B83] and [P93]).

2 Preliminary results.

We shall need the following results:

Theorem 2.1 (Brøndsted-Rockafellar) Suppose that f is a convex
proper lower semicontinuous function on the Banach space X. Then given
any point x0 ∈ dom(f), ε > 0 and any x∗0 ∈ ∂εf(x0), there exists xε ∈ dom(f)
and x∗ε ∈ X∗ such that

x∗ε ∈ ∂f(xε), ‖xε − x0‖ ≤
√

ε, ‖x∗ε − x∗0‖ ≤
√

ε.

The Brøndsted-Rockafellar Theorem, together with the local bounded-
ness of the subdifferential mapping at a point of continuity x0, allows us to
interweave the ε-subdifferential at x0 and the subdifferential at a neighbour-
hood of x0. The precise relationship is formulated in the next result:

Lemma 2.2 Let f : X → IR ∪ {+∞} be a proper lower semicontinuous
convex function. Let x0 be a point of continuity of f . Then ∀ε > 0 there
exists δ > 0 such that

∂f [B(x0; δ)] ⊂ ∂εf(x0) ⊂ ∂f [B(x0;
√

ε)] +
√

εBX∗ .
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Proof: ∂f is locally bounded at x0, i.e., there exists M > 0 and N(x0), a
neighbourhood of x0, such that

‖x∗‖ ≤ M, ∀x∗ ∈ ∂f(x), ∀x ∈ N(x0).

Given ε > 0, choose δ > 0 such that

B(x0; δ) ⊂ N(x0), Mδ <
ε

2
, |f(x)− f(x0)| < ε

2
, ∀x ∈ B(x0; δ).

Let x∗ ∈ ∂f [B(x0; δ)], say x∗ ∈ ∂f(x) for some x ∈ B(x0; δ). Then

〈y − x0, x
∗〉 = 〈y − x, x∗〉+ 〈x− x0, x

∗〉 ≤
≤ f(y)− f(x) + ‖x∗‖‖x− x0‖ < f(y)− f(x0) + |f(x0)− f(x)|+ Mδ <

< f(y)− f(x0) +
ε

2
+

ε

2
= f(y)− f(x0) + ε,

hence x∗ ∈ ∂εf(x0).
The second inclusion is the Brøndsted-Rockafellar Theorem, and does not

need the continuity of f at x0.

The following proposition can be found in [P93]:

Proposition 2.3 Let f : D → IR be a convex function on D (a non-empty
open and convex subset of X), continuous at x0 ∈ D. Then, for all y ∈ X,

d+fx0(y) = sup{〈y, x∗〉 : x∗ ∈ ∂f(x0)}

and this supremum is attained at some point x∗ ∈ ∂f(x0).

Proposition 2.4 Let f : X → IR ∪ {+∞} be a convex, proper and lower

semicontinuous funcion. Then epi(f ∗∗) = epi(f)
w∗

.

Proof: First, assume f ≥ 0. The inclusion epi(f)
w∗ ⊂ epi(f ∗∗) follows

from epi(f) ⊂ epi(f ∗∗) and the lower w∗-semicontinuity of f ∗∗. Let (x∗∗0 , λ0) ∈
epi(f ∗∗). Suppose that (x∗∗0 , λ0) /∈ epi(f)

w∗
. By the Hahn-Banach Theorem,

there are x∗0 ∈ X∗, k, α, β ∈ IR such that:

〈x∗∗0 , x∗0〉+ kλ0 < α < β < 〈x∗∗, x∗0〉+ kλ, ∀ (x∗∗, λ) ∈ epi(f)
w∗

. (1)
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From (1) we get k ≥ 0 (if k < 0, it is enough to take x ∈ dom(f) and
λ → +∞ in order to obtain a contradiction). In particular, from (1), we get
〈x, x∗0〉+ kf(x) > β, for all x ∈ dom(f). Take ε > 0. Since f ≥ 0, we get

〈x,− x∗0
k + ε

〉 − f(x) < − β

k + ε
, ∀ x ∈ dom(f),

hence f ∗(− x∗0
k+ε

) ≤ − β
k+ε

. Then

f ∗∗(x∗∗0 ) ≥ 〈x∗∗0 ,− x∗0
k + ε

〉 − f ∗(− x∗0
k + ε

) ≥

≥ 〈x∗∗0 ,− x∗0
k + ε

〉+
β

k + ε
=

1

k + ε
[β − 〈x∗∗0 , x∗0〉] >

β − α + kλ0

k + ε
.

If k = 0, then f ∗∗(x∗∗0 ) > (β − α)/ε. As ε > 0 was arbitrary, we get x∗∗0 /∈
dom(f ∗∗), a contradiction. If k 6= 0, since ε > 0 was arbitrary, we get
f ∗∗(x∗∗0 ) ≥ (β − α + kλ0)/k > λ0. This contradicts (x∗∗0 , λ0) ∈ epi(f ∗∗).

Now, if f : X → IR∪{+∞} is an arbitrary proper semicontinuous convex
function, choose x∗0 ∈ dom(f ∗). Consider g : X → IR ∪ {+∞} given by
g(x) = f(x) + f ∗(x∗0) − 〈x, x∗0〉. This function, obviously, is proper, lower
semicontinuous and convex. Moreover dom(f) = dom(g) and g ≥ 0. Now,
a simple calculation shows g∗∗(x∗∗) = f ∗∗(x∗∗) + f ∗(x∗0) − 〈x∗∗, x∗0〉 for all
x∗∗ ∈ X∗∗. By the first part of the proof, the proposition holds for g, and
hence for f .

Remarks:

1. Note that Goldstine’s Theorem is a particular case of the former propo-
sition: It is enough to take as f the indicator function δBX

of the closed
unit ball of X (i.e., δBX

(x) = 0 if ‖x‖ ≤ 1, δBX
(x) = +∞ if ‖x‖ > 1),

a proper lower semicontinuous convex function. Obviously, f ∗ is the
dual norm. Let x∗∗ ∈ BX∗∗ . As

f ∗∗(x∗∗) = sup{〈x∗∗, x∗〉 − ‖x∗‖ : x∗ ∈ X∗} ≤ 0 < +∞,

we get x∗∗ ∈ dom(f ∗∗). By Proposition 2.4, dom(f ∗∗) = dom(f)
w∗

=

BX
w∗

.

2. This proposition gives a description of f ∗∗, sometimes simpler than the
original one.
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Corollary 2.5 Let f : X → IR∪ {+∞} be a proper lower semicontinuous
convex function. Then, given x0 ∈ X,

1. ∂f(x0) = ∂f ∗∗(x0) ∩X∗.

2. If f is continuous at x0, f ∗∗ is also continuous at x0.

Proof: (1) is a consequence of two well-known facts (see [P93]): f ∗∗

induces f on X, and x∗0 ∈ ∂f(x0) if and only if 〈x0, x
∗
0〉 = f(x0) + f ∗(x∗0).

To prove (2), assume f (but not f ∗∗) is continuous at x0. Let N be a
basis of w∗-open neighbourhoods of 0 in X∗∗. Then there exists ε > 0 and

x∗∗N ∈ x0+N , N ∈ N , such that |f ∗∗(x∗∗N )−f(x0)| ≥ ε. As epi(f)
w∗

= epi(f ∗∗)
and f ∗∗ is lower semicontinuous, it is possible to choose xN ∈ (x0 + N) ∩X
such that f ∗∗(x∗∗N ) ≤ f(xN) < f ∗∗(x∗∗N ) + ε

2
, N ∈ N . It follows that xN

w→ x0

and |f(xN)− f(x0)| ≥ ε
2
, a contradiction.

Corollary 2.6 Let f : X → IR∪ {+∞} be a proper lower semicontinuous
convex function. Then, given x∗∗0 ∈ dom(f ∗∗),

f ∗∗(x∗∗0 ) = inf{lim inf
i

f(xi) : xi ⊂ dom(f), xi
w∗→ x∗∗0 }.

Proof: By Proposition 2.4 it is obvious that dom(f ∗∗) = dom(f)
w∗

. Now,

given a net (xi)i∈I ⊂ dom(f), xi
w∗→ x∗∗0 , by the w∗-lower semicontinuity of

f ∗∗ we get f ∗∗(x∗∗0 ) ≤ lim infi f(xi). On the other hand, again by Proposition
2.4, given ε > 0 we can find a net (xi)i∈I ⊂ dom(f) and λi ∈ IR such that

xi
w∗→ x∗∗0 , (xi, λi) ∈ epi(f) and λi < f ∗∗(x∗∗0 ) + ε. As f(xi) ≤ λi, i ∈ I, we

get the conclusion.

Corollary 2.7 Let f : X → IR∪ {+∞} be a proper lower semicontinuous
convex function. Then, given x0 ∈ dom(f) and ε > 0,

∂εf
∗∗(x0) ⊂ ∂ε+kf(x0)

X∗∗∗[w∗]
, ∀k > 0.

Proof: Let x∗∗∗ ∈ ∂εf
∗∗(x0). Then f ∗∗(x0) + f ∗∗∗(x∗∗∗) ≤ 〈x0, x

∗∗∗〉 + ε.
It follows that

f ∗∗∗(x∗∗∗) ≤ 〈x0, x
∗∗∗〉 − f ∗∗(x0) + ε < 〈x0, x

∗∗∗〉 − f ∗∗(x0) + ε +
k

2
.
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By the previous corollary, there exists a net (x∗i )i∈I in X∗ such that x∗i → x∗∗∗

in X∗∗∗[w∗], f ∗(x∗i ) < 〈x0, x
∗∗∗〉−f ∗∗(x0)+ε+ k

2
, ∀i ∈ I and |〈x0, x

∗
i − x∗∗∗〉| <

k
2
. We get

f(x0) + f ∗(x∗i ) < 〈x0, x
∗∗∗〉+ ε +

k

2
< 〈x0, x

∗
i 〉+ ε + k.

Then, x∗i ∈ ∂ε+kf(x0), ∀i ∈ I. The conclusion follows.

3 A characterization of the restricted w-upper

semicontinuity.

If x ∈ X and δ > 0, we shall denote by B∗∗(x0; δ) the open ball in X∗∗ of
radius δ and centered at x0.

Now we are ready to prove the main result in this note:

Theorem 3.1 Let f : X → IR ∪ {+∞} be a proper lower semicontinuous
convex function. Let x0 be a point of continuity of f . Then the following
assertions are equivalent:

1. ∂f is restricted w-upper semicontinuous at x0.

2. For all N , a w-neighbourhood of 0 in X∗, there is ε > 0 such that
∂εf(x0) ⊂ ∂f(x0) + N .

3. ∂f(x0) is dense in ∂f ∗∗(x0) in X∗∗∗[w∗].

4. d+f ∗∗x0
(·) = sup{〈·, x∗〉 : x∗ ∈ ∂f(x0)}.

Proof: (1) ⇒ (2): Let N be a convex w-neighbourhood of 0 in X∗. By
hypothesis there is δ > 0 such that ∂f [B(x0; δ)] ⊂ ∂f(x0)+

1
2
N , δBX∗ ⊂ 1

2
N .

Now, by Lemma 2.2,

∂δ2f(x0) ⊂ ∂f [B(x0; δ)] + δBX∗ ⊂ ∂f(x0) +
1

2
N +

1

2
N ⊂ ∂f(x0) + N.

It is enough to choose ε = δ2.
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(2) ⇒ (3): Given a closed neighbourhood N∗∗ of 0 in X∗∗∗[w∗], let ε > 0
be as in (2). Then, using Corollary 2.5, Corollary 2.7 and the fact that

∂f(x0)
X∗∗∗[w∗]

is compact and N := N∗∗ ∪X∗ is closed in X∗∗∗[w∗],

∂f(x0) ⊂ ∂f ∗∗(x0) ⊂ ∂ε/2f
∗∗(x0) ⊂ ∂εf(x0)

X∗∗∗[w∗] ⊂
⊂ ∂f(x0) + N

X∗∗∗[w∗] ⊂ ∂f(x0)
X∗∗∗[w∗]

+ N∗∗.

This proves (3).
(3) ⇒ (1): Let N a w-neighbourhood of 0 in X∗. Take a convex w∗-

neighbourhood of 0 in X∗∗∗, N∗, such that N∗ ∩X∗ ⊂ N . By Corollary 2.5,
f ∗∗ is continuous at x, so ∂f ∗∗ is upper w∗-semicontinuous at x, hence there
exists δ > 0 such that

∂f ∗∗(B∗∗(x; δ)) ⊂ ∂f ∗∗(x) +
1

2
N∗.

By hypothesis, ∂f ∗∗(x) ⊂ ∂f(x) + 1
2
N∗. It follows that

∂f ∗∗(B∗∗(x; δ)) ⊂ ∂f ∗∗(x) +
1

2
N∗ ⊂ ∂f(x) +

1

2
N∗ +

1

2
N∗ ⊂ ∂f(x) + N∗.

It is now enough to use Corollary 2.5 to get ∂f(B(x; δ)) ⊂ ∂f(x) + N .
(3) ⇔ (4): By Proposition 2.3 and Corollary 2.5,

d+f ∗∗x0
(·) = sup{〈·, x∗∗∗〉 : x∗∗∗ ∈ ∂f ∗∗∗(x0)}.

Now, using the Hahn-Banach Theorem, the equivalence should be obvious.

Note that the equivalence (1) ⇔ (2) is valid not only for the restricted w-
upper semicontinuity, but for the τ -upper upper semicontinuity, τ a Hausdorff
topology weaker than the norm-topology. More precisely:

Theorem 3.2 Let f : X → IR ∪ {+∞} be a proper lower semicontinuous
convex function. Let x0 ∈ X be a point of continuity of f . If τ is a topol-
ogy on X∗ weaker than the norm topology, then the following assertions are
equivalent:

1. ∂f is restricted τ -upper semicontinuous at x0.
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2. For every τ -neighbourhood N of 0 in X∗, there is ε > 0 such that
∂εf(x0) ⊂ ∂f(x0) + N .

Proof: For (1) ⇒ (2) the same proof used in the previous theorem, (1)
⇒ (2), works. To prove (2) ⇒ (1), use Lemma 2.2.

This characterization can be considered as the analogue of the Šmulyan
Test.

It is well known that if the dual norm of X∗ is locally uniformly rotund,
then the norm of X is Fréchet differentiable. The next proposition, that uses
the previous theorem, extends this result. Note that the Fenchel conjugate
of the norm of a Banach space X is the indicator function of BX∗ .

Proposition 3.3 Let f : D → IR be a convex, continuous function defined
on D, a non-empty open subset of X. Let x0 ∈ D. If τ is a Hausdorff
topology on X∗ weaker than the norm topology, then the following assertions
are equivalent:

1. f is Gâteaux differentiable at x0 and ∂f is restricted τ -upper semicon-
tinuous at x0.

2. For all τ -neighbourhood N of 0 in X∗ and x∗ ∈ ∂f(x0), there exists
δ = δ(x∗, N) such that

f(x0) +
1

2
(f ∗(x∗) + f ∗(y∗))− δ <

1

2
〈x0, x

∗ + y∗〉 ⇒ y∗ ∈ x∗ + N.

Proof: (1)⇒ (2). Let N be a τ -neighbourhood of 0 in X∗ and {x∗} = ∂f(x0).
By the previous theorem there exists ε > 0 such that ∂εf(x0) ⊂ x∗+N . Take
y∗ ∈ X∗ such that

f(x0) +
1

2
(f ∗(x∗) + f ∗(y∗))− ε

2
<

1

2
〈x0, x

∗ + y∗〉.

A simple calculation shows that f(x0) + f ∗(y∗) < 〈x0, y
∗〉+ ε. It follows that

y∗ ∈ ∂εf(x0) ⊂ x∗ + N .
(2) ⇒ (1). First, we shall prove that f is Gâteaux differentiable at x0. If

not, there would exist x1 6= x2 in ∂f(x0). Choose a τ -neighbourhood N of
0 in X∗ such that (x∗1 + N) ∩ (x∗2 + N) = ∅. Let δi = δi(x

∗
i , N) be as in (2)

9



(i = 1, 2) and let δ := min{δ1, δ2}. Take y∗ ∈ ∂δf(x0). A simple calculation
shows that

f(x0) +
1

2
(f ∗(x∗i ) + f ∗(y∗))− δi <

1

2
〈x0, x

∗
i + y∗〉,

for i = 1, 2. By hypothesis, y∗ ∈ (x∗1 + N) ∩ (x∗2 + N), a contradiction.
Now, let N be a τ -neighbourhood of 0 in X∗. Since f is Gâteaux differ-

entiable at x0, ∂f(x0) = {x∗0}. Given N and x∗0, we get δ = δ(x∗0, N) as in
(2). It is easy to prove that ∂δf(x0) ⊂ x∗0 + N = ∂f(x0) + N . By Theorem
3.2, ∂f is restricted τ -upper semicontinuous at x0.
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