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Abstract

We characterize the restricted w-upper semicontinuity of the sub-
differential of convex functions in terms of the Fenchel biconjugate

mapping.

1 Introduction.

Given a convex lower semicontinous function f defined on a real Banach
space X, the subdifferential of f at x € X is defined by

of(x) :={z" € X" : (y —z,2") < f(y) — f(z),Vy € X},

if z € dom(f), while 9f(z) =0 if z € X \ dom(f).

A set-valued mapping ® from a topological space (X, 7’) into subsets of
another topological space (Y, 7) is said to be [7/-T]-upper semicontinuous at
x € X if given a 7-open subset W of Y such that ®(z) C W, there exists
a 7'-neighbourhood U of = such that ®(U) C W. In this paper we shall
always consider X a real Banach space endowed with the norm topology and
Y = X* endowed with a topology 7. We shall write 7-upper semicontinuous
instead of [|| - [[-7]-upper semicontinuous.

Given a convex function f on an open subset D of a Banach space X and
a point of continuity zo € D of f, it can be proved that Jf(z) is a nonempty,
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w*-compact and convex subset of X*, and the mapping x — 9f(x) is w*-
upper semicontinuous at xg.

Gateaux differentiability and Fréchet differentiability can be characterized
in terms of the continuity of the subdifferential mapping: Given a continuous
convex function f on an open subset D of a Banach space X and a point xq €
D, f is Gateaux differentiable at xy € A if and only if df(z) is a singleton,
and f is Fréchet differentiable at xq if and only if df(z) is a singleton and
the subdifferential mapping « — 0f(x) is || - ||-upper semicontinuous at x
(for these and related concepts see, for example, [P93]).

If the one sided limit in the definition of the derivative of f at a point
xo is uniform in every direction, we get a weaker concept than the Fréchet
differentiability. More precisely, given a continuous function f defined on an
open subset D of a Banach space X, we say (following [FP93] and [GS96])
that f is strongly subdifferentiable at xo € D if

0 f(0) = lip LE0F ) = f(20)

t—0+ t

is uniform in |Ju|| = 1. This non-smooth extension of the Fréchet differentia-
bility have found several applications (see for example, [AOPRS&6|, [FP93],
[GGST8], [G87], [GMZ95]).

The following definition was introduced in [GGS78]: A set-valued map-
ping ® from a Banach space X into the subsets of X* endowed with the
topology 7 is said to be restricted T-upper semicontinuous at x € X if given
a T-neighbourhood W of 0 in X* there exists an open neighbourhood U of z
in X such that ®(U) C ®(x) + W.

In [G87] it was proved that given a continuous convex function f defined
on an open subset D of a Banach space X, f is strongly subdifferentiable at
xo € D if and only if Of is restricted || - [|-upper semicontinuous at z.

In this note we provide, in the spirit of [GGS78], a characterization of
the restricted w-upper semicontinuity of the subdifferential mapping of a
convex function by using the Fenchel biconjugate mapping. Notice that a
partial characterization was obtained in [GGST78] for the duality mapping (i.e.
x +— 0||-||(x)). For the use of the concept of restricted w-upper semicontinuity
of the subdifferential mapping in questions related to the Asplundness and
reflexivity of a Banach space we refer to [BM99], [CP94], [GGST78], [GM96]
and references therein.

Given a continuous convex function f on an open convex subset D of a
Banach space X we can extend f to a lower semicontinuous convex function



on X, denoted again by f, by defining

f(x) := { liminf, ., f(y) forz € D,

o 400 otherwise.

Given a convex, proper, lower semicontinuous function f : X — IR U
{+00} the Fenchel conjugate of f is defined by

[ (z") :=sup{{x,z") — f(z): x € X}.

Now f* is again convex, proper and lower semicontinuous (in fact, lower w*-
semicontinuous). Obviously (z,z*) < f(z) + f*(2*) for all x € X, z* € X*
(and the inequality becomes equality if and only if * € df(x)). Moreover,
if € > 0, then z* € O.f(x) if and only if f(z) + f*(2*) < (x,2*) + € (where
O.f denotes de e-subdifferential). Also, f**|x = f (see [B83] and [P93]).

2 Preliminary results.

We shall need the following results:

THEOREM 2.1 (BRONDSTED-ROCKAFELLAR) Suppose that f is a convex
proper lower semicontinuous function on the Banach space X. Then given
any point o € dom(f), € > 0 and any xf € O.f(xo), there exists . € dom(f)
and x} € X* such that

ZL’: € af(xe)a ||:Ee - [Eo” S \/E> ||93: - $S|’ S \/E

The Brondsted-Rockafellar Theorem, together with the local bounded-
ness of the subdifferential mapping at a point of continuity xy, allows us to
interweave the e-subdifferential at xy and the subdifferential at a neighbour-
hood of zy. The precise relationship is formulated in the next result:

LEMMA 2.2 Let f : X — IR U {400} be a proper lower semicontinuous
convex function. Let xy be a point of continuity of f. Then Ye > 0 there
exists 6 > 0 such that

Of[B(20:6)] C 0.f(x0) C Df[B(o; /)] + VeBx-.



Proof: Jf is locally bounded at zg, i.e., there exists M > 0 and N(xg), a
neighbourhood of xy, such that

|z*|| < M, Va* € 0f(z), Va & N(x).
Given € > 0, choose § > 0 such that
B(x;0) C N(zg), M < %, |f(z) — f(x)] < %, Vo € B(xg;9).
Let z* € Of[B(x¢;0)], say z* € 0f(x) for some x € B(x¢;0). Then
(y —xp,2") = (y —x,2") + (x — xg,2") <
< ) = f(@) + llz"lllz — zoll < f(y) — f(m0) + | f (o) — f(2)| + M <
< J) = fleo) + 5 + 5 = J ) — f(ao) +

hence z* € O, f(zo).
The second inclusion is the Brgndsted-Rockafellar Theorem, and does not
need the continuity of f at xg. ]

The following proposition can be found in [P93]:

PROPOSITION 2.3 Let f: D — IR be a convex function on D (a non-empty
open and convex subset of X ), continuous at xo € D. Then, for ally € X,

d" fuo(y) = sup{(y, 2") : 2" € 9f (20)}
and this supremum is attained at some point x* € O f(xo).

PROPOSITION 2.4 Let f : X — R U {+o0} be a convez, proper and lower

semicontinuous funcion. Then epi( f**) = epi(f) b

Proof: First, assume f > 0. The inclusion epi(f) v epi(f**) follows
from epi(f) C epi(f**) and the lower w*-semicontinuity of f**. Let (z{*, Ao) €
epi(f**). Suppose that (z{*, \g) ¢ epi(f) v By the Hahn-Banach Theorem,
there are zj; € X*, k, o, # € IR such that:

w*

(xg" xg) + kdo < a < < (™, x5) + kX, ¥V (2", N) € epi(f)

(1)



From (1) we get k& > 0 (if & < 0, it is enough to take z € dom(f) and
A — +00 in order to obtain a contradiction). In particular, from (1), we get
(x,z§) + kf(x) > [, for all z € dom(f). Take ¢ > 0. Since f > 0, we get

<x,—k+e>—f(x) oo YV z € dom(f),
hence f*( l:fg) < —k%s. Then
xs xs
$ok *ok > ok 0 L Y 0 >
f(%)_@o, k+€> f(k—l—e)_

> - - - .
- < k’"‘E k+€[ﬁ <l’0 7m0>] > k_l_e

If £ =0, then f**(z*) > (8 — a)/e. As € > 0 was arbitrary, we get z3*
dom(f**), a contradiction. If k # 0, since ¢ > 0 was arbitrary, we get
*(xfr) > (8 — a+ kXo)/k > Xo. This contradicts (x5*, A\g) € epi(f**).
Now, if f : X — IRU{+4o00} is an arbitrary proper semicontinuous convex
function, choose x§ € dom(f*). Consider g : X — IR U {400} given by
g(x) = f(z) + f*(xf) — (x,xf). This function, obviously, is proper, lower
semicontinuous and convex. Moreover dom(f) = dom(g) and g > 0. Now,
a simple calculation shows ¢**(z**) = f*(z™) + f*(xf) — (™, zf) for all
™ € X**. By the first part of the proof, the proposition holds for g, and
hence for f. [ ]

Remarks:

1. Note that Goldstine’s Theorem is a particular case of the former propo-
sition: It is enough to take as f the indicator function d5, of the closed
unit ball of X (i.e., dp, (x) = 0if ||z|| < 1, 0, (z) = +oo if ||z]| > 1),
a proper lower semicontinuous convex function. Obviously, f* is the
dual norm. Let 2™ € Bx«. As

(™) = sup{{x™, 2") — ||z*|| : ¥ € X"} <0 < 400,

w*

we get ** € dom(f**). By Proposition 2.4, dom(f**) = dom(f) =
Bx .

2. This proposition gives a description of f**, sometimes simpler than the
original one.



COROLLARY 2.5 Let f: X — IRU{+o0} be a proper lower semicontinuous
convex function. Then, given xg € X,

2. If f is continuous at xo, f** is also continuous at xy.

k%

Proof: (1) is a consequence of two well-known facts (see [P93]): f
induces f on X, and xj € 0f(x¢) if and only if (zg, z8) = f(xo) + f*(2}).

To prove (2), assume f (but not f**) is continuous at zo. Let A be a
basis of w*-open neighbourhoods of 0 in X**. Then there exist§ e > 0 and
2% € xo+N, N € N, such that | f** (%) — f(z0)| > €. Asepi(f)" = epi(f*)
and f** is lower semicontinuous, it is possible to choose zx € (g + N)N X
such that f*(2%) < f(zn) < f*(2¥) + 5, N € V. It follows that 2y = xg

and |f(xn) — f(z0)| > §, a contradiction. u

COROLLARY 2.6 Let f: X — IRU {400} be a proper lower semicontinuous
convex function. Then, given x}* € dom(f*),

o (xgr) = inf{limiinff(xi) c; € dom(f), z; xy"}.

Proof: By Proposition 2.4 it is obvious that dom(f**) = dom(f)w*. Now,
given a net (z;);e; C dom(f), z; R x§*, by the w*-lower semicontinuity of
f* we get f*(x§*) < liminf; f(z;). On the other hand, again by Proposition
2.4, given € > 0 we can find a net (z;);e; C dom(f) and \; € IR such that
z; xy, (x4, Ai) € epi(f) and A\, < f*(z§*) +e. As f(z;) < Ny, 7 € I, we
get the conclusion. [ ]

COROLLARY 2.7 Let f: X — IRU{+oo} be a proper lower semicontinuous
convex function. Then, given zo € dom(f) and € > 0,

Oe [ (w0) C Oetrf(20) ;. Vk>0.

Proof: Let x** € O.f**(x¢). Then f**(zo) + f**(a**) < (xg,2™*) + €.
It follows that

f***(x***) S <I0,I***> o f**(xO) Te< <$0,x***> . f**(IO) Tet ];:



By the previous corollary, there exists a net (x});c; in X* such that xj — z***
in X [w*], f*(x}) < (o, ***)— f**(2x0)+e+5, Vi € I and |(xo, x] — 2**)| <
g. We get

k
flxzo) + f5(x]) < (mg, x™) + €+ 5 < A{xg,x}) + €+ k.

Then, xf € Ocyrf(20), Vi € I. The conclusion follows. (]

3 A characterization of the restricted w-upper
semicontinuity.

If z € X and § > 0, we shall denote by B**(x¢;d) the open ball in X** of
radius ¢ and centered at x.
Now we are ready to prove the main result in this note:

THEOREM 3.1 Let f : X — IR U {+o0} be a proper lower semicontinuous
convex function. Let xo be a point of continuity of f. Then the following
assertions are equivalent:

1. Of 1is restricted w-upper semicontinuous at .

2. For all N, a w-neighbourhood of 0 in X*, there is € > 0 such that
Ocf(x0) C Of (x0) + N.

3. 0f(xo) is dense in Of*™(xg) in X *[w].
4. dTfrx(-) = sup{(-,2*) : 2* € Of (wo)}.

Proof: (1) = (2): Let N be a convex w-neighbourhood of 0 in X*. By
hypothesis there is 6 > 0 such that 9 f[B(w;6)] C 8f(xo)+ 4N, 6Bx+ C 3N.
Now, by Lemma 2.2,

D52 f(20) C DF[B(wo: 0)] + 0By C Of (o) + ;N + ;N C 0f(wo) + N.

It is enough to choose € = §2.



(2) = (3): Given a closed neighbourhood N** of 0 in X***[w*], let € > 0
be as in (2)

. Then, using Corollary 2.5, Corollary 2.7 and the fact that
8f(xo)X s compact and N := N** U X* is closed in X**[w*],

Hokok [w*]

0f (0) C Of ™ (20) C upaf™(w0) C Def(xa) " C
caf@) + N T caf@y M N

w*)

This proves (3).

(3) = (1): Let N a w-neighbourhood of 0 in X*. Take a convex w*-
neighbourhood of 0 in X*** N* such that N* N X* C N. By Corollary 2.5,
f** is continuous at x, so df** is upper w*-semicontinuous at x, hence there
exists 0 > 0 such that

1
Of ™ (B*™(x;9)) C Of™(x) + §N*.
By hypothesis, 0f**(z) C 9f(z) + 3 N*. It follows that

1 1 1
Of**(B*(x;9)) C Of*(x) + §N* C Of(x) + §N* + §N* C Of(x) + N~
It is now enough to use Corollary 2.5 to get df(B(z;9)) C df(x) + N.
(3) < (4): By Proposition 2.3 and Corollary 2.5,

d* fog (1) = sup{ (-, 2™") : ™ € O (x0)}-

Now, using the Hahn-Banach Theorem, the equivalence should be obvious.
|

Note that the equivalence (1) < (2) is valid not only for the restricted w-
upper semicontinuity, but for the 7-upper upper semicontinuity, 7 a Hausdorff
topology weaker than the norm-topology. More precisely:

THEOREM 3.2 Let f : X — IR U {400} be a proper lower semicontinuous
conver function. Let xo € X be a point of continuity of f. If 7 is a topol-
oqy on X* weaker than the norm topology, then the following assertions are
equivalent:

1. Of is restricted T-upper semicontinuous at .



2. For every tT-neighbourhood N of 0 in X*, there is € > 0 such that
Oc f (o) C Of(x0) + N.

Proof: For (1) = (2) the same proof used in the previous theorem, (1)
= (2), works. To prove (2) = (1), use Lemma 2.2. n

This characterization can be considered as the analogue of the Smulyan
Test.

It is well known that if the dual norm of X* is locally uniformly rotund,
then the norm of X is Fréchet differentiable. The next proposition, that uses
the previous theorem, extends this result. Note that the Fenchel conjugate
of the norm of a Banach space X is the indicator function of By«.

PROPOSITION 3.3 Let f: D — IR be a convex, continuous function defined
on D, a non-empty open subset of X. Let vy € D. If 7 is a Hausdorff
topology on X* weaker than the norm topology, then the following assertions
are equivalent:

1. f is Gateaux differentiable at xo and Of is restricted T-upper semicon-
tinuous at xo.

2. For all T-neighbourhood N of 0 in X* and z* € O0f(xg), there exists
0 = 6(z*, N) such that

f(zo) + ;(f*(l“*) + f*(y") —0 < ;(xo,x* +y*) =y eax* + N.

Proof: (1) = (2). Let N be a 7-neighbourhood of 0 in X* and {z*} = 9f(xo).
By the previous theorem there exists € > 0 such that 0. f(x¢) C z*+ N. Take
y* € X* such that

Flao) + 5(f* @) + W) — & < sloo.a® +47),
A simple calculation shows that f(zo) + f*(y*) < (zo,y") + €. It follows that
y* € 0.f(xg) Cz* + N.

(2) = (1). First, we shall prove that f is Gateaux differentiable at xg. If
not, there would exist xy # x5 in 0f(zy). Choose a T-neighbourhood N of
0 in X* such that (z3 + N) N (25 4+ N) = 0. Let 6; = §;(z, N) be as in (2)



(¢ =1,2) and let 0 := min{0y,d2}. Take y* € O5f(xo). A simple calculation
shows that

Flao) + 57 () + 7)) — 6 < 3o, i+,
for i = 1,2. By hypothesis, y* € (27 + N) N (x5 + N), a contradiction.

Now, let N be a 7-neighbourhood of 0 in X*. Since f is Gateaux differ-
entiable at xg, 0f(xg) = {z§}. Given N and zj, we get 6 = o(zf, N) as in
(2). It is easy to prove that Jsf(zo) C x5+ N = 0f(xy) + N. By Theorem
3.2, Of is restricted T-upper semicontinuous at x. [
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