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M. López-Pellicer∗and V. Montesinos †

March, 2000

Abstract

We use a result of Bourgain and Delbaen on extreme points in duals
of separable Banach spaces to characterize separable Banach spaces
containing isomorphic copies of `1 in terms of extreme points. We
also study the weak star closure of a bounded subset A of a separable
X Banach space in X∗∗ in terms of the existence of a sequence in A
equivalent to the canonical basis of `1.

1 Introduction

Banach spaces containing a copy of `1 have been characterized in several
ways, both in the separable and the non-separable case. In the second situ-
ation, a theorem due to Haydon [HA76] says that a Banach space does not
contain a copy of `1 if, and only if, every x∗∗ ∈ X∗∗ has the Point of Con-
tinuity Property (≡PCP), i.e., given any weak star closed subset F of BX∗ ,
the closed dual unit ball, the restriction of x∗∗ to F has at least a point of
weak star continuity.

Accordingly, if the Banach space X contains a copy of `1, an element
x∗∗ in X∗∗ and a weak star closed subset of BX∗ can be found violating the
PCP. It is possible, at least in the separable case, to precise the location of
the pathological subset of the dual. This is done in Theorem 2. Theorem 7
relates the weak star closure of a bounded subset A of X in the bidual to the
existence of sequences in A equivalent to the canonical basis of `1.
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A basic tool is a result due to Bourgain and Delbaen [BD78] (Theorem 1),
which locates a Cantor Set in the set Ext(BX∗) of extreme points of the dual
unit ball (endowed with the weak star topology, w∗) of a separable Banach
space containing a copy of `1, satisfying an appropiate extension property:

Theorem 1 (Bourgain-Delbaen [BD78]) Let X be a separable Banach
space. Then, if X contains an isomorphic copy of `1, there exists, for every
ε > 0, a subset ∆ε of (Ext(BX∗), w∗) homeomorphic to the Cantor Ternary
Set such that the following extension property holds: Given f , a real continu-
ous function on (∆ε, w

∗) such that ‖f‖ < 1− ε, there exists x ∈ X, ‖x‖ < 1,
such that the restriction of x to ∆ε, x|∆ε, coincides with f .

In the sequel, ∆ (sometimes decorated with upper or subscripts) will
always denote a Cantor Ternary Set, and ∆n,i, i = 1, 2, . . . , 2n, n = 0, 1, 2, . . .
its dyadic subsets (i.e., up to a homeomorphism,

{∆0,1, ∆1,1, ∆1,2, ∆2,1, ∆2,2, ∆2,3, ∆2,4, . . .} :=

{[0, 1] ∩∆, [0, 1/3] ∩∆, [2/3, 1] ∩∆,

[0, 1/9] ∩∆, [2/9, 3/9] ∩∆, [6/9, 7/9] ∩∆, [8/9, 1] ∩∆, . . .},
where ∆ :=

⋂∞
n=0

⋃2n

i=0 ∆n,i).

2 Checking `1 on extreme points.

Theorem 2 Let X be a separable Banach space. The following statements
are equivalent:

1. X contains an isomorphic copy of `1.

2. There exists ∆, a subset of (Ext(BX∗), w∗) homeomorphic to the Can-
tor Ternary Set, and there exists x∗∗ ∈ X∗∗ such that x∗∗|∆ has no
point of continuity.

Proof. (1) ⇒ (2). By Theorem 1, given ε > 0 it is possible to choose an
appropiate ∆ε and a sequence (xn) in BX such that

〈xn, x∗〉 = (−1)i(1− ε), x∗ ∈ ∆n,i, i = 1, 2, . . . , 2n, n = 0, 1, 2, . . .

Let U be a non-trivial ultrafilter on IN . Let

x∗∗ := ω∗ − lim
U

xn ∈ X∗∗.
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We shall prove that x∗∗ restricted to (∆ε, w
∗) has no point of continuity:

Assume, on the contrary, that x∗∗|∆ε is continuous at x∗0 ∈ ∆ε. As x∗∗ takes
only two values (1− ε and −1 + ε), it is possible then to find a dyadic subset
∆n0,i where x∗∗ is a constant (say 1 − ε). It is easy now to find x∗ ∈ ∆n0,i

such that 〈xn, x
∗〉 = −1 + ε, ∀n > n0. Now, there exists U ∈ U such that

〈xn, x∗〉 = 〈x∗∗, x∗〉, ∀n ∈ U . This is a contradiction, as {n ∈ IN : n >
n0} ∩ U 6= ∅.

(2) ⇒ (1). This is a consequence of Corollary III.3.3 in [DGZ93].

Remark. In fact, the former proof allows to say that if X is a separable
Banach space with an isomorphic copy of `1, something a little bit more
precise is true: x∗∗ ∈ X∗∗ and ∆ε ∈ Ext(BX∗) can be found such that for
every point x∗0 ∈ ∆ε there exists a ω∗-neighbourhood of x∗0 in (∆ε, w

∗) where
the oscillation of x∗∗ is greater or equal than 2− 2ε. This will be used in the
sequel.

Rainwater’s Theorem [RA63] says that a bounded sequence in a Banach
space X weakly converges to a point u in X if it converges on the extreme
points of the dual unit ball. The result is not longer true if u belongs to
X∗∗ \ X. This can be easily seen in C(K), K a compact space such that
a regular Borel measure with non-separable support exits on K. Then,

lin
‖·‖

(Ext(BM(K))) 6= M(K), where M(K) denotes the dual space of C(K).
The Separation Theorem gives u ∈ SX∗∗ which vanishs on Ext(BM(K)), and
u is, on the extreme points of BM(K), the limit of the zero sequence. How-
ever, the validity of Rainwater’s Theorem “going to the bidual” relates, at
least in the separable case, to Banach spaces without isomorphic copies of `1:
A classical result characterizes those spaces: (a) [OR75]A separable Banach
space X does not contain an isomorphic copy of `1 if and only if every point
x∗∗ ∈ X∗∗ is the weak star limit of a sequence (xn) in X. Using the former
theorem we can formulated the next

Corollary 3 Let X be a separable Banach space. The following are equiva-
lent:

1. The space X does not contain an isomorphic copy of `1.
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2. For every x∗∗ ∈ X∗∗ there exists a sequence (xn) in X which converges
to x∗∗ on the extreme points of BX∗.

Proof. (1) ⇒ (2) is trivial after the result (a). To prove (2) ⇒ (1) assume
X contains an isomorphic copy of `1. By Theorem 2 there exists x∗∗ ∈ X∗∗

and ∆ ⊂ Ext(BX∗) such that x∗∗|(∆,w∗) has no point of continuity. By (2),
there exists a sequence (xn) in X such that 〈x∗∗− xn, x

∗〉 → 0 as n →∞ for
every x∗ ∈ Ext(BX∗). As (∆, w∗) is metrizable, Baire Great Theorem (see,
for example, [DGZ93], Theorem I.4.1) says that x∗∗ has points of continuity
when restricted to any non-empty closed subset of (∆, w∗), which is plainly
false.

Remark. In the result (a) it is possible to substitute the statement on
points of the bidual by the following one: every point x∗∗ ∈ BX∗∗ is the weak
star limit of a sequence in BX . Analogously, it is possible to substitute (2)
in Corollary 3 by For every x∗∗ ∈ BX∗∗ there exists a sequence (xn) in BX

which converges to x∗∗ on the extreme points of BX∗ .

A subset BD of BX∗ is called a boundary (more precisely, a James bound-
ary) if every x ∈ X attains its supremum on BX∗ at some point of BD. Using
Simons inequality, G. Godefroy (see, for example, [DGZ93], Lemma I.5.10)
proved the following statement: (b) Let X be a Banach space. Assume that
every x∗∗ ∈ BX∗∗ is the weak star limit of a sequence (xn) in BX . Then
conv‖·‖(BD) = BX∗ . In case the Banach space X is separable, it is enough
to have convergence of sequences on extreme points. This is the content of
the following

Corollary 4 Let X be a separable Banach space and let BD ⊂ BX∗ be a
James boundary. Assume that every element x∗∗ ∈ BX∗∗ is the limit of a
sequence (xn) in X for the topology of the pointwise convergence on extreme
points of BX∗. Then conv‖·‖(BD) = BX∗.

Proof. According to Corollary 3 the space X does not contains an isomor-
phic copy of `1. It follows that every point x∗∗ ∈ BX∗∗ is the weak star limit
of a sequence (xn) in BX . The result now is a consequence of (b).
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An interesting result due to E. and P. Saab characterizes Banach spaces
with isomorphic copies of `1 in terms of the oscillation of an element of X∗∗

on weak star slices of a certain subset of X∗. Precisely, we have

Theorem 5 (Saab-Saab [SS83]) Let X be a Banach space. Then, the fol-
lowing statements are equivalent:

1. X contains an isomorphic copy of `1.

2. There exists x∗∗ ∈ X∗∗, K, a non-empty subset of BX∗ and ε > 0 such
that

osc(x∗∗, S) ≥ ε, for all non-empty weak star section S of K,

where osc(x∗∗, S) denotes the oscillation of a function x∗∗ on a set S.

Now, Theorem 2 allows us to precise the location of the subset K in the
former theorem in case of a separable Banach space X. Just use the previous
remark.

Theorem 6 Let X be a separable Banach space. Then, the following state-
ments are equivalent:

1. X contains an isomorphic copy of `1.

2. There exists x∗∗ ∈ X∗∗, K ⊂ (Ext(BX∗), w∗), homeomorphic to the
Cantor Ternary Set, and ε > 0 such that

osc(x∗∗, S) ≥ ε, for all non-empty weak star section S of K.

3 Closures of bounded subsets of X in X∗∗

and `1-sequences.

Let A be a bounded subset of a Banach space X. Let’s denote by
∗∗
A the clo-

sure of A in (X∗∗, w∗), by
...

A the sequential closure (i.e., the set of all limits of

sequences) of A in (X∗∗, w∗), and by Ã the set
⋃{ ∗∗N : N ⊂ A, N countable}.

The following theorem relates those closures with the existence of a se-
quence in A equivalent to the canonical basis of `1:
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Theorem 7 Let X be a separable Banach space. Let A be a bounded subset
of X. Then, the following statement are equivalent:

1. A does not contain any sequence equivalent to the canonical basis of `1.

2. Every a∗∗ ∈∗∗A is a Borel function on (BX∗ , w∗).

3. Every a∗∗ ∈∗∗A is a First Baire Class function on (BX∗ , w∗).

4.
∗∗
A=

...

A.

5. Ã =
...

A.

Proof. (1) ⇒ (3): Let a∗∗ ∈∗∗A. Assume a∗∗ is not a First Baire Class
function on (BX∗ , w∗). This is a Polish topological space, hence a∗∗ satisfies
the Discontinuity Criterium on a countable subset N ⊂ (BX∗ , w∗) ([RO77]).
Precisely, there exists r ∈ IR and δ > 0 such that for every non-empty open
set O in (N, w∗), there exists x∗1 and x∗2 in O such that

〈a∗∗, x∗1〉 ≤ r, 〈a∗∗, x∗2〉 ≥ r + δ. (1)

We shall construct a tree of subsets of N by repeatingly using inequalities
(1): let’s start by taking N1 := N . We can then find x∗1,1 and x∗1,2 in N1

such that 〈a∗∗, x∗1,1〉 ≤ r, 〈a∗∗, x∗1,2〉 ≥ r + δ. Choose a1 ∈ A such that
|〈a∗∗−a1, x

∗
1,i〉| < δ/4, i = 1, 2. a1 defines disjoint open neighbourhoods (say

N1,1 and N1,2) of x∗1,1 and x∗1,2 in N , respectively. Again by (1) it is possible
to find x∗2,1, x∗2,2 in N1,1 and x∗2,3, x∗2,4 in N1,2 such that

〈a∗∗, x∗2,1〉 ≤ r, 〈a∗∗, x∗2,2〉 ≥ r + δ

〈a∗∗, x∗2,3〉 ≤ r, 〈a∗∗, x∗2,4〉 ≥ r + δ.

Choose now a2 ∈ A such that |〈a∗∗ − a2, x
∗
2,i〉| < δ/4, i = 1, 2, 3, 4. Proceed

in this way to find a sequence (an) in A and a tree Nn,i, i = 1, 2, . . . , 2n, n =
1, 2, . . . of subsets of N . The sequence (an) is equivalent to the canonical
basis of `1 (see, for example, [DI84], Proposition XI,2), a contradiction.

(3) ⇒ (4): Let B1(P ) be the space of all First Baire Class functions on
the Polish space P := (BX∗ , w∗), endowed with the pointwise topology Tp.

This is an angelic space ([RO77]). By hypothesis,
∗∗
A is a compact subset of

(B1(P ), Tp), hence
∗∗
A=

...

A.
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(4) ⇒ (5): This is obvious, as A ⊂ ...

A⊂ Ã ⊂∗∗A.
(5) ⇒ (1): Let (an) be a sequence in A equivalent to the canonical basis

of `1. Let U be a non-trivial ultrafilter in IN . Let u ∈ X∗∗ be the weak star
limit of (an) along the ultrafilter.

Claim: There exists a non-empty closed subset M of (BX∗ , w∗) such that
the restriction of u to M has no point of continuity.

Proof of the claim: Let Y := lin{an : n = 1, 2, . . .} ⊂ X. Denote
by q the canonical mapping from X∗ onto Y ∗. Let T : `1 → Y be an
isomorphism such that Ten = an, n = 1, 2, . . .. The set ∆ := {(xn) : xn =
±1, n ∈ IN} ⊂ (B`∞ , w∗) is homeomorphic to the Cantor Ternary Set and the
oscillation of e∗∗ := limU(en) on a non-empty open subset of (∆, ω∗) is 2. Let
D := (T ∗)−1(∆). D is a weak star compact subset of r.BY ∗ for some r > 0.
Let N be a compact subset of (r.BX∗ , w∗) such that q(N) = D, and N is
minimal for this two properties. As T ∗∗(e∗∗) = u, it follows that osc(u,O) = 2
for every non-empty open subset O of (N, ω∗). Then M := 1

r
N is a non-empty

closed subset of (BX∗ , ω∗) such that osc(u, V ) = 2
r

on every non-empty open
subset V of (M,ω∗), hence u|(M,ω∗) has no point of continuity. This proves
the Claim.

Now, (BX∗ , w∗) is a Polish space. We can use Baire Great Theorem (see,
for example, [DGZ93], Theorem I.4.1) to conclude that u is not the weak
star limit of a sequence in X. It follows that u 6∈ ...

A. However, u ∈ Ã, a
contradiction.

(3) ⇒ (2): This is obvious, as every First Baire Class function is also
Borel.

(2) ⇒ (5): Let a∗∗ ∈ Ã. There exists a sequence (an) in A such that

a∗∗ ∈
∗∗
{an}. As every element of

∗∗
{an} is Borel, we can use Lemma III.3.4 in

[DGZ93] in order to find a subsequence (ank
) of (an) such that ω∗−limk ank

=

a∗∗. It follows that a∗∗ ∈
...

{an}.

Remark. Each of the conditions in the former theorem implies, of course,

that
∗∗
A= Ã. However, this condition is not equivalent to the others: let X

be a separable Banach space with an isomorphic copy of `1. Let (an) be

a sequence in X equivalent to the canonical basis of `1. Obviously
∗∗
A= Ã,

where A := {an : n = 1, 2, . . .}, but none of the (equivalent) conditions of
the former theorem are satisfied.
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Manuel López-Pellicer.
Depto. Matemática Apli-
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