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Abstract

Two smoothness characterizations of weakly compact sets in Ba-
nach spaces are given. One that involves pointwise lower semicontin-
uous norms and one that involves projectional resolutions of identity.

The Gâteaux smoothness of norms has a profound impact on the structure
of nonseparable Banach spaces, especially, if the smoothness is accompanied
by additional properties like pointwise lower semicontinuity, lattice property
or projectional resolutions of identity (cf. e.g. [3]-[10]).

The purpose of the present note is to discuss the relationship between the
Gâteaux smoothness of norms and the weak compactness of sets in Banach
spaces. The result in Theorem 1 is of interest in separable spaces as well.

Let M be a bounded set in a Banach space (X, ‖ · ‖). We will say that the
norm ‖ · ‖ is M-smooth at 0 6= x ∈ X if

sup {‖x + th‖+ ‖x− th‖ − 2‖x‖; h ∈ M} = o(t) for t > 0.

The norm is M -smooth if it is M -smooth at every point 0 6= x ∈ X.
If M = BX , we get the usual notion of Fréchet differentiability (cf e.g.[6]).

If M is linearly dense in X (i.e. if span M = X), the M -smoothness implies
the usual Gâteaux smoothness. If X is a separable Banach space and its
norm is Gâteaux smooth, then this norm is M -smooth for a linearly dense
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set M ⊂ X. Indeed, if {xi; i ∈ IN} is a countable dense set in BX , then
M := {i−1xi; i ∈ IN} works. Both these things can be seen by using the
Lipschitz property of the norm.
An example of a Banach space X with Gâteaux smooth norm that has no
equivalent M -smooth norm for any linearly dense set M in X is a non weakly
compactly generated subspace of a weakly compactly generated space of den-
sity ω1 (cf. [13] and Corollary 5 below if one assumes the Continuum Hy-
pothesis).
A Banach space X is called weakly compactly generated (WCG, in short) if
X contains a weakly compact set which is linearly dense in X.

The main results of this note are the following two theorems. In their proofs
we will use the following notation.
If M is a bounded set in X, we will say that the dual norm ‖ · ‖ on X∗ is
M -locally uniformly rotund (M-LUR in short) if supx∈M |(x∗ − x∗n)(x)| → 0
whenever x∗, x∗n ∈ X∗ and 2‖x∗‖2 + 2‖x∗n‖2 − ‖x∗ + x∗n‖2 → 0. If M = BX ,
we get the usual notion of local uniform rotundity (cf. e.g. [6]).

Theorem 1 (i) Let M be a bounded subset in a Banach space X. Then M
is relatively weakly compact if and only for every norming subspace Y of X∗,
there is an equivalent Y -lower semicontinuous norm on X that is M-smooth.
(ii) Let M be a bounded set in the dual space X∗. Then M is relatively
weakly compact if and only if there is an equivalent dual norm on X∗ which
is M-smooth.

Theorem 2 Assume that X is a Banach space of density ω1. Then X is
weakly compactly generated if and only if there exist a bounded linearly dense
set M in X, an equivalent norm ‖ · ‖ on X which is M-smooth, and a
projectional resolution of the identity (Pα; ω0 ≤ α ≤ ω1) on (X, ‖ · ‖) with
Pα(M) ⊂ conv (M ∪ −M) for every ω0 ≤ α ≤ ω1.

Recall that the projectional resolution (Pα; ω0 ≤ α ≤ ω1) of the identity is
a transfinite sequence of projections such that Pω0 = 0, Pω1=Identity, and
for all ω0 < α ≤ β ≤ ω1, the following hold: ‖Pα‖ = 1, PαX is separable,
PαPβ = PβPα = Pα and ∪γ<αPγ+1X is dense in PαX. For more information
on projectional resolutions of the identity we refer to e.g. [3, Chapter VI],
[4, Chapter 6], or [6, Chapter 11].
In order to avoid technical difficulties, we formulated the results for spaces
of density ω1 only.
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The rest of this paper is devoted to the proofs of Theorem 1 and Theorem
2.

Let Y be a subspace of the dual space X∗. We put

‖x‖Y = sup {x∗(x); x∗ ∈ BX∗ ∩ Y }, x ∈ X.

Note that ‖·‖Y is lower semicontinuous with respect to the topology w(X, Y )
of pointwise convergence on the elements of Y (Y -lower semicontinuous, in
short). We can check that ‖ · ‖Y is the largest one among all Y -lower semi-
continuous convex minorants of the norm ‖·‖. This is why ‖·‖Y is called the

Y -lower semicontinuous envelope of ‖·‖. Note that B(X,‖·‖Y ) = B(X,‖·‖)
w(X,Y )

.
If ‖ · ‖Y is an equivalent norm on X, then Y is called a norming subspace of
X∗. If ‖ · ‖Y = ‖ · ‖, then Y is called 1-norming. Obviously, Y is 1-norming
for the norm ‖ · ‖Y . We note that a subspace Y is 1-norming if and only if

BX∗ = BX∗ ∩ Y
w∗

if and only if the norm ‖ · ‖ on X is Y -lower semicontin-
uous if and only if BX is w(X, Y )-closed. For a bounded subset M of X we
denote

|x∗|M = sup{|x∗(m)|; m ∈ M}, x∗ ∈ X∗.

The following proposition, whose proof is standard and will be omitted, gives
a Šmulyan-like characterization of the M -smoothness (cf. e.g. [3, Theorem
I.1.4 (i)] or [6, Lemma 8.4]).

Proposition 3 Let (X, ‖ · ‖) be a Banach space, let M be a bounded subset
of X, and let x ∈ SX . Then the following statements are equivalent:

(i) The norm ‖ · ‖ is M-smooth at x.

(ii) Whenever (fn) and (gn) are sequences in BX∗ such that fn(x) → 1 and
gn(x) → 1, then |fn − gn|M → 0 as n →∞.

Therefore, if the dual norm is M -LUR, then the original norm is M -smooth.

Proof of Theorem 1 (i) Assume that the condition holds for the set M .
The argument we will follow has its origin in the proof of [5, Lemma 1].
Take any x∗∗ in the weak∗ closure of M and assume that x∗∗ 6∈ X. Then
Y := x∗∗−1(0) is a norming subspace of X∗ (cf. e.g. [6, Ch. 3]. Find
|‖ · |‖ as stated. By the Bishop-Phelps theorem, there exists x∗ ∈ S(X∗,|‖·|‖)
and x ∈ S(X,|‖·|‖) such that 〈x∗∗, x∗〉 6= 0 and 〈x, x∗〉 = 1. Find a sequence

(y∗i ) in B(X∗,|‖·|‖) ∩ Y such that y∗i (x)
w∗→ x∗(x) = 1. As |‖ · |‖ is M -smooth,
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Proposition 3 gives that |x∗ − y∗i |M → 0. We recall that x∗∗ is in the weak∗

closure of M . Since the convergence of y∗i to x∗ is uniform on M , we thus
have x∗∗(x∗− y∗i ) → 0. As x∗∗(y∗i ) = 0 for all i ∈ IN, we have 〈x∗∗, x∗〉 = 0, a
contradiction. Therefore the weak∗ closure of M belongs to X and hence M
is relatively weakly compact.
Assume now that M is relatively weakly compact. According to the Davis-
Figiel-Johnson-PeÃlczyński factorization theorem (see, e.g., [4, Theorem 1.2.3]
or [6, Theorem 11.17]), there exist a reflexive space (R, | · |) and a bounded
linear operator T : R → X with M ⊂ T (BR). Following Troyanski (see, e.g.,
[3, Section VII.1]), we may and do assume that the norm on R∗ dual to the
norm | · | on R is locally uniformly rotund. Put

D =
⋃ {

αB(X,‖·‖) + βT (B(R,|·|)); α ≥ 0, β ≥ 0, α2 + β2 ≤ 1
}

.

Then D is a convex symmetric bounded and linearly dense set in X. Using
the weak compactness of B(R,|·|), it is not difficult to show that the set D is
weakly closed, and hence closed. Let |‖ · |‖ be the Minkowski functional of
D; this is an equivalent norm on X and B(X,|‖·|‖) = D.
Now, let Y be any norming subspace of X∗ and let ‖ · ‖Y and |‖ · |‖Y be the
Y -lower semicontinuous envelopes of ‖ · ‖ and |‖ · |‖ respectively. Then we
have

B(X,|‖·|‖Y ) = B(X,|‖·|‖)
w(X,Y )

= D
w(X,Y )

=
⋃ {

αB(X,‖·‖Y ) + βT (B(R,|·|)); α ≥ 0, β ≥ 0, α2 + β2 ≤ 1
}

.

Here we used the weak, and hence w(X,Y ) compactness of the set T (B(R,|·|)).
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Having this, we get that for every x∗ ∈ X∗,

|‖x∗|‖2
Y =

= supb∈B(X,‖·‖Y ), r∈B(R,|·|), α≥0,β≥0,α2+β2≤1 x∗(αb + βT (r))2

= supα≥0, β≥0, α2+β2≤1

{
α‖x∗‖Y + β|T ∗x∗|

}2

= ‖x∗‖Y
2 + |T ∗x∗|2.

In order to check that |‖ · |‖Y is M-LUR, consider x∗, x∗n ∈ X∗ for which

2|‖x∗|‖Y
2 + 2|‖x∗n|‖Y

2 − |‖x∗ + x∗n|‖Y
2 → 0 as n →∞.

Using the convexity, we get

2|T ∗x∗|2 + 2|T ∗x∗n|2 − |T ∗x∗ + T ∗x∗n|2 → 0 as n →∞.

Since the norm | · | on R∗ is LUR, we conclude that |T ∗x∗n− T ∗x∗| → 0, that
is, sup {(x∗n − x∗)(x); x ∈ T (BR)} → 0 as n →∞. Now it remains to recall
that M ⊂ T (BR).
(ii) Assume M ⊂ X∗ is relatively weakly compact. By Theorem 1(i) there
is an equivalent dual norm norm on X∗ that is M -smooth. In order to see
this, it suffices to note that X is a norming subspace of X∗∗.
On the other hand, assume that the norm of X∗, dual to the norm ‖ · ‖ of
X, is M -smooth. Assume that M is not relatively weakly compact. Like in
the proof of Theorem 1(i), there exists x∗∗∗ in the weak∗ closure of M which
does not belong to X∗. Denote by x∗ the restriction of x∗∗∗ to X. Consider
x∗ as an element of X∗∗∗. We need to show that F := x∗∗∗−x∗ = 0. Assume
this is not the case and choose an element x∗∗ ∈ SX∗∗ with F (x∗∗) 6= 0 and
x∗∗(y∗) = 1 for some y∗ ∈ SX∗ . Find a net (yι) in BX such that yι → x∗∗ in
the weak∗ topology. As the dual norm is M -smooth, |x∗∗ − yι|M → 0. The
element x∗∗∗ belongs to the weak∗ closure of M . Thus x∗∗∗(x∗∗ − yι) → 0.
As x∗ ∈ X∗, we have x∗(x∗∗ − yι) → 0. Thus F (x∗∗ − yι) → 0. However,
F (yι) = 0 for all ι. Hence F (x∗∗) = 0, a contradiction. This finishes the
proof of Theorem 1.

In the proof of Theorem 1, some ideas from [1] were used.
In the proof of Theorem 2 we will use the following definition.

Definition. Let (X, ‖ · ‖) be a Banach space. Let M be a bounded linearly
dense subset of X. We will say that a projectional resolution of the identity
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(Pα; ω0 ≤ α ≤ µ) on (X, ‖ · ‖) is M -shrinking if Pα(M) ⊂ conv (M ∪ −M)
and

P ∗
α(X∗) = ∪β<αP ∗

β+1(X
∗)
|·|M

for every ω0 < α ≤ µ.

If M = BX , we get the usual notion of a shrinking projectional resolution of
the identity (cf e.g. [3], [4] or [6]). It follows that a projectional resolution of
the identity (Pα) is M -shrinking if and only if for every α we have Pα(M) ⊂
conv (M ∪ −M) and |P ∗

βx∗ − P ∗
αx∗|M → 0 as β ↑ α for every x∗ ∈ X∗. Note

that the Mackey-Arens theorem (cf. e.g. [6, Theorem 4.33]) implies that, if
M is a weakly compact set in a Banach space X and (Pα) is a projectional
resolution of the identity on X such that Pα(M) ⊂ conv (M ∪−M) for every
α, then (Pα) is M -shrinking.

Lemma 4 Let (X, ‖ · ‖) be a Banach space whose norm is M-smooth for
some bounded set M ⊂ X. Assume that (Pα; ω0 ≤ α ≤ µ) is a projectional
resolution of the identity on (X, ‖ · ‖) that satisfies PαM ⊂ conv (M ∪ −M)
for every α. Then (Pα) is M-shrinking.

Proof of Lemma 4. We need to prove that

P ∗
α(X∗) = ∪β<αP ∗

β+1(X
∗)
|·|M

for every ω0 < α ≤ µ. Fix such α. It is enough to prove the inclusion ”⊂”.
Fix x∗ ∈ P ∗

α(X∗). We note that P ∗
βx∗ → P ∗

αx∗ in the weak star topology
as β ↑ α. Assume first that ‖P ∗

αx∗‖ = P ∗
αx∗(x) for some x ∈ SX . As

‖P ∗
βx∗‖ = ‖P ∗

βP ∗
αx∗‖ ≤ ‖P ∗

αx∗‖, Proposition 3 guarantees that |P ∗
βx∗ − x∗|M

as β ↑ α. Hence x∗ belongs to the right hand side of the above formula.
Second, assume that x∗ is not norm attaining. Then the Bishop-Phelps
theorem and the canonical isometry between (PαX)∗ and P ∗

α(X∗) enable us
to find a norm attaining y∗ ∈ P ∗

αX∗ such that ‖x∗ − y∗‖ < ε, where ε > 0
is an arbitrary, a priori given positive number. Then, by the first case,
|P ∗

βy∗ − y∗|M → 0 as β ↑ α. This yields that lim supβ↑α |P ∗
βx∗ − x∗|M ≤ 2ε.

Here we used that Pβ(M) ⊂ conv (M ∪−M). As ε > 0 was arbitrary, we get
that x∗ belongs to the right hand side of the above formula.

Proof of Theorem 2. Sufficiency. Assume we have ‖ · ‖, M and (Pα; ω0 ≤
α ≤ ω1) as in the statement. For every ω ≤ α < ω1 we find a countable
dense set {mα

i ; i ∈ IN} in (Pα+1 − Pα)M ∩BX . Put

C = {1
i
mα

i ; ω0 ≤ α < ω1, i ∈ IN} ∪ {0}.

6



The set C is linearly dense in X. It remains to prove that C is weakly com-
pact. Let (cj)j∈IN be a sequence of disctinct elements in the set C. According
to the Eberlein-Šmulyan theorem, it is enough to prove that this sequence has
a weakly convergent subsequence. For j ∈ IN find ω0 ≤ αj < ω1 and ij ∈ IN
such that cj = 1

ij
m

αj

ij
. If the set {ij; j ∈ IN} is infinite, then it is easy to find

a subsequence of (ci) which converges to 0 (even in norm). Assume now that
the set {ij; j ∈ IN} is finite. Then {αj; j ∈ IN} is an infinite set. By passing
to a subsequence, if necessary, we may, and do assume that α1 < α2 < · · · .
Let Y denote the linear span of the set

⋃
ω0≤α<ω1

(P ∗
α+1−P ∗

α)X∗. Because of
the ”orthogonality” of the projections Pα+1 − Pα, we can see that for every
x∗ ∈ Y we have x∗(cj) = 0 for all j ∈ IN large enough. Using Lemma 4,

we can prove by transfinite induction that Y
|·|M

= X∗. Thus x∗(cj) → 0 for
every x∗ ∈ X∗ and the weak compactness of the set C follows. Therefore X
is weakly compactly generated.
Necessity. Assume that X is WCG. Then there exists a linearly dense and
weakly compact set M in X. By Theorem 1(i), X admits an equivalent norm
‖ · ‖ that is M -smooth. As X is WCG, there is a projectional resolution of
identity (Pα) such that Pα(M) ⊂ conv (M ∪−M) for each α (cf. e.g. [3], [4],
or [6].) For the sake of completeness we will show the argument here. For
n ∈ IN, let ‖·‖n be the Minkowski functional of the set conv (M∪−M)+ 1

n
BX .

Like in [4, p. 109], we construct on X a projectional resolution of the identity
(Pα; ω0 ≤ α ≤ ω1) such that ‖Pα‖n = 1 for every n ∈ IN and every α > ω0.
Then

Pα(M) ⊂ Pα(conv (M ∪ −M) + 1
n
BX) ⊂ conv (M ∪ −M) + 1

n
BX

for every n ∈ IN, and hence Pα(M) ⊂ conv (M ∪ −M). This finishes the
proof of Theorem 2.

If the norm of a Banach space is M -smooth, then M is an Asplund set ([1],
cf. [4, Section 1.4] for the definition). Then, using [12] or [14], one can prove
the following corollary. In this note we present a simpler proof of Corollary
5. A Banach space X is called weakly Lindelöf determined if its dual unit
ball in its weak star topology is a Corson compact. A compact space K is
a Corson compact if K is homeomorphic to a subset S of some [−1, +1]Γ in
its pointwise topology such that all elements of S are countably supported
in [−1, +1]Γ. Every subspace of a WCG space is weakly Lindelöf determined
(cf. eg. [4]). For more on weakly Lindelöf determined spaces see e.g. [4], [6]
and references therein.
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Corollary 5 Assume that X is a weakly Lindelöf determined Banach space
of density ω1. Then X is WCG if and only if X admits an equivalent M-
smooth norm for some bounded and linearly dense subset M of X.

Proof. The necessity follows immediately from Theorem 2.
Assume that the condition holds. Let ‖ ·‖ be the equivalent M -smooth norm
on X. The space X admits a projectional resolution of the identity (Pα) such
that Pα(M) ⊂ conv (M ∪ −M) for all α (cf. e.g. [4, p. 109]). Hence X is
WCG by Theorem 2.

Remarks Theorem 1 (i) does not hold true if the condition on the Y -lower
semicontinuity is dropped. In order to see this, take any nonreflexive space
X with Fréchet smooth norm and put M := BX (cf. e.g.[3, Chapter 2] or [6,
Chapter 8]).
Theorem 1(i) should be compared with the following result in [8]: If X is a
subspace of a WCG space and Y is a norming subspace in X∗, then there is an
equivalent norm on X that is Gâteaux smooth and Y -lower semicontinuous.
Theorem 1 (ii) should be compared with Corollary III-8 in [2], which asserts
that X∗ is WCG if X is an Asplund space and X∗ admits an equivalent dual
Gâteaux dfferentiable norm.
Hájek proved in [9] that the James tree space JT admits an equivalent norm
whose dual norm ‖ · ‖ is Gâteaux smooth. As JT ∗ is not even a subspace of
a WCG space (cf. e.g. [6, Chapter 11]), Theorem 1(ii) shows that the norm
‖ · ‖ on JT ∗ is not M -smooth for any bounded linearly dense set M in X∗.
Theorem 2 generalizes the classical result that the space is reflexive if the
norm X∗ dual to the norm of X is Fréchet smooth (cf. e.g. [6, p. 244]).

Note that the conditions in Corollary 5 are satisfied if X is a subspace of a
WCG space of density ω1 having a Fréchet differentiable norm. This is the
main in [11] that is discussed in e.g. [3, Chapter 6], [4, Chapter 8] or [6,
Chapter 11].
While the non weakly compactly generated space C[0, ω1] of continuous func-
tions on the ordinal segment admits an equivalent C∞ smooth norm ([10]),
this space admits no Gâteaux smooth norm that would be either a lattice
norm ([7]) or pointwise lower semicontinuous for t ∈ [0, ω1) ([8]). Note that
every equivalent norm on C[0, ω1] is pointwise lower semicontinuous as [0, ω1]
is a scattered space (see e.g. [6, Theorem 12.28]).
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