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Abstract. We give characterizations of weakly compactly generated spaces, their
subspaces, Vašák spaces, weakly Lindelöf determined spaces as well as several other classes
of Banach spaces related to uniform Gâteaux smoothness, in terms of the presence of a total
subset of the space with some additional properties. In addition, we describe geometrically,
when possible, these classes by means of suitable smoothness or rotundity of the norm.
As a consequence, we get new, functional analytic proofs of several theorems on (uniform)
Eberlein, Gul’ko and Talagrand compacta.

Introduction

A nonseparable Banach space is usually beyond control unless a kind of coordinate
system is available on it. By this we understand sometimes a biorthogonal system or an
ordered family of projections —like in Hilbert spaces— sometimes a large weakly compact
subset —as in the more general class of reflexive spaces. In fact there is a common ground
to both, and it is the existence of a kind of “core” in the space which behaves “almost”
as a weakly compact set and provides a “coordinate system” for the dual (evaluations at
the points of the core). These ideas were already present in the seminal paper [AL] by
D. Amir and J. Lindenstrauss. They proved that a Banach space X contains a weakly
compact total, i.e. linearly dense, subset (if and) only if it contains a total set Γ ⊂ BX such
that its derivative considered in the second dual X∗∗ provided with the weak∗ topology
is just {0}. Such Banach spaces are called weakly compactly generated (WCG). Observe
then that the mapping x∗ 7→ (〈γ, x∗〉; γ ∈ Γ), x∗ ∈ X∗, is a weak∗ to weak continuous
linear bounded injection from X∗ into c0(Γ). This has several important consequences, in
particular for constructing a smooth norm on X.
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Accordingly, J. Lindenstrauss [L] conjectured soon after a close connection between
these notions and the geometrical concept of smoothness, asking (problem 9 in [L]) whether
the smoothness of a Banach space implies that some superspace of it is WCG. The answer
to this question turned out to be negative. However, there are some cases when it is so,
proving how far-reaching Lindenstrauss perception was: in particular, it was shown in
[FGZ] that a Banach space X has an equivalent uniformly Gâteaux smooth norm (if and)
only if X is a subspace of a Hilbert generated Banach space.

In this paper we dig in the aforesaid ideas, presenting from those points of view a
comprehensive description of WCG Banach spaces and related classes —subspaces of WCG
Banach spaces, weakly K-analytic, Vašák, weakly Lindelöf determined and some uniform
counterparts— and trying to imitate the aforesaid equivalence for WCG spaces. Along the
way, we shall see how a precise description of the core provides a characterization of each
class, both in the non-uniform and the uniform settings. In addition, and according to
what has been mentioned above, we enrich each statement, when possible, by a geometric
information in terms of smoothness and rotundity. Thus these classes of nonseparable
Banach spaces, classes which do not assume any unconditional or lattice structure, are
described more or less in a uniform way. As a byproduct of the used techniques we
also find or rediscover criteria for recognizing (uniform) Eberlein, Gul’ko, and Talagrand
compacta among compact subsets of Σ−products of real lines. The results presented here
are in the flavour of the papers [A], [AF], [AL], [AM], [AM1], [Fa], [M], [S], [T], [Tr1], [Tr2].

The paper is organized as follows. Section 1 presents a list of results, together with
necessary definitions. Section 2 contains some tools needed; in particular, Šmulyan-like
duality statements and a study of Day’s norm can be found here. Section 3 contains proofs
of the main theorems. Many of the results and proofs are new, others can be found in
previous papers by the present authors and colleagues.

Section 1 – List of results

Let M be a nonempty subset of the closed unit ball BX of a Banach space (X, ‖ · ‖)
and let ε ≥ 0 be given. We say that the norm ‖ · ‖ is ε−M−smooth if for every 0 6= x ∈ X

lim
t↓0

1
t

sup
{‖x + th‖+ ‖x− th‖ − 2‖x‖; h ∈ M

} ≤ ε‖x‖.

The norm ‖·‖∗ on X∗, dual to ‖·‖, is called ε−M−LUR if lim supn→∞sup
∣∣〈M, x∗n−x∗〉

∣∣ ≤
ε‖x∗‖∗ whenever x∗, x∗n ∈ X∗, n ∈ IN, and 2‖x∗‖∗2+2‖x∗n‖∗2−‖x∗+x∗n‖∗2 → 0 as n →∞.
If ε = 0, then we speak about M−smoothness and M−LUR.

Theorem 1. For a Banach space X TFAE:
(i) X is weakly compactly generated.
(ii) There exists a total set Γ ⊂ BX such that (1)

∀ε > 0 ∀x∗ ∈ X∗ #{γ ∈ Γ : 〈γ, x∗〉 > ε} < ℵ0.

(1) The reader should not have difficulties in substituting the inequality 〈γ, x∗〉 > ε in state-

ments about the set Γ in this and forthcoming results with |〈γ, x∗〉| > ε.
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(iii) There exist an equivalent norm | · | on X and a total set M ⊂ BX such that the
double dual norm | · |∗∗ on X∗∗ is M−smooth (the triple dual norm | · |∗∗∗ on X∗∗∗ is
M−LUR).

(iv) X is weakly Lindelöf determined, and there exist an equivalent norm | · | on X and a
total set M ⊂ BX such that | · | is M−smooth.

Here, (iii) actually characterizes the relative weak compactness of the set M , see the proof
of Proposition 3. We recall that a Banach space X is called weakly Lindelöf determined
(WLD ) if the dual unit ball BX∗ in the weak∗ topology is a Corson compact. A compact
space is called Corson if it can be found, up to a homeomorphism, in Σ(∆) for some
uncountable set ∆ where

Σ(∆) =:
{
u ∈ IR∆ : #{δ ∈ ∆; u(δ) 6= 0} ≤ ℵ0

}
,

and the topology here is inherited from the product topology of IR∆. In Theorem 1,
(i)⇔(ii) is from [AL]. Note that a Banach space is WCG and Asplund if and only if it is
WLD and admits an equivalent Fréchet smooth (i.e. BX−smooth) norm.

Given a set Γ in a Banach space X, we say that it countably supports X∗ if #{γ ∈
Γ; 〈γ, x∗〉 6= 0} ≤ ℵ0 for every x∗ ∈ X∗.

Theorem 2. For a Banach space X TFAE:
(i) X is a subspace of a weakly compactly generated overspace.
(ii) There exists a total set Γ ⊂ BX such that for every ε > 0 there is a decomposition

Γ =
⋃∞

n=1 Γε
n such that

∀n ∈ IN ∀x∗ ∈ X∗ #{γ ∈ Γε
n; 〈γ, x∗〉 > ε} < ℵ0.

Moreover, for Γ we can take any total subset of BX which countably supports X∗.
(iii) BX∗ with the weak∗ topology is an Eberlein compact.
(iv) There exist an equivalent norm | · | on X and a total set M ⊂ BX such that for every

ε > 0 we can write M =
⋃∞

n=1 Mε
n and the norm | · |∗∗ on X∗∗ is ε −Mε

n−smooth
( | · |∗∗∗ on X∗∗∗ is ε−Mε

n−LUR) for every n ∈ IN.
(v) X is WLD, and there exist an equivalent norm | · | on X and a total set M ⊂ BX such

that for every ε > 0 we can write M =
⋃∞

n=1 Mε
n and the norm | · | is ε−Mε

n−smooth
for every n ∈ IN.

A subspace of a WCG Banach space is not necessarily WCG itself. The first counterex-
ample was given in [R]. Theorem 2 enhances results from [FMZ3]. (i)⇔(iii) here, together
with some results from [AL], yields the following theorem, first obtained by Benyamini,
M.E. Rudin and Wage [BRW], and independently by Gul’ko [G]: A continuous image of
an Eberlein compact is Eberlein. For more references, see [FMZ3].

In part (ii) of Theorem 2, any total subset Γ of BX which countably supports X∗ has
the property listed there. However, this is not so in Theorem 1. Indeed, there exists a
WCG Banach space X and a Markushevich basis ({xi}i∈I , {x∗i }i∈I) such that {xi}i∈I∪{0}
is not weakly compact (see a remark in [FMZ4]). It is easy to prove that {xi}i∈I countably
supports X∗. However, condition (ii) for Γ in Theorem 1 already implies that Γ ∪ {0} is
weakly compact.
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A Banach space X is called Vašák (also called weakly countably determined ) if there
is a countable family Km, m ∈ IN, of weak∗ compact sets in X∗∗ such that, given any
x ∈ X, and any x∗∗ ∈ X∗∗\X, there is m ∈ IN such that x ∈ Km and x∗∗ 6∈ Km.

Theorem 3. For a Banach space X TFAE:
(i) X is a Vašák space.
(ii) There exist a total set Γ ⊂ BX and subsets Γn ⊂ Γ, n ∈ IN, with the property

∀ε > 0 ∀x∗ ∈ X∗ ∀γ ∈ Γ ∃n ∈ IN such that

γ ∈ Γn and #
{
γ′ ∈ Γn; 〈γ′, x∗〉 > ε

}
< ℵ0.

Moreover, for Γ we can take any total subset of BX which countably supports X∗.

If dens X = ℵ1, then the above is equivalent with:
(iii) There exist an equivalent norm | · | on X, a projectional resolution of the identity

(Pα; ω ≤ α ≤ ω1) on (X, | · |) (see Section 2 for the definition), and a total set
M ⊂ BX , with subsets ∅ 6= Mn ⊂ M, n ∈ IN, such that for every ε > 0 and
every 0 6= x∗ ∈ X∗ there is N ⊂ IN so that

⋃
n∈N Mn = M and | · |∗ on X∗ is

ε/|P ∗αx∗|∗ −Mn−LUR at P ∗αx∗ for every α ≤ ω1 and every n ∈ N .
From (ii) and Proposition 4 we easily get Mercourakis’ result [M] that Vašák spaces admit
an equivalent norm whose dual norm is strictly convex.

Theorem 3 has a subtler “K−analytic” analogue. For σ ∈ ININ and i ∈ IN we put
σ|i = (σ(1), . . . , σ(i)). Denote IN<IN = IN ∪ IN2 ∪ IN3 ∪ · · ·. We say that a Banach
space X is weakly K-analytic if there are weak∗ compact sets Ks ⊂ X∗∗, s ∈ IN<IN, such
that X =

⋃
σ∈ININ

⋂∞
i=1 Kσ|i. From (ii) in Theorems 2 and 3 it follows immediately that

subspaces of WCG Banach spaces are weakly K-analytic. On the other hand, there are
weakly K-analytic Banach spaces which are not subspaces of weakly compactly generated
Banach spaces. The first example was given by Talagrand, see, e.g., [F, 4.3].

Theorem 4. For a Banach space X TFAE:
(i) X is weakly K-analytic.
(ii) There exist a total set Γ = Γ∅ ⊂ BX , with subsets Γs ⊂ Γ, s ∈ IN<IN, such that

Γ =
⋃

σ∈ININ

⋂∞
i=1 Γσ|i and having the property

∀ε > 0 ∀x∗ ∈ X∗ ∀σ ∈ ININ ∃i ∈ IN #
{
γ ∈ Γσ|i; 〈γ, x∗〉 > ε

}
< ℵ0.

Moreover, for Γ we can take any total subset of BX which countably supports X∗.
(iii) There exist an upper semicontinuous multivalued mapping ϕ : ININ → (BX , w), with

total range, and an equivalent norm | · | on X such that for every σ ∈ ININ the set ϕ(σ)
is nonempty and weakly compact, and | · | is ϕ(σ)−smooth (| · |∗ on X∗ is ϕ(σ)−LUR).

A weakly K-analytic space X is Vašák. This follows from the very definition: let Ks ⊂
X∗∗, s ∈ IN<IN, be the family of w∗−compact subsets of X∗∗ witnessing that X is weakly
K-analytic. It is countable and given x ∈ X, x∗∗ ∈ X∗∗ \ X, there exists σ ∈ ININ and
i ∈ IN such that x ∈ Kσ|i and x∗∗ 6∈ Kσ|i. Of course, this can also be seen using (ii) in
Theorems 3 and 4. On the other hand, there are Vašák spaces which are not weakly K-
analytic. The first example was given again by Talagrand (see, e.g., [F, 7.4] and references
therein).
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Theorem 5. For a Banach space X TFAE:
(i) X is a subspace of a weakly Lindelöf determined space.
(ii) There exists a total set Γ ⊂ BX which countably supports X∗, that is,

∀x∗ ∈ X∗ #
{
γ ∈ Γ; 〈γ, x∗〉 6= 0

} ≤ ℵ0.

(iii) X is weakly Lindelöf determined.

From conditions (ii) in Theorems 4 and 5 we easily get that Vašák spaces are WLD. Of
course, (i)⇒(iii) has been known since Gul’ko (and later, independently, Valdivia [V])
proved the deep fact that continuous images of Corson compacta are Corson. Here we do
not rely on this fact, and that is the reason why we reprove that subspaces of WLD spaces
are themselves WLD. We do not have any geometrical assertion in Theorem 5. Actually,
there exists a WLD space of the form C(K) such that the compact K contains no dense
Gδ metrizable set [AM, Theorem 3.6]. Hence, by [F, Theorem 2.2.3 and Corollary 4.2.5],
such C(K) admits no equivalent Gâteaux smooth norm (and, in particular, by the remark
following Theorem 3, this space is not Vašák).

Next, we shall focus on subtler relatives of the WCG spaces. In what follows, we shall
consider a kind of uniformity when dealing with compactness or smoothness. Let us recall
that a WCG space X is, according to the interpolation theorem of Davies, Figiel, Johnson
and PeÃlczyński, reflexive generated, that is, there are a reflexive space R and a linear
bounded mapping T : R → X with dense range, see, e.g., [F, Theorem 1.2.3]. Analogously,
we say that X is Hilbert generated if there are a Hilbert space H and a linear bounded
mapping T : H → X with dense range. A compact space is called uniform Eberlein if it
can be found, up to a homeomorphism, in a Hilbert space provided with the weak topology.

Let ∅ 6= M ⊂ BX and let ε ≥ 0 be given. We say that the norm ‖ ·‖ on X is uniformly
ε−M−smooth if

lim
t↓0

1
t

sup
{‖x + th‖+ ‖x− th‖ − 2; x ∈ X, ‖x‖ = 1, h ∈ M

} ≤ ε.

The norm ‖ · ‖∗ on X∗, dual to ‖ · ‖, is called uniformly ε − M−rotund if lim supn→∞
sup

∣∣〈M,x∗n − y∗n〉
∣∣ ≤ ε whenever x∗n, y∗n ∈ BX∗ , n ∈ IN, and 2‖x∗n‖∗2 + 2‖y∗n‖∗2 − ‖x∗n +

y∗n‖∗2 → 0 as n → ∞. If ε = 0, then we speak about uniform M−smoothness and
uniform M−rotundity respectively. The norm ‖ · ‖ is called uniformly Gâteaux smooth if
it is uniformly {h}−smooth for every h ∈ X.

Theorem 6. For a Banach space X TFAE:
(i) X is a subspace of a Hilbert generated space.
(ii) There exists a total set Γ ⊂ BX such that for every ε > 0 we have a decomposition

Γ =
⋃∞

n=1 Γε
n satisfying

∀n ∈ IN ∀x∗ ∈ BX∗ #
{
γ ∈ Γε

n; 〈γ, x∗〉 > ε
}

< n.

Moreover, for Γ we can take any total subset of BX which countably supports X∗.
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(iii) (BX∗ , w∗) is a uniform Eberlein compact.
(iv) X admits an equivalent uniformly Gâteaux smooth norm.

This theorem enhances results from [FGZ]. (i)⇔(iii) here, together with some results from
[BRW], immediately yields the following theorem, first obtained by Benyamini, M.E. Rudin
and Wage [BRW]: A continuous image of a uniform Eberlein compact is uniform Eberlein.
For more details, see [FGZ].

Theorem 7. For a Banach space X TFAE:
(i) X is both weakly compactly generated and a subspace of a Hilbert generated space.
(ii) There exists a total set Γ ⊂ BX having the properties from (ii) in Theorems 1 and 6.
(iii) X admits an equivalent norm which is uniformly Gâteaux smooth and (another equiv-

alent norm which is) M−smooth for some total set M ⊂ BX .

Note that Theorem 6 describes a class larger than Theorem 7. This is demonstrated by
the famous Rosenthal’s counterexample [R]. For new counterexamples see [AM1].

Theorem 8. For a Banach space X, with density less than ℵω1 , TFAE:
(i) There exists an equivalent norm on X which is uniformly M−smooth for some total

subset M ⊂ BX .
(ii) There exists a total subset Γ ⊂ BX such that for every ε > 0 there is κ(ε) ∈ IN

satisfying

∀x∗ ∈ BX∗ #
{
γ ∈ Γ; 〈γ, x∗〉 > ε

}
< κ(ε).

That Theorem 7 describes a class larger than Theorem 8 does is shown, under the con-
tinuum hypothesis, in [FGHZ]; actually there exists a reflexive uniformly Gâteaux smooth
space not satisfying (i) in Theorem 8.

We do not know of any characterization of Hilbert generated spaces via a cardinality
condition for a total set Γ ⊂ BX in the spirit of the above theorems. However, we have
instead the following equivalence.

Theorem 9. Let 1 < p < +∞ and q = p
p−1 . For a Banach space X TFAE:

(i) X is `p(∆)− generated for a suitable set ∆ with #∆ = dens X.
(ii) There exists a total set Γ ⊂ BX such that

∀x∗ ∈ BX∗
∑

γ∈Γ

|〈γ, x∗〉|q ≤ 1.

If densX = ℵ1, then the above is equivalent with:
(iii) X is Y−generated for a suitable Banach space Y whose norm has modulus of smooth-

ness of power type p.

We recall here the well known result, due to Pisier, that a Banach space admits an equiv-
alent norm whose modulus of smoothness is of power type p for some 1 < p < +∞ if
(and only if) it is superreflexive [P]. A space satisfying Theorem 8 and not Theorem 9
is X = (

∑∞
n=1 `rn(Γ))

`2
, where {rn : n ∈ IN} is a dense subset of (1, +∞) and Γ is

uncountable. This follows from Pitt’s Theorem, see [F˜, Prop. 6.25].
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We do not know if the cardinality restrictions in Theorems 8 and 9 can be removed.
Note however that there do exist statements dependent on the cardinality: a nonseparable
Sobczyk’s theorem fails to hold if the density of the space is ℵω or more [ACGJM].

Theorems 2, 3, 4, and 6 have the following topological consequences. A compact space
K is called Gul’ko (Talagrand) if the space C(K) is Vašák (weakly K−analytic).

Theorem 10. Let Γ be an uncountable set and let K ⊂ Σ(Γ)∩ [−1, 1]Γ be a compact
subset.
(a) K is a (uniform) Eberlein compact if and only if for every ε > 0 there is a decompo-

sition Γ =
⋃∞

n=1 Γε
n such that

∀n ∈ IN ∀k ∈ K #{γ ∈ Γε
n; |k(γ)| > ε} < ℵ0 (< n).

(b) K is a Gul’lko compact if and only if there are sets Γn ⊂ Γ, n ∈ IN, such that

∀ε > 0 ∀k ∈ K ∀γ ∈ Γ ∃n ∈ IN such that

γ ∈ Γn and #{γ′ ∈ Γn; |k(γ′)| > ε} < ℵ0.

(c) K is a Talagrand compact if and only if there are sets Γs, s ∈ IN<IN, such that
Γ =

⋃
σ∈ININ

⋂∞
j=1 Γσ|j and

∀ε > 0 ∀k ∈ K ∀σ ∈ ININ ∃j ∈ IN #{γ ∈ Γσ|j ; |k(γ)| > ε} < ℵ0.

Of course, every Eberlein compact is a Talagrand compact, which, in turns, is Gul’ko.
Finally, every Gul’ko compact is Corson. Here, (a) was originally proved by Farmaki
[Fa] using combinatiorial methods, see also [AF]; if the compact K above comes from an
adequate family A, that is K =

{
χA; A ∈ A}

, the result was proved already by Talagrand
[T]. (b) is from [FMZ4].

Behind many of our considerations, there originally was the concept of Markushevich,
see [F˜, Definition 6.2.3] and [FMZ4]. However, in the meantime we realized that what we
actually need is only the bottom part of it, that is, any total set Γ ⊂ BX which countably
supports X∗.

Finally, we summarize the relationship between the aforesaid classes. The number
in brackets refer to the theorem where the characterization of the class is given, so the
meaning of the acrostic can be easily understood. The non obvious implications easily
follow from the corresponding conditions (ii). None of the arrows can be reversed.

WCG(1) ⇒ SWCG(2) ⇒ WKA(4) ⇒ WCD(3) ⇒ WLD(5)
⇑ ⇑

HG(9) ⇒ SHG(6)
⇑

WCG & SHG(7)
⇑

UMS(8)
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Section 2 – Tools

For the geometry of Banach spaces we refer to the books [F∼], [DGZ] and [Di]. We
shall also follow the notation used in these texts. A main tool for the arguments in Section
3 will be a machinery of projectional resolutions of the identity due to J. Lindenstrauss.
Let (X, ‖ · ‖) be a nonseparable Banach space and denote by µ the first ordinal whose
cardinality is equal to the density of X. A projectional resolution of the identity (PRI ) on
(X, ‖ · ‖) is a family (Pα : ω ≤ α ≤ µ) of linear projections on X such that Pω ≡ 0, Pµ is
the identity mapping on X, and for all ω < α ≤ µ the following hold: (i) ‖Pα‖ = 1, (ii) the
density of the subspace PαX is not greater than the cardinality of α, (iii) Pβ ◦ Pα = Pβ

whenever ω ≤ β ≤ α, and (iv)
⋃

β<α Pβ+1X is norm dense in PαX. Though there are many
references for this concept, we shall rather refer to the book [F]. Behind the construction
of a PRI there is a so called projectional generator [OV]. It can be defined as a multivalued
mapping Φ : X∗ → 2X such that for every x∗ ∈ X∗ the set Φ(x∗) is nonempty and at most
countable and Φ(B)⊥∩B ∩BX∗

∗
= {0} for every set ∅ 6= B ⊂ X∗ such that B = spQ(B),

where spQ mean the linear hull made with only rational coefficients. We recall that such a
Φ exists in every Banach space considered in Theorems 1 to 8, see [F, Propositions 7.1.6,
7.2.1, and 8.3.1]. In one particular case we can construct a projectional generator easily,
and this goes back to ideas in [JZ]. This is when a Banach space X admits a total set
Γ ⊂ BX which countably supports X∗ (see the definition before the statement of Theorem
2); then it is enough to put Φ(x∗) equal to this set (note that X is then WLD). In order to
check that this Φ is a projectional generator, take any ∅ 6= B ⊂ X∗ such that spQ(B) = B,
and consider x∗ ∈ Φ(B)⊥ ∩ B ∩BX∗

∗
. If x∗ 6= 0, find γ ∈ Γ so that 〈γ, x∗〉 6= 0. Find

b ∈ B so that 〈γ, b〉 6= 0. Then γ ∈ Φ(b) ⊂ Φ(B) and hence 〈γ, x∗〉 = 0, a contradiction.
The following proposition will be of frequent use.

Proposition 1. Let (Z, ‖ · ‖) be a nonseparable Banach space admitting a projectional
generator. Let M1,M2, . . . be an at most countable family of bounded closed convex and
symmetric subsets in Z. Let Γ ⊂ BZ be a set which countably supports Z∗. Then there
exists a PRI (Pα : ω ≤ α ≤ µ) on Z such that Pα(Mn) ⊂ Mn and Pα(γ) ∈ {γ, 0} for
every α ∈ [ω, µ], every n ∈ IN, and every γ ∈ Γ.

Proof. Denote M0 = BZ . Let Φ0 : Z∗ → 2Z be a projectional generator on Z. Put

Φ(z∗) = Φ0(z∗) ∪ {γ ∈ Γ; 〈γ, z∗〉 6= 0
}
, z∗ ∈ Z∗.

Clearly, Φ is also a projectional generator. For n ∈ IN ∪ {0} and m ∈ IN let ‖ · ‖n,m be
the Minkowski functional of the set Mn + 1

mBZ ; this will be an equivalent norm on Z. We
shall use a standard back-and-forth argument, see, e.g., [F, Section 6.1]. For every z ∈ Z
we find a countable set Ψ(z) ⊂ Z∗ such that

‖z‖n,m = sup
{〈z, z∗〉; z∗ ∈ Ψ(z) and ‖z∗‖∗n,m ≤ 1

}

for every n ∈ IN ∪ {0} and m ∈ IN. Thus we defined Ψ : Z → 2Z∗ .
For the construction of projections Pα : Z → Z we shall need the following
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Claim. Let ℵ < densZ be any infinite cardinal and consider two nonempty sets A0 ⊂
Z, B0 ⊂ Z∗, with #A0 ≤ ℵ, #B0 ≤ ℵ. Then there exists sets A0 ⊂ A ⊂ Z, B0 ⊂ B ⊂ Z∗

such that #A ≤ ℵ, #B ≤ ℵ, A, B are linear and Φ(B) ⊂ A, Ψ(A) ⊂ B.
In order to prove this, put A =

⋃∞
n=1 An, B =

⋃∞
n=1 Bn, where the sets

An = spQ

(
An−1 ∪ Φ(Bn−1)

)
, Bn = spQ

(
Bn−1 ∪Ψ(An)

)
, n = 1, 2, . . . ,

are defined inductively. Then it is easy to verify all the proclaimed properties of the sets
A and B.

Having the sets A,B constructed, we observe that A⊥ ∩ B ∩BZ∗
∗ ⊂ Φ(B)⊥ ∩

B ∩BZ∗
∗

= {0}. Therefore [F, Lemmas 6.1.1 and 6.1.2] yield a linear projection P :
Z → Z, with PZ = A, P−1(0) = B⊥, and P ∗Z∗ = B

∗
, and such that ‖P‖n,m = 1 for

every n ∈ IN ∪ {0} and m ∈ IN. Then

PMn ⊂
∞⋂

m=1

P
(
Mn + 1

mBZ

) ⊂
∞⋂

m=1

Mn + 1
mBZ ⊂

∞⋂
m=1

(
Mn + 2

mBZ

)
= Mn

for every n ∈ IN ∪ {0}, and in particular, ‖P‖ = 1.
Fix any γ ∈ Γ. It remains to prove that Pγ ∈ {γ, 0}. If γ ∈ PZ, then, trivially,

Pγ = γ. Second, assume that γ 6∈ PZ (= A). Then γ 6∈ Φ(B), which implies that
〈γ, b〉 = 0 for every b ∈ B, that is, that γ ∈ B⊥. But B⊥ = P−1(0). Hence Pγ = 0.

Now, once knowing how to construct one projection P : Z → Z, the construction of
the whole PRI is standard, see, e.g., [F, Section 6.1].

The following Šmulyan like duality will also be frequently used.

Proposition 2. Let (X, ‖ · ‖) be a Banach space, M ⊂ BX , ε ≥ 0, and consider
vectors x ∈ X, x∗ ∈ X∗ such that 〈x, x∗〉 = 1 = ‖x‖ = ‖x∗‖∗.
If the norm ‖ · ‖ on X is ε−M−smooth at x, then

lim sup
n→∞

sup
∣∣〈M, x∗ − x∗n

〉∣∣ ≤ ε whenever x∗n ∈ BX∗ and 〈x, x∗n〉 → 1. (1)

If (1) holds, then the norm ‖ · ‖ on X is 2ε−M−smooth at x.

Proof. Assume that ‖ · ‖ is ε −M−smooth at x and consider x∗n, n ∈ IN, as in (1).
Then for every h ∈ M , every n ∈ IN, and every t > 0 we have

〈± th, x∗ − x∗n
〉

=
〈
x± th, x∗

〉
+

〈
x∓ th, x∗n

〉− 2 +
(
2− 〈

x, x∗ + x∗n
〉)

≤ (‖x + th‖+ ‖x− th‖ − 2) +
(
2− 〈

x, x∗ + x∗n
〉)

.

Hence, for every t > 0 and every n ∈ IN

sup
∣∣〈M, x∗ − x∗n

〉| ≤ 1
t

sup
{‖x + th‖+ ‖x− th‖ − 2; h ∈ M

}
+

1
t

(
2− 〈

x, x∗ + x∗n
〉)

.

Therefore

lim sup
n→∞

sup
∣∣〈M,x∗ − x∗n

〉∣∣ ≤ 1
t

sup
{‖x + th‖+ ‖x− th‖ − 2; h ∈ M

}

9



for every t > 0. Thus, taking into account the ε−M−smoothness of ‖ ·‖ at x, we conclude
that lim supn→∞ sup

∣∣〈M,x∗ − x∗n
〉∣∣ ≤ ε, and (1) is proved.

Assume that (1) holds. Take an arbitrary ε′ > ε. From (1) find δ > 0 so small that
sup |〈M, x∗ − y∗〉| < ε′ whenever y∗ ∈ BX∗ and 1 − 〈x, y∗〉 < 2δ. Take any 0 < t < δ.
Fix for a while any h ∈ M . Find u∗, v∗ ∈ BX∗ such that ‖x + th‖ = 〈x + th, u∗〉 and
‖x− th‖ = 〈x− th, v∗〉. We remark that then

1− 〈x, u∗〉 ≤ 1− 〈x + th, u∗〉+ t = ‖x‖ − ‖x + th‖+ t ≤ 2t < 2δ,

and likewise, 1− 〈x, v∗〉 < 2δ. Hence 〈h, u∗ − x∗〉 < ε′, 〈h, x∗ − v∗〉 < ε′, and so

‖x + th‖+ ‖x− th‖ − 2‖x‖ ≤ 〈th, u∗〉 − 〈th, v∗〉 = t〈h, u∗ − x∗〉+ t〈h, x∗ − v∗〉 < 2ε′t.

This holds for every h ∈ M and every 0 < t < δ. Hence ‖ · ‖ is 2ε′ − M−smooth at x.
And, as ε′ could be taken arbitrarily close to ε, we are done.

The following result exhibits a remarkable link between smoothness and weak com-
pactness. A bounded subset M ⊂ X of a Banach space X is called ε−weakly compact if
M

∗ ⊂ X + εBX∗∗ . It was proved in [FHMZ] that the weak∗−closed convex hull in X∗∗ of
an ε−weakly compact set is 2ε−weakly compact, and in [GHM] that 2 is the best possible
factor. It is 1 in case of WLD spaces [FHMZ].

Proposition 3. Let ∅ 6= M ⊂ BX , ε ≥ 0, and assume that the norm ‖ · ‖ on X is such
that the double dual norm ‖·‖∗∗ on X∗∗ is ε−M−smooth. Then M is ε−weakly compact.

Proof. Take an arbitrary x∗∗ ∈ M
∗
. Put d = dist (x∗∗, X). Assume that d > 0. By

Hahn-Banach theorem find F ∈ X∗∗∗, with ‖F‖∗∗∗ = 1, such that it vanishes on X and
that 〈x∗∗, F 〉 = d. Fix any δ > 0. From the Bishop-Phelps theorem find G ∈ X∗∗∗ and
x∗∗0 ∈ X∗∗ such that ‖G−F‖ < δ and 〈x∗∗0 , G〉 = 1 = ‖x∗∗0 ‖∗∗ = ‖G‖∗∗∗. Using Goldstine’s
theorem we find a sequence (x∗k) in BX∗ so that

〈x∗∗0 , x∗k〉 → 〈x∗∗0 , G〉 and 〈x∗∗, x∗k〉 → 〈x∗∗, G〉 as k →∞.

Since the norm ‖·‖∗∗ is ε−M−smooth, Proposition 2 yields that lim supk→∞ sup
〈
M,x∗k−

G
〉 ≤ ε. But F is vanishing on X; so

lim sup
k→∞

sup
〈
M,x∗k

〉
= lim sup

k→∞
sup

〈
M, x∗k − F

〉

≤ lim sup
k→∞

sup
〈
M,x∗k −G

〉
+ lim sup

k→∞
sup

〈
M,G− F

〉 ≤ ε + δ.

Hence lim supk→∞〈x∗∗, x∗k〉 ≤ ε + δ, and so, 〈x∗∗, G〉 ≤ ε + δ. Now

dist (x∗∗, X) = d = 〈x∗∗, F 〉 = 〈x∗∗, G〉+ 〈x∗∗, F −G〉 ≤ ε + δ + δ.

Then, since δ > 0 was arbitrary, we get dist (x∗∗, X) ≤ ε. We thus proved that M
∗ ⊂

X + εBX∗∗ .
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Note that the assumptions of Proposition 3 are satisfied if the norm on X is uniformly
ε−M−smooth; this is a simple consequence of Goldstine’s theorem.

Let Γ be an infinite set. We recall that Day’s norm ‖ · ‖D on `∞(Γ) is defined by

‖u‖D2 = sup
{ n∑

j=1

2−ju(γj)2; n ∈ IN, γ1, . . . , γn ∈ Γ, γk 6= γl if k 6= l
}

, u ∈ `∞(Γ).

It is easy to check that ‖ · ‖D is an equivalent norm on `∞(Γ).

Lemma 1. ([D, page 95]) Let (sk)(k∈IN), (tk)(k∈IN) be two non-increasing sequences of
non-negative numbers such that sk = tk = 0 for all large k ∈ IN. Let π : IN → IN be an
injective surjection. Then

∞∑

k=1

sk(tk − tπ(k)) ≥ 0

and for every K ∈ IN either π{1, . . . , K} = {1, . . . ,K} or

(sK − sK+1)(tK − tK+1) ≤
∞∑

k=1

sk(tk − tπ(k)).

Proposition 4. Let Γ be an infinite set, let u ∈ `∞(Γ), ε > 0, and assume that the set
{γ ∈ Γ; |u(γ)| > ε} is finite. Let un ∈ `∞(Γ), n ∈ IN, be such that

2‖u‖D2 + 2‖un‖D2 − ‖u + un‖D2 → 0 as n →∞.

Then lim supn→∞ ‖u− un‖∞ ≤ 3ε.

Proof. The argument is an elaboration of that due to Rainwater [D, pages 94–100].
Denote A = {γ ∈ Γ; |u(γ)| > ε} and let {α1, . . . , αK} be an enumeration of A such that
|u(α1)| ≥ |u(α2)| ≥ · · · ≥ |u(αK)| (> ε). Denote

∆ =
(
2−K − 2−K−1

)(
u(αK)2 − ε2

)
;

this is a positive number. Fix an arbitrary n ∈ IN. We find a set Bn 6= A, A ⊂ Bn ⊂ Γ
such that

‖u + un‖D2 − 1
n <

∥∥(u + un)|Bn

∥∥
D

2
.

Enumerate
Bn =

{
αn

1 , . . . , αn
Kn

}
=

{
βn

1 , . . . , βn
Kn

}

in such a way that
|u(αn

1 )| ≥ |u(αn
2 )| ≥ · · · ≥ |u(αn

Kn
)|,

|(u + un)(βn
1 )| ≥ |(u + un)(βn

2 )| ≥ · · · ≥ |(u + un)(βn
Kn

)|.
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Then, of course, αn
1 = α1, . . . , α

n
K = αK and Kn > K. Note that

Kn∑

k=1

2−ku(αn
k )2 =

∥∥u|Bn

∥∥
D

2 ≤ ‖u‖D2
,

Kn∑

k=1

2−kun(βn
k )2 ≤ ∥∥un|Bn

∥∥
D

2 ≤ ‖un‖D2
,

and

‖u + un‖D2 − 1
n <

∥∥(u + un)|Bn

∥∥
D

2 =
Kn∑

k=1

2−k(u + un)(βn
k )2.

Let us estimate

2‖u‖D2 + 2‖un‖D2 − ‖u + un‖D2

>2‖u|Bn
‖D2 + 2‖un|Bn

‖D2 − ‖(u + un)|Bn
‖D2 − 1

n

≥2
Kn∑

k=1

2−ku(αn
k )2 + 2

Kn∑

k=1

2−kun(βn
k )2 −

Kn∑

k=1

2−k(u + un)(βn
k )2 − 1

n

=2
Kn∑

k=1

2−k
(
u(αn

k )2 − u(βn
k )2

)
+

Kn∑

k=1

2−k
(
u(βn

k )− un(βn
k )

)2 − 1
n ≥ − 1

n

(indeed, the first summand is nonnegative by Lemma 1). Hence, letting n → ∞ here, we
get

Kn∑

k=1

2−k
(
u(αn

k )2 − u(βn
k )2

) → 0 and u(βn
k )− un(βn

k ) → 0 for k = 1, . . . , K.

Find n0 ∈ IN so large that for all n ∈ IN greater than n0

Kn∑

k=1

2−k
(
u(αn

k )2 − u(βn
k )2

)
< ∆ and |u(βn

k )− un(βn
k )| < 3ε for k = 1, . . . , K. (2)

Fix for a while any such n. Let π : IN → IN be defined as

π(k) =
{

k if k ∈ IN and k > K,
j if k ∈ IN, k ≤ Kn, and βn

k = αn
j .

Clearly, π is an injective mapping from IN onto IN. We claim that
{
αn

1 , . . . , αn
K

}
={

βn
1 , . . . , βn

K

}
, that is, π{1, . . . , K} = {1, . . . , K}. Assume that this is not true. Putting

sk = 2−k, tk = u(αn
k )2 for k = 1, . . . , Kn and sk = tk = 0 for k = Kn + 1, Kn + 2, . . ., we

get from Lemma 1 and (2)

(0 < ∆ ≤)
(
2−K − 2−K−1

)(
u(αn

K)2 − u(αn
K+1)

2
)
≤

Kn∑

k=1

2−k
(
u(αn

k )2 − u(βn
k )2

)
(< ∆),
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a contradiction. This proves the claim. For all n > n0 we thus have that {βn
1 , . . . , βn

K} =
A = {α1, . . . , αK} and, by (2), that

|(un − u)(α1)| < 3ε, . . . , |(un − u)(αK)| < 3ε.

Now we are ready to prove that lim supn→∞ ‖un − u‖∞ ≤ 3ε. Assume the contrary.
Then there is an infinite set N ⊂ IN such that for every n ∈ N there is γn ∈ Γ so that
|(un−u)(γn)| > 3ε. This immediately implies that γn 6∈ A for all n ∈ N with n > n0. But
for these n’s we have

K∑

k=1

2−kun(αk)2 + 2−K−1un(γn)2 ≤ ‖un‖D2
,

and so

2−K−1 lim sup
n∈N, n→∞

un(γn)2 ≤ lim
n→∞

‖un‖D2 − lim
n→∞

K∑

k=1

2−kun(αk)2

=‖u‖D2 −
K∑

k=1

2−ku(αk)2 = ‖u|Γ\A‖D2 ≤ ε2
∞∑

k=K+1

2−k = ε2 · 2−K ,

lim sup
n∈N, n→∞

|un(γn)| ≤
√

2ε < 2ε.

Thus
(3ε ≤) lim sup

n∈N, n→∞
|(un − u)(γn)| < 2ε + ε = 3ε,

a contradiction.

If u ∈ c0(Γ) in the above Proposition 4, then the Day’s norm ‖ · ‖D is LUR at u. Thus we
get a well known result that this norm on c0(Γ) is LUR.

The next proposition shows a property of uniform rotundity of Day’s norm. We shall
elaborate the proof of [Tr2, Proposition 1] due to Troyanski, see also [FGHZ, Remark 1].
Let Γ be an infinite set. If β ∈ Γ, we define a canonical projection πβ : `∞(Γ) → `∞(Γ) by

πβu(γ) =
{

u(β) if γ = β
0 if γ ∈ Γ\{β}, u ∈ `∞(Γ).

We shall need the following easily provable facts. It should be noted that Troyanski
considers elements of c0(Γ). However, a careful look at its proofs reveals that the facts
work with elements of `∞(Γ).

Fact 1. ([Tr2]) Let u ∈ `∞(Γ) and β ∈ Γ be such that u(β) 6= 0 and assume that
#{γ ∈ Γ; |u(γ)| ≥ 2−1/2|u(β)|} =: i < +∞. Then

‖u‖D2 ≥ ‖u− πβu‖D2 + 2−i−1u(β)2.
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Fact 2. ([Tr2]) Let u, v ∈ B`∞(Γ) and β ∈ Γ be such that u(β) + v(β) 6= 0 and assume
that #{γ ∈ Γ; |u(γ) + v(γ)| ≥ |u(β) + v(β)|} =: k < +∞. Then

2‖u‖D2 + 2‖v‖D2 − ‖u + v‖D2 ≥ 2−k−1
(
u(β)− v(β)

)2
.

Proposition 5. Let Γ 6= ∅ be a set and consider a linear set Y ⊂ `∞(Γ). Assume that
there exist ε > 0, and i, k ∈ IN such that

∀u ∈ Y ∩B`∞(Γ) #
{
γ ∈ Γ; u(γ) > ε

}
< i and #

{
γ ∈ Γ; u(γ) > 2−i−1ε

}
< k.

Let un, vn ∈ Y ∩B`∞(Γ), n ∈ IN, be such that 2‖un‖D2 + 2‖vn‖D2 − ‖un + vn‖D2 → 0 as

n →∞. Then lim supn→∞
∥∥un − vn

∥∥
`∞(Γ)

≤ 4ε.

Proof. The argument is a refinement of the proof of [Tr1, Proposition 1], see also
[FGHZ, Lemma 5]. Assume that the conclusion is false. Then, when replacing the original
sequences (un), (vn) by suitable subsequences, we may and do assume that

∥∥un−vn

∥∥ > 4ε

for all n ∈ IN. For every n ∈ IN find γn ∈ Γ so that |un(γn)− vn(γn)
∣∣ > 4ε. We shall first

observe that lim supn→∞
∣∣un(γn) + vn(γn)

∣∣ > 2−iε. Assume this is not so. Then for all
(large) n ∈ IN we have

∣∣un(γn) + vn(γn)
〉∣∣ ≤ 2−iε and so

2
∣∣un(γn)

∣∣ ≥
∣∣un(γn)− vn(γn)

∣∣−
∣∣un(γn) + vn(γn)

∣∣ > 4ε− 2−iε > 2
√

2ε,

and hence

#
{
γ ∈ Γ;

∣∣un(γ)
∣∣ > 2−1/2

∣∣un(γn)
∣∣} ≤ #

{
γ ∈ Γ;

∣∣un(γ)
∣∣ > ε

}
< 2i,

and by the Fact 1,
∥∥un

∥∥D2 ≥ ∥∥un − πγn(un)
∥∥D2 + 2−2i−1un(γn)2 ≥ ∥∥un − πγn(un)

∥∥D2 + 2−2i · ε2.

Also, for every large n ∈ IN we have
∥∥(un + vn)

∥∥D2 −
∥∥(un + vn)− πγn(un + vn)

∥∥D2 ≤ 1
2

(
un(γn) + vn(γn)

)2 ≤ 2−2i−1 · ε2.

Thus, by the above and the convexity

2
∥∥un

∥∥D2 + 2
∥∥vn

∥∥D2 −
∥∥(un + vn)

∥∥D2 ≥ 2
∥∥un − πγn(un)‖D2 + 2−2i+1 · ε2

+2
∥∥vn − πγn(vn)

∥∥D2 −
∥∥(un + vn)− πγn(un + vn)

∥∥D2

+
∥∥(un + vn)− πγn(un + vn)

∥∥D2 − ∥∥(un + vn)
∥∥D2

≥2−2i+1 · ε2 − 2−2i−1 · ε2 > 0

for all large n ∈ IN. But, for n → ∞ the most left hand side in the above chain of
inequalities goes to 0, a contradiction. We thus proved that lim supn→∞

∣∣un(γn)+vn(γn)
∣∣ >

2−iε.
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Then for infinitely many n ∈ IN we have from the assumptions

#
{
γ ∈ Γ;

∣∣un(γ)+vn(γ)
∣∣ ≥ ∣∣un(γn)+vn(γn)

∣∣} ≤ #
{
γ ∈ Γ;

∣∣un(γ)+vn(γ)
∣∣ > 2−iε

}
< 2k.

Hence, by the Fact 2,

0 = lim
n→∞

(
2‖un‖D2 + 2‖vn‖D2 − ‖(un + vn)‖D2)

≥ 2−2k−1 lim sup
n→∞

(
un(γn)− vn(γn)

)2
> 2−2k−116ε2 (> 0),

a contradiction. Therefore lim supn→∞
∥∥un − vn

∥∥
`∞(Γ)

≤ 4ε.

Section 3 – Proofs of results

Proof of Theorem 1. We shall prove the following chain of implications: (i)⇒(ii)⇒
(iii)⇒(iv)⇒(i)

(i)⇒(ii). For completeness we shall prove this. Find a total convex symmetric weakly
compact set K ⊂ BX ; it exists by Krein’s theorem. We shall find a set Γ ⊂ K satisfying
(ii). If X is separable, we can take Γ =

{
1
nkn; n ∈ IN

}
where

{
kn; n ∈ IN

}
is any dense

countable set in K. Let ℵ be an uncountable cardinal and assume that we already found a
set Γ ⊂ K as in the assertion (ii) whenever the density of X was less than ℵ. Now assume
that our X has density ℵ.

Proposition 1 (where we take Γ = ∅) yields a PRI (Pα; ω ≤ α ≤ µ) on X such that
PαK ⊂ K for every α ≤ µ. For α ∈ [ω, µ) denote Qα = Pα+1 − Pα; observe that then
QαX has density less than ℵ and is also a WCG space. Indeed, it contains a total weakly
compact set 1

2QαK. For every α ∈ [ω, µ) find, by the induction assumption, a total set
Γα ⊂ 1

2QαK (⊂ K) satisfying the assertion (ii).
Put Γ =

⋃
α<µ Γα. It remains to verify the assertion (ii) for this set. As the set⋃

α<µ QαX is total in X, so is the set Γ. Fix any ε > 0 and any x∗ ∈ X∗. We have to
show that the set

{
γ ∈ Γ; 〈γ, x∗〉 > ε

}
is finite. Denote

F =
{
α ∈ [ω, µ); 〈γ, x∗〉 > ε for some γ ∈ Γα

}
.

We shall show that the set F is finite. Assume, by contrary, that F contains an infinite
sequence α1 < α2 < · · · < µ. For each i ∈ IN find γi ∈ Γαi (⊂ K). Let k ∈ K be a
weak cluster point of the sequence

(
γi

)
i∈IN

; it exists as K is a weakly compact set. Then
〈k, x∗〉 ≥ ε > 0. But, for every fixed α ∈ [ω, µ) we have Qα ◦ Qαi = 0 for all i ∈ IN but,
eventually, one; hence Qα(k) = 0. Therefore k = 0, a contradiction. This proves that the
set F is finite. Now we can estimate

#
{
γ ∈ Γ; 〈γ, x∗〉 > ε

} ≤
∑

α∈F

#
{
γ ∈ Γα;

〈
γ, x∗|QαX

〉
> ε

}
< ℵ0

and hence the assertion (ii) is verified for our X.
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(ii)⇒(iii). Define Tx∗ = (〈γ, x∗〉; γ ∈ Γ), x∗ ∈ X∗. By (ii), T is a linear bounded
weak∗ to weak continuous injection from X∗ into c0(Γ). Then the adjoint operator T ∗

maps `1(Γ) into X. Let ‖ · ‖D denote Day’s norm on `∞(Γ). (Actually, any equivalent
LUR norm on c0(Γ) would work.) Denote by U the dual unit ball in `1(Γ) with respect to
this norm. Put then

D = co2

(
BX , T ∗U

)
=:

{
αu + βv; u ∈ BX , v ∈ T ∗U, α ≥ 0, β ≥ 0, α2 + β2 ≤ 1

}
.

Then D is a convex symmetric bounded set with the origin in its interior. Using the weak
compactness of T ∗U , it is not difficult to show that the set D is weakly closed, and hence
closed. Let | · | be the Minkowski functional of D; this will be an equivalent norm on X
and B(X,|·|) = D. We observe that, owing to the weak compactness of T ∗U , the unit ball
in (X∗∗, | · |∗∗) will be co2

(
BX∗∗ , T ∗U). Thus

(|F |∗∗∗)2 =
(‖F‖∗∗∗)2 + sup〈F, T ∗U〉2 for F ∈ X∗∗∗.

It remains to verify that | · |∗∗∗ is Γ−LUR. So consider F, Fn ∈ X∗∗∗, n ∈ IN, satisfying

2
(|F |∗∗∗)2 + 2

(|Fn|∗∗∗
)2 − (|F + Fn|∗∗∗

)2 → 0 as n →∞.

The convexity yields that

2 sup〈T ∗U,F
〉2 + 2 sup〈T ∗U,Fn

〉2 − sup〈T ∗U,F + Fn

〉2 → 0 as n →∞

and hence

2
∥∥T (F |X)

∥∥
D

2 + 2
∥∥T (Fn|X)

∥∥
D

2 − ∥∥T (F |X + Fn|X)
∥∥
D

2 → 0 as n →∞.

But ‖ · ‖D restricted to c0(Γ) is LUR; this well known fact easily follows from Proposition
4. Therefore

∥∥(T (F |X)− T (Fn|X)
∥∥
D → 0, i.e., sup

∣∣〈Γ, F − Fn

〉∣∣ → 0 as n →∞

since the Day’s norm is equivalent with the canonical norm ‖·‖∞ on c0(Γ). The parenthetic
part of (iii) is thus proved. From this, using a Šmulyan duality argument, we can easily
deduce that the norm | · |∗∗ is Γ−smooth, see Proposition 2 or [DGZ, Proposition II.1.5].

(iii)⇒(iv). By Proposition 3, (iii) implies that the set M is weakly relatively compact.
Thus X is WCG, and hence weakly Lindelöf determined, see, e.g., the implication (i)⇒(ii).
The second part of (iv) follows trivially.

(iv)⇒(ii). Clearly, we may and do assume that the set M in (iv) is convex symmetric
and closed. We shall find the set Γ satisfying the assertion (ii) by a transfinite induction.
If X is separable, then we can take Γ =

{
1
nxn; n ∈ IN

}
where

{
xn; n ∈ IN

}
is any dense

countable set in M . Let ℵ be an uncountable cardinal and assume that we already found a
set Γ ⊂ M as in the assertion (ii) whenever the density of X was less than ℵ. Now assume
that our X has density ℵ.
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Proposition 1 (where we take Γ = ∅) yields a PRI (Pα; ω ≤ α ≤ µ) on (X, |·|) such that
PαM ⊂ M for every α ∈ [ω, µ). For α ∈ [ω, µ) denote Qα = Pα+1 −Pα; observe that then
QαX has density less than ℵ and the norm | · | restricted to this subspace is QαM−smooth.
For every α ∈ [ω, µ) find, by the induction assumption, a total set Γα ⊂ 1

2QαM (⊂ M)
satisfying (ii).

Put Γ =
⋃

α<µ Γα. It remains to verify the assertion (ii) for this set. As the set⋃
α<µ QαX is total in X, so is the set Γ. Fix any ε > 0 and any x∗ ∈ BX∗ . We have to

show that the set
{
γ ∈ Γ; 〈γ, x∗〉 > ε

}
is finite. In order to do so we shall be proving the

following statement:

#
{
α ∈ [ω, µ); 〈γ, P ∗β x∗〉 > ε for some γ ∈ Γα

}
< ℵ0 (β)

for all β ∈ [ω, µ]. Clearly, (ω) is valid. Also, since Pβ+1 ◦ Qβ+1 = 0, we have that (β)
implies (β + 1) for every β < µ. Now let λ ≤ µ be any limit ordinal and assume that we
verified (β) for every β < λ. Find β < λ so that sup〈M,P ∗λx∗ − P ∗β x∗〉 < ε. This follows
from the M−smoothness of | · | via Proposition 2 (actually, if P ∗λx∗ does not attain its norm
at an element of PλX, some extra work is needed here). We observe that if 〈γ, P ∗λx∗〉 > ε
for some γ ∈ Γα, where α ∈ [ω, µ), then, as γ ∈ M ,

〈γ, P ∗β x∗〉 = 〈γ, P ∗λx∗〉 − 〈γ, P ∗λx∗ − P ∗β x∗〉 > ε− ε = 0,

and, so we must have α < β. Thus

#
{
α ∈ [ω, µ); 〈γ, P ∗λx∗〉 > ε for some γ ∈ Γα

}

=#
{
α ∈ [ω, µ); 〈γ, P ∗β x∗〉 > ε for some γ ∈ Γα

}
< ℵ0

and hence (λ) holds. We thus proved (β) for every β ≤ µ. In particular, (µ) holds, that
is, given any ε > 0, the set

F =
{
α ∈ [ω, µ); 〈γ, x∗〉 > ε for some γ ∈ Γα

}

is finite and, so

#
{
γ ∈ Γ; 〈γ, x∗〉 > ε

}
=

∑

α∈F

#
{
γ ∈ Γα; 〈γ, x∗〉 > ε

}
< ℵ0

by the induction assumption. The assertion (ii) is thus verified for our X.
(ii)⇒(i) is obvious since the set Γ ∪ {0} is then weakly compact.

Proof of Theorem 2. We shall be proving the following chain of implications:
(i)⇒(ii)⇒(iii)⇒(i)⇒(iv)⇒(v)⇒(ii).
(i)⇒(ii). If X is separable, then, clearly, every total countable set Γ ⊂ BX satisfies

(ii) (indeed, the sets Γε
n can be singletons). Let ℵ be an uncountable cardinal and assume

that the implication has already been verified for every space of density less than ℵ. Now
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assume that a Banach space X, of density ℵ, is a subspace of a WCG space Z. Find a
total convex symmetric weakly compact set K ⊂ Z; it exists by Krein’s theorem.

Proposition 1 (where we take Γ = ∅) yields a PRI (Pα; ω ≤ α ≤ µ) on Z such that
PαX ⊂ X and PαK ⊂ K for every α ∈ [ω, µ). For α ∈ [ω, µ) denote Qα = Pα+1 − Pα;
observe that then QαX has density less than ℵ and is a subspace of the WCG space QαZ.
For every α ∈ [ω, µ) find, by the induction assumption, a total set Γα ⊂ BQαX with the
properties listed in the assertion (ii).

Put Γ =
⋃

α<µ Γα. It remains to verify the assertion (ii) for this set. As the set⋃
α<µ QαX is total in X, so is the set Γ. Further fix any ε > 0. For α ∈ [ω, µ) let

Γα =
⋃∞

n=1 Γε
α,n be the decomposition from the assertion (ii) in the subspace QαX. For

n,m ∈ IN put then

Γε
n,m =

(
mK + ε

4BZ

) ∩
⋃

α<µ

Γε
α,n\

(
Γε

n,m−1 ∪ · · · ∪ Γε
n,1 ∪ {0}

)
.

Clearly, this is a countable family of mutually disjoint sets and Γ =
⋃∞

n,m=1 Γε
n,m.

Fix any n,m ∈ IN and any x∗ ∈ X∗. It remains to show that

#
{
γ ∈ Γε

n,m; 〈γ, x∗〉 > ε
}

< ℵ0.

Denote
F =

{
α ∈ [ω, µ); 〈γ, x∗〉 > ε for some γ ∈ Γε

n,m ∩ Γα

}
.

Fix for a while any α ∈ F . Then, as Γα ∩ Γβ ⊂ {0} for β 6= α, we have Γε
n,m ∩ Γα ⊂

Γε
α,n ∪ {0}, and so

{
γ ∈ Γε

n,m ∩ Γα; 〈γ, x∗〉 > ε
} ⊂ {

γ ∈ Γε
α,n; 〈γ, x∗〉 > ε

}
=

{
γ ∈ Γε

α,n;
〈
γ, x∗|QαX

〉
> ε

}
,

where the last set is, by the induction assumption, finite.
So, it remains to prove that the set F is finite. Assume, by contrary, that F contains

an infinite sequence α1 < α2 < · · · < µ. Find z∗ ∈ Z∗ such that z∗|X = x∗. For each
i ∈ IN find γi ∈ Γε

n,m ∩ Γαi so that 〈γi, x
∗〉 > ε. Write γi = mki + zi, where ki ∈ K and

zi ∈ ε
4BZ ; then γi = Qαi(γi) = mQαi(ki) + Qαi(zi), as γi ∈ Γαi ⊂ QαiX. We have

ε < 〈γi, x
∗〉 = 〈γi, z

∗〉 = m〈Qαi(ki), z∗〉+ 〈Qαi(zi), z∗〉 ≤ m〈Qαi(ki), z∗〉+ ε
2 ,

and so 〈Qαi(ki), z∗〉 > ε
2m for every i ∈ IN. Let 2k ∈ 2K be a weak cluster point

of the sequence
(
Qαi(ki)

)
i∈IN

; it exists as Qα(K) ⊂ 2K for every α ∈ [ω, µ). Then
〈2k, z∗〉 ≥ ε

2m > 0. But, for every fixed α ∈ [ω, µ) we have Qα ◦Qαi = 0 for all i ∈ IN but,
eventually, one; so Qα(2k) = 0. Therefore 2k = 0, a contradiction. This proves that the
set F is finite and hence the assertion (ii) is verified for our X.

Now assume that we have already given a total set Γ ⊂ BX which countably supports
X∗ and let (i) be satisfied. Then, of course, Γ countably supports Z∗. Proposition 1 yields
a PRI (Pα; ω ≤ α ≤ µ) on Z as above, with the additional property that Pα(γ) ∈ {γ, 0}
for every α ∈ [ω, µ) and every γ ∈ Γ. For every α ∈ [ω, µ) put Γα = Γ ∩ QαX. This is a
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total set in QαX which countably supports (QαX)∗. Clearly Γ =
⋃

α<µ Γα. The rest of
the proof is as above.

(ii)⇒(iii). Assume the assertion (ii) is satisfied. We realize that this is actually a
Talagrand-Argyros-Farmaki condition from [Fa, Theorem 2.9]. Therefore (BX∗ , w∗) is an
Eberlein compact. However, there is a direct way how to get (iii), see [FMZ4]. We shall
repeat here this method. For i ∈ IN define a function τi : IR → IR by

τi(y) =





t + 1
i if t ≤ − 1

i ,
0 if − 1

i ≤ t ≤ 1
i ,

t− 1
i if t ≥ 1

i .

Define then Φ : BX∗ → IRΓ×IN by

Φ(x∗)(γ, i) =
1
ni

τi(〈γ, x∗〉) if γ ∈ Γ1/i
n , n ∈ IN, and i ∈ IN.

Clearly, Φ is weak∗ to pointwise continuous. It is also injective. Indeed, take any two
distinct elements x∗1, x

∗
2 in BX∗ . Since the set Γ is total, there is γ ∈ Γ so that 〈γ, x∗1〉 6=

〈γ, x∗2〉. Find i ∈ IN so that 1
i < max

{|〈γ, x∗1〉|, |〈γ, x∗2〉|
}
. Then, surely, τi(〈γ, x∗1〉) 6=

τi(〈γ, x∗2〉), and hence Φ(x∗1) 6= Φ(x∗2).
Fix any x∗ ∈ BX∗ . It remains to show that Φ(x∗) ∈ c0(Γ × IN). So, fix any ε > 0.

Clearly, if n, i ∈ IN, and n > 1
ε or i > 1

ε , then |Φ(x∗)(γ, i)| < ε for every γ ∈ Γ1/i
n . In what

follows let us fix any n, i ∈ IN, with n, i ≤ 1
ε (This is a finite set of couples.) Then

{
γ ∈ Γ1/i

n ; |Φ(x∗)(γ, i)| > ε
} ⊂ {

γ ∈ Γ1/i
n ; τi(〈γ, x∗〉) 6= 0

}

=
{
γ ∈ Γ1/i

n ; 〈γ, x∗〉 > 1
i

} ∪ {
γ ∈ Γ1/i

n ; 〈γ,−x∗〉 > 1
i

}
;

the set in the last line being finite according to the assertion (ii). Therefore Φ(x∗) ∈
c0(Γ× IN). We thus showed that Φ(BX∗) ⊂ c0(Γ× IN) and hence (iii) is proved.

(iii)⇒(i) is standard [AL], [Di, pp. 146,147].
(i)⇒(iv). Assume that X is a subspace of a WCG space Z. Let j : X → Z be the

canonical injection. Find an equivalent norm | · | on Z and a total set M ⊂ BZ as is
stated in Theorem 1 (iii). We may and do assume that M is convex and symmetric; then⋃∞

n=1 nM is dense in Z. Put

Mε
n = j−1

(
nM + ε

2BZ

) ∩BX , ε > 0, n ∈ IN.

Then
⋃∞

n=1 Mε
n = BX for every ε > 0. We shall show that these sets together with the

restriction of the norm | · | to X, denoted by the same symbol, have the properties quoted
in (iv). So fix any ε > 0 and any n ∈ IN. Let F, Fm ∈ X∗∗∗, m ∈ IN, satisfy

2(|F |∗∗∗)2 + 2(|Fm|∗∗∗)2 − (|F + Fm|∗∗∗)2 → 0 as m →∞.

By Hahn-Banach theorem we find G, Gm ∈ Z∗∗∗ such that G|j∗∗(X∗∗) = F, Gm|j∗∗(X∗∗) =
Fm and |G|∗∗∗ = |F |∗∗∗, |Gm|∗∗∗ = |Fm|∗∗∗, m ∈ IN. Here j∗∗ : X∗∗ → Z∗∗ is the second
conjugate to j. Then, since |G + Gm|∗∗∗ ≥ |F + Fm|∗∗∗, we have

2(|G|∗∗∗)2 + 2(|Gm|∗∗∗)2 − (|G + Gm|∗∗∗)2 → 0 as m →∞.
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Then, since | · |∗∗∗ on Z∗∗∗ is M−LUR, we get that sup
∣∣〈M, Gm − G〉

∣∣ → 0 as m → ∞.
Thus, for every ε > 0 and every n ∈ IN,

lim sup
m→∞

sup
∣∣〈Mε

n, Fm − F
〉∣∣ ≤ lim sup

m→∞
sup

∣∣〈nM + ε
2BZ , Gm −G

〉∣∣

≤ ε
2 lim sup

m→∞
|Gm −G|∗∗∗ ≤ ε|G|∗∗∗,

so | · |∗∗∗ is ε −Mε
n−LUR. Having this, Proposition 2 guarantees that the norm | · |∗∗ is

2ε−Mε
n−smooth.

(iv)⇒(v). By Proposition 3, the situation described in (iv) implies that for every
ε > 0 and every n ∈ IN the set Mε

n is ε−weakly compact, i.e., that Mε
n

∗ ⊂ X + εBX∗∗ .

Thus M ⊂ ⋂∞
i=1

⋃∞
n=1 M

1/i
n

∗
⊂ X. We observe that the middle set here is K−analytic

in (BX∗∗ , w∗∗). Now [T, Théorème 3.4 (iii)] guarantees that the whole BX is K-analytic
in (BX∗∗ , w∗), that is, that X is weakly K-analytic space. Thus X is weakly Lindelöf
determined, see, e.g. [F, Theorem 7.2.7]. The second part of (v) holds trivially.

(v)⇒(ii). Clearly, we may and do assume that each set Mε
n in (v) is convex symmetric

and closed. We shall find a set Γ ⊂ M satisfying the assertion (ii) by a transfinite induction.
If X is separable, then we can take for Γ any countable dense subset in M . Let ℵ be an
uncountable cardinal and assume that we already found a set Γ ⊂ M as in the assertion
(ii) whenever the density of X was less than ℵ. Now assume that our X has density ℵ.

Proposition 1 yields a PRI (Pα; ω ≤ α ≤ µ) on (X, | · |) such that Pα(M1/i
n ) ⊂ M

1/i
n

for every α ∈ [ω, µ) and every n, i ∈ IN. For α ∈ [ω, µ) denote Qα = Pα+1 − Pα;
observe that then QαX is weakly Lindelöf determined, has density less than ℵ, we have⋃∞

n=1
1
2QαM

1/i
n = 1

2QαM for every i ∈ IN, the set 1
2QαM is total in QαX, and the norm

| · | restricted to QαX is 1
i − 1

2QαM
1/i
n −smooth for every n, i ∈ IN. We thus verified the

condition (v) for every subspace QαX. For every α ∈ [ω, µ) we then find, by the induction
assumption, a total set Γα ⊂ 1

2QαM (⊂ M) satisfying (ii) (in the subspace QαX).
Further fix any ε > 0. Find i ∈ IN so that 1

i < ε. For α ∈ [ω, µ) let Γα =
⋃∞

n=1 Γ1/i
α,n

be the decomposition from the assertion (ii) in the subspace QαX. For n,m ∈ IN put then

Γε
n,m = M1/i

m ∩
⋃

α<µ

Γ1/i
α,n\

(
Γε

n,m−1 ∪ · · · ∪ Γε
n,1 ∪ {0}

)
.

Clearly, this is a countable family of mutually disjoint sets and Γ =
⋃∞

n,m=1 Γε
n,m.

Fix any n, m ∈ IN and any x∗ ∈ X∗. We have to show that the set
{
γ ∈ Γε

n,m; 〈γ, x∗〉 >

ε
}

is finite. Instead of this, we will be proving by a transfinite induction, the following
subtler statement: {

γ ∈ Γε
n,m; 〈γ, P ∗β x∗〉 > ε

}
< ℵ0 (β)

for every β ∈ [ω, µ]; then (µ) will be what we need. Clearly, (ω) is true. Also, for every
β < µ, if (β) is valid, so is (β + 1) since

#
{
γ ∈ Γε

n,m; 〈γ, P ∗β+1x
∗〉 > ε

}

≤#
{
γ ∈ Γε

n,m; 〈γ, P ∗β x∗〉 > ε
}

+ #
{
γ ∈ Γε

β,n; 〈γ, P ∗β+1x
∗〉 > ε

}
< ℵ0;
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here we used the property of the set Γε
α,n and the fact that Qα ◦ Pβ+1 = 0 whenever

β < α < µ.
Let λ ∈ (ω, µ] be now a limit ordinal and assume that we verified (β) for each

β < λ. Find β < λ so that sup
〈
M

1/i
n , P ∗λx∗ − P ∗β x∗

〉
< 1

i . This follows from the
1
i −Mε

n−smoothness of | · | via Proposition 2 (actually, if P ∗λx∗ does not attain its norm
at an element of PλX, some extra work is needed here). Take any γ ∈ Γε

n,m satisfying

〈γ, P ∗λx∗〉 > ε. Then, as γ ∈ M
1/i
n , we have

〈γ, P ∗β x∗〉 = 〈γ, P ∗λx∗〉 − 〈γ, P ∗λx∗ − P ∗β x∗〉 > ε− 1
i > 0

and so γ ∈ QαX for some α < β. But then 〈γ, P ∗λx∗〉 = 〈γ, P ∗β x∗〉. Hence

{
γ ∈ Γε

n,m; 〈γ, P ∗λx∗〉 > ε
}

=
{
γ ∈ Γε

n,m; 〈γ, P ∗β x∗〉 > ε
}

where the latter set is finite by the induction assumption. We thus proved (λ). And, taking
λ = µ we get (ii).

Remark. We confess that we did not succeed to prove (iv) directly from (ii) via Day’s
norm, and using Proposition 4.

Proof of Theorem 3. (i)⇒(ii). Let Km ⊂ BX∗∗ , m ∈ IN, be the weak∗ closed sets
witnessing that X is Vašák, i.e., for every x ∈ BX there is N ⊂ IN so that x ∈ ⋂

m∈N Km ⊂
X. We may and do assume that for all m,n ∈ IN, if Km ∩Kn 6= ∅, then there is l ∈ IN so
that Km ∩Kn = Kl. Let (Pα; ω ≤ α ≤ µ) be a separable PRI on X, see Proposition 1,
[F, Proposition 6.2.7 and Definition 6.2.6]. We recall that one of the features of such a PRI
is that the range of the projection Qα := Pα+1 − Pα is separable for every α ∈ [ω, µ). For
each such α we find a dense subset

{
vα

n ; n ∈ IN
}

in BQαX . Put then Γ =
⋃∞

n,m=1 Γm,n,
where

Γm,n =
{
vα

n ; α ∈ [ω, µ)
} ∩Km, m, n ∈ IN.

Clearly, Γ is total in X.
Now, fix any ε > 0, any x∗ ∈ X∗, and any γ ∈ Γ. Find a set N ⊂ IN so that

γ ∈ ⋂
m∈N Km ⊂ X. We can then choose a sequence (mi)i∈IN in N (not necessarily

injective) such that Km1 ⊃ Km2 ⊃ · · · and
⋂∞

i=1 Kmi ⊂ X. Find n ∈ IN and a (unique)
α ∈ [ω, µ) so that γ = vα

n . We claim that there is j ∈ IN so that

#
{
γ′ ∈ Γmj ,n; 〈γ′, x∗〉 > ε

}
< ℵ0.

Once having this, (ii) will be proved since clearly γ ∈ Γmi,n for every i ∈ IN.
Assume that the claim is false. Pick then subsequently γ1 ∈ Γm1,n, with 〈γ1, x

∗〉 > ε,
γ2 ∈ Γm2,n\{γ1} with 〈γ2, x

∗〉 > ε, . . . , γi+1 ∈ Γmi+1,n\{γ1, . . . , γi}, with 〈γi+1, x
∗〉 > ε, . . .

For every i ∈ IN find a (unique) αi < µ so that γi = vαi
n . Let x∗∗ be a weak∗ cluster

point of the sequence (γi)i∈IN. Then, necessarily, x∗∗ ∈ ⋂∞
i=1 Kmi ⊂ X. Fix for a while

any β < µ. We recall that the sequence (γi)i∈IN is injective. Hence so is the sequence
(αi)i∈IN. Then we have Qβ ◦ Qαi = 0 for all large i ∈ IN. Hence Qβx∗∗ = 0. This holds
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for every β ∈ [ω, µ). Therefore x∗∗ = 0. However, 〈γi, x
∗〉 > ε for every i ∈ IN, and so

(0 =) 〈x∗∗, x∗〉 ≥ ε > 0, a contradiction.
Now assume that we have already given a total set Γ ⊂ BX which countably supports

X∗ and let (i) be satisfied. Proposition 1 and the proof of [F, Proposition 6.2.7] yield
a separable PRI (Pα; ω ≤ α ≤ µ) on X as above, with the additional property that
Pα(γ) ∈ {γ, 0} for every α ∈ [ω, µ) and every γ ∈ Γ. For every α ∈ [ω, µ) the set Γ∩QαX
is countable; this can be seen as follows: QαX is separable, hence there exists a w∗−dense
subset {x∗n : n ∈ IN} of (Qα(X))∗. Let Sn = {γ ∈ Γ ∩ QαX : 〈γ, x∗n〉 6= 0}. Then Sn is
countable for all n ∈ IN. If γ ∈ (Γ ∩ QαX) \⋃∞

n=1 Sn we have 〈γ, x∗n〉 = 0 for all n ∈ IN,
hence γ = 0. Enumerate Γ ∩QαX as {vα

n ; n ∈ IN}. The rest of the proof is as above.
(ii)⇒(iii). Define T : X∗ → IRΓ by

Tx∗ =
(〈γ, x∗〉; γ ∈ Γ

)
, x∗ ∈ X∗;

this is a linear bounded weak∗ to pointwise continuous injection. Avoid from the fam-
ily

{ ⋂
n∈F Γn; F ⊂ IN finite} empty sets and enumerate it as M1,M2, . . . Put M =⋃∞

n=1 Mn(= Γ). Let ‖ · ‖D be the Day’s norm and define

|x∗|∗2 = ‖x∗‖∗2 +
∞∑

n=1

2−n
∥∥Tx∗|Mn

∥∥
D

2
, x∗ ∈ X∗;

this is clearly an equivalent dual norm on X∗. Let | · | denote the predual norm correspond-
ing to | · |∗. It easy to check that the set Γ from the condition (ii) countably supports X∗.
Proposition 1 thus yields a PRI (Pα; ω ≤ α ≤ µ) on (X, | · |) such that Pα(γ) ∈ {γ, 0} for
every α ∈ [ω, µ] and every γ ∈ Γ.

Fix any ε > 0 and any 0 6= x∗ ∈ X∗. By (ii), for every γ ∈ Γ we find nγ ∈ IN
so that γ ∈ Mnγ and #

{
γ′ ∈ Mnγ ; |〈γ′, x∗〉| > ε

3

}
< ℵ0. Put N =

{
nγ ; γ ∈ Γ

}
;

then, clearly,
⋃

n∈N Mn = M . Now, fix any n ∈ N and any α ∈ [ω, µ). We have to
show that | · |∗ is ε/|P ∗αx∗|∗ −Mn−LUR at P ∗αx∗. So let x∗i ∈ X∗, i ∈ IN, be such that
2|P ∗αx∗|∗2 + 2|x∗i |∗2 − |P ∗αx∗ + x∗i |∗2 → 0 as i → 0. Since

#
{
γ ∈ Mn; |〈γ, P ∗αx∗〉| > ε

3

}
= #

{
γ ∈ Mn; |〈γ, x∗〉| > ε

3

}
< ℵ0,

(here we used the fact that, once Pα(γ) 6= 0, then necessarily Pα(γ) = γ). Proposition 4
yields

lim sup
i→∞

sup
∣∣〈Mn, x∗i − P ∗αx∗

〉∣∣ ≤ 3 ε
3 = ε =

ε

|P ∗αx∗|∗ |P
∗
αx∗|∗.

(iii)⇒(ii). Assume that dens X = ℵ1. For α < ω1 put Qα = Pα+1 − Pα and let
{vα

n ; n ∈ IN} be a dense set in Qα(M) ∩BX . Put

Γ =
∞⋃

n,m=1

Γn,m, where Γn,m =
{
vα

n ; α < ω1

} ∩Mm, n,m ∈ IN.

We shall show that these sets satisfy (ii). Clearly, Γ is total in X. Fix any ε > 0, 0 6=
x∗ ∈ X∗, and γ ∈ Γ. For ε and x∗ find by (iii) a corresponding set N ⊂ IN. Find m ∈ N
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so that γ ∈ Mm. Find a (unique) α < ω1 and n ∈ IN so that γ = vα
n . Thus γ ∈ Γn,m. It

remains to verify that
#

{
γ′ ∈ Γn,m; 〈γ′, x∗〉 > ε

}
< ℵ0. (3)

Instead of showing this, we shall be proving the following subtler claim:

#
{
γ′ ∈ Γn,m; 〈γ′, P ∗β x∗〉 > ε

}
< ℵ0. (β)

for every β ≤ ω1. Clearly, (ω) holds. Assume that (β) holds for some β < ω1. Then

#
{
γ′ ∈ Γn,m; 〈γ′, P ∗β+1x

∗〉 > ε
} ≤ #

{
γ′ ∈ Γn,m; 〈γ′, P ∗β x∗〉 > ε

}
+ 1 < ℵ0

and hence (β + 1) holds as well. Now, let a limit ordinal λ ≤ ω1 be given and assume that
(β) was verified for every β < λ. As β ↑ λ implies |P ∗β x∗|∗ ≤ |P ∗λx∗|∗ and |P ∗β x∗+P ∗λx∗|∗ →
2|P ∗λx∗|∗, we have from (iii) that

sup
〈
Mm, P ∗β x∗ − P ∗λx∗

〉
<

ε

|P ∗λx∗|∗ · |P
∗
λx∗|∗ = ε

for some β < λ. We observe that if γ′ ∈ Γn,m satisfies 〈γ′, P ∗λx∗〉 > ε, then
〈
γ′, P ∗β x∗

〉
=

〈
γ′, P ∗λx∗

〉− 〈γ′, P ∗λx∗ − P ∗β x∗
〉

> ε− ε = 0,

and so γ′ ∈ QαX with some α < β; thus 〈γ′, P ∗β x∗〉 = 〈γ′, P ∗λx∗〉. Therefore

#
{
γ′ ∈ Γn,m; 〈γ′, P ∗λx∗

〉
> ε

}
= #

{
γ′ ∈ Γn,m; 〈γ′, P ∗β x∗

〉
> ε

}
< ℵ0.

The claim is thus verified for every β ≤ ω1. In particular, (ω1) is just (3) and (ii) is proved.
(ii)⇒(i). Assume that (ii) holds. Clearly, it will remain valid if we add 0 ∈ X to

each of the sets Γ, Γn, n ∈ IN. We shall show that Γ is K-countably determined in
(BX∗∗ , w∗). And since Γ is a total set in X, [T, Théorème 3.4 (iii)] will guarantee that BX

is K-countably determined, that is, that X is a Vašák space. The K-countable determinacy
of Γ is guaranteed by the family of the sets Γn

∗ ⊂ BX∗∗ , n ∈ IN. Indeed, take any γ ∈ Γ
and any x∗∗ ∈ BX∗∗\Γ. Find x∗ ∈ X∗ such that 〈x∗∗, x∗〉 > 0. For our x∗, our γ, and
for ε := 1

2 〈x∗∗, x∗〉 find, from (ii), n ∈ IN such that γ ∈ Γn (⊂ Γn
∗
) and that the set{

γ′ ∈ Γn; 〈γ′, x∗〉 > ε
}

is finite. Then for sure x∗∗ 6∈ Γn
∗
.

Proof of Theorem 4. (i)⇒(ii). Assume that X is weakly K−analytic. If X is separable,
we can take for Γ any countable total set in BX ; then the sets Γ(n), n ∈ IN, can be singletons
consisting from all elements of Γ, and we can put Γs = Γ(s(1)) for every s ∈ IN<IN. Let ℵ
be an uncountable cardinal and assume that we have proved the necessity for every space
whose density is less than ℵ. Now let X be a weakly K−analytic space of density ℵ and
assume that the sets Ks ⊂ X∗∗, s ∈ IN<IN, witness for this. We may and do assume that
Ks ⊃ Kt whenever s, t ∈ IN<IN and t is an “extension” of s. Let (Pα; ω ≤ α ≤ µ) be a
PRI on X, see Proposition 1. For α ∈ [ω, µ) put Qα = Pα+1 − Pα and, by the induction
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assumption, find a total set Γα,∅ ⊂ BQαX , and subsets Γα,s ⊂ Γα,∅, s ∈ IN<IN, as in the
condition (ii), for the subspace QαX and moreover with the property that that Γα,s ⊃ Γα,t

whenever s, t ∈ IN<IN and t is an “extension” of s; this is possible since such a space is
clearly weakly K−analytic and its density is less than ℵ. Put Γ = Γ∅ =

⋃
α<µ Γα,∅ and for

k ∈ IN and (n1, n2, . . . , n2k) ∈ IN<IN

Γ(n1,n2,...,n2k−1) =
⋃

α<µ

Γα,(n1,n3,...,n2k−1) ∩K(n2,n4,...,n2k−2),

Γ(n1,n2,...,n2k) = Γ(n1,n2,...,n2k−1) ∩K(n2,n4,...,n2k),

where we take K∅ = BX∗∗ . From these definitions and from the induction assumption we
easily get that Γ∅ is total in X and that Γ =

⋃
σ∈ININ

⋂∞
i=1 Γσ|i.

Fix now any x∗ ∈ X∗, any σ ∈ ININ, and any ε > 0. It remains to prove that

#
{
γ ∈ Γσ|i; 〈γ, x∗〉 > ε

}
< ℵ0

for some i ∈ IN. Assume that this is not the case. Find τ, ρ ∈ ININ so that σ =
(τ(1), ρ(1), τ(2), ρ(2), . . .). Pick then subsequently γ1 ∈ Γσ|2, with 〈γ1, x

∗〉 > ε, γ2 ∈
Γσ|4\{γ1}, with 〈γ2, x

∗〉 > ε, . . . , γi+1 ∈ Γσ|(2i+2)\{γ1, . . . , γi}, with 〈γi+1, x
∗〉 > ε, . . . For

every i ∈ IN find a (unique) αi < µ so that γi ∈ Γαi,τ |i. Let x∗∗ be a weak∗ cluster point
of the sequence (γi)i∈IN. Then, necessarily, x∗∗ ∈ ⋂∞

i=1 Kρ|i ⊂ X. (Here we used that
Kρ|1 ⊃ Kρ|2 ⊃ · · ·) Fix for a while any β < µ. We realize that the set {i ∈ IN; αi = β}
is finite. Indeed, otherwise γi ∈ Γβ,τ |i for infinitely many i ∈ IN (as Γβ,τ |1 ⊃ Γβ,τ |2 ⊃ · · ·)
and hence the sets

{
γ′ ∈ Γβ,τ |i;

〈
γ′, x∗|QβX

〉
> ε

}
would be infinite for all large i ∈ IN,

a contradiction. Thus Qβ ◦ Qαi = 0 for all large i ∈ IN, and so Qβx∗∗ = 0. This
holds for every β < µ; hence x∗∗ = 0. However, 〈γi, x

∗〉 > ε for every i ∈ IN, and so
(0 =) 〈x∗∗, x∗〉 ≥ ε > 0, a contradiction.

Now assume that we have already given a total set Γ ⊂ BX which countably supports
X∗ and let (i) be satisfied. Proposition 1 yields a PRI (Pα; ω ≤ α ≤ µ) on X as above,
with the additional property that Pα(γ) ∈ {γ, 0} for every α ∈ [ω, µ) and every γ ∈ Γ. For
every α ∈ [ω, µ) put Γα,∅ = Γ∩QαX; this is a total set in QαX which countably supports
(QαX)∗. The rest of the proof is as above.

(ii)⇒(iii). Define

ϕ(σ) =
∞⋂

n=1

Γσ|n
∗
, σ ∈ ININ.

By joining 0 to Γ as well as to each Γs, s ∈ IN<IN, we do not violate the condition (ii)
and will guarantee that ϕ(σ) 6= ∅ for every σ ∈ ININ. Fix any σ ∈ ININ. We shall show
that ϕ(σ) is a subset of Γ (⊂ X). So take any x∗∗ ∈ ϕ(σ). If x∗∗ = 0, we are done.
Otherwise find x∗ ∈ X∗ so that 〈x∗∗, x∗〉 =: ε > 0. From (ii) find i ∈ IN so that the set{
γ ∈ Γσ|i; 〈γ, x∗〉 > ε

}
is finite. Then, as x∗∗ ∈ Γσ|i

∗
, we get that, necessarily, x∗∗ ∈

Γσ|i (⊂ Γ). Therefore ϕ(σ) is a weakly compact set. Consider now any weakly open set
ϕ(σ) ⊂ U ⊂ X. Find a weak∗ open set Ũ ⊂ X∗∗ so that U = Ũ∩X. A simple compactness

24



argument yields N ∈ IN so large that
⋂N

n=1 Γσ|n
∗ ⊂ Ũ . Then ϕ(τ) ⊂ Ũ ∩X = U whenever

τ ∈ ININ and τ “begins” by σ|N . We have proved that ϕ is upper semicontinuous at σ.
Define T : X∗ → IRΓ by

Tx∗ =
(〈γ, x∗〉; γ ∈ Γ

)
, x∗ ∈ X∗;

this is a linear bounded weak∗ to pointwise continuous injection. Let {s1, s2, . . .} be an
enumeration of IN<IN and define

|x∗|∗2 = ‖x∗‖∗2 +
∞∑

j=1

2−j
∥∥Tx∗|Γsj

∥∥
D

2
, x∗ ∈ X∗;

this will be an equivalent dual norm on X∗. Let | · | denote the predual norm corresponding
to | · |∗. It remains to prove the geometrical property of | · |∗. So fix again any σ ∈ ININ and
consider any 0 6= x∗ ∈ X∗, x∗i ∈ X∗, i ∈ IN, such that 2|x∗|∗2 + 2|x∗i |∗2 − |x∗ + x∗i |∗2 → 0
as i →∞. Fix any ε > 0. From (ii) find n ∈ IN such that the set

{
γ ∈ Γσ|n; 〈γ, x∗〉 > ε

}

is finite. Then the set
{
x∗∗ ∈ Γσ|n

∗
; 〈x∗∗, x∗〉 > ε

}
is also finite (actually it coincides with

the latter). Hence, by Proposition 4, lim supi→∞ sup
∣∣〈Γσ|n

∗
, x∗−x∗i

〉∣∣ ≤ 3ε, and a fortiori,
lim supi→∞ sup

∣∣〈ϕ(σ), x∗−x∗i
〉∣∣ ≤ 3ε. But ε > 0 was here arbitrary. We thus proved that

the norm | · |∗ is ϕ(σ)−LUR. Then the norm | · | is ϕ(σ)−smooth by Proposition 2.
(iii)⇒(i). The properties of the mapping ϕ exactly mean that the set ϕ

(
ININ

)
is

K−analytic in (BX∗∗ , w∗). Hence, [T, Théorème 3.4 (iii)] guarantees that the whole BX

is K-analytic in (BX∗∗ , w∗), that is, that X is weakly K-analytic space.

Remark. We do not know if (iii) can be strengthened so that (| · |∗∗∗ is ϕ(σ)−LUR) | · |∗∗
is ϕ(σ)−smooth for every σ ∈ ININ.

Proof of Theorem 5. That (iii)⇒(i) is trivial. Further, (ii) implies that the assignment
x∗ 7→ (〈γ, x∗〉; γ ∈ Γ) injects (BX∗ , w∗) continuously into Σ(Γ). Hence, then (iii) is
satisfied.

(i)⇒(ii). We shall proceed by a transfinite induction over the density of X. If X has
density equal to ℵ0, then we can take for Γ ⊂ BX any total and countable set and so we are
done. Let an uncountable cardinal ℵ be given and assume that the implication was verified
for any X with density less than ℵ. Now, let X be a Banach space with density ℵ, and
assume that X is a subspace of a weakly Lindelöf determined space (Z, ‖ · ‖). Then Z has
a projectional generator, see, e.g., [F, Proposition 8.3.1]. From the proof of Proposition 1,
we can see that there exists a complemented subspace X ⊂ Z1 ⊂ Z with density equal to
the density of X. It is easy to check that this Z1 will also be a weakly Lindelöf determined
space. Hence, in what follows, we may and do assume that the density of Z equals the
density of X (= ℵ). By Proposition 1, we find a PRI (Pα; ω ≤ α ≤ µ) on Z such that
PαX ⊂ X for every α ∈ [ω, µ).

Consider any ω ≤ α < µ. Put Qα = Pα+1 − Pα. Note that QαX is a subspace of
QαZ, the latter space being also weakly Lindelöf determined. Moreover, the density of
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QαX is at most #α < #µ = ℵ. Hence, by the induction assumption, there is a total set
Γα ⊂ BQαX such that

∀y∗ ∈ (QαX)∗ #
{
γ ∈ Γα; 〈γ, y∗〉 6= 0

} ≤ ℵ0.

Performing this for every α, put Γ =
⋃

α<µ Γα. Since
⋃

α<µ QαX is total in X, so is Γ.
Fix any 0 6= x∗ ∈ X∗. It remains to prove that the set

{
γ ∈ Γ; 〈γ, x∗〉 6= 0

}
is at most

countable. Find z∗ ∈ Z∗ such that z∗|X = x∗. We claim that z∗ ∈ sp
⋃

α∈C Q∗
αz∗

∗
for a

suitable countable set C ⊂ [ω, µ). Assume for a while that this was already proved. Using
this, we can see that, whenever α ∈ [ω, µ) and γ ∈ Γα satisfies 〈γ, z∗〉 6= 0, then α ∈ C.
Therefore

#
{
γ ∈ Γ; 〈γ, z∗〉 6= 0

} ≤
∑

α∈C

#
{
γ ∈ Γα; 〈γ, z∗〉 6= 0

} ≤ ℵ0 · ℵ0 = ℵ0.

It remains to prove the claim. To do so, we shall prove the subclaim:

P ∗β z∗ ∈ sp
⋃

α∈Cβ

Q∗αz∗
∗

for a suitable countable set Cβ ⊂ [ω, µ) (β)

for every β ∈ [ω, µ]. Clearly, (ω) holds. Also, clearly, the validity of (β) implies (β + 1) for
every β ∈ [ω, µ). Now, let λ ∈ (ω, µ] be a limit ordinal, and assume that (β) holds for all
β < λ. We remark that P ∗λz∗ belongs to the weak∗ closure of the set

{
P ∗β z∗; β ∈ (ω, λ)

}
.

And since (BZ∗ , w
∗) is a Corson compact, a standard exhausting argument yields countably

many ordinals ω < β1, β2, . . . < λ such that P ∗λz∗ is equal to the weak∗ limit of the
sequence

(
P ∗βi

z∗
)
i∈IN

. Thus, by the induction assumption, P ∗λz∗ ∈ sp
⋃

α∈C Q∗αZ∗
∗
, where

C := Cβ1 ∪Cβ2 ∪ · · · is a countable set. This proves the subclaim (λ). And, in particular,
we have (µ), which is nothing else than our claim.

Proof of Theorem 6. We shall prove the following chain of implications: (i)⇒(iv)⇒
(ii)⇒(iii)⇒(i). Moreover, we shall prove directly (ii)⇒(iv), thus showing another strong
feature of Day’s norm.

(i)⇒(iv). Assume that a Banach space (X, ‖ · ‖) is a subspace of a Hilbert generated
space (Z, ‖ · ‖). Find a Hilbert space H and a bounded linear mapping T : H → Z with
dense range. Put

|z∗|∗2 = ‖z∗‖∗2 + ‖T ∗z∗‖∗2, z∗ ∈ Z∗;

this is an equivalent dual norm on Z∗. A convexity argument guarantees that this norm is
uniformly T (BH)−rotund. Hence, by a Šmulyan duality argument, the predual norm | · |
on Z is uniformly T (BH)−smooth, that is

sup
{|z + tTh|+ |z − tTh| − 2; z ∈ Z, |z| = 1, h ∈ BH

}
= o(t) as t ↓ 0,

see Proposition 2. Now, since T (H) is dense in Z and the norm | · | (as any norm) is
Lipschitzian, we get that this norm is uniformly Gâteaux smooth. Then the restriction of
| · | to the subspace X gives (iv).
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(iv)⇒(ii). We shall elaborate ideas from [FHZ] and [FGZ]. If X is separable, then
clearly every total countable set Γ ⊂ BX satisfies (ii). Let ℵ be an uncountable cardinal
and assume that the implication has already been verified for every space of density less
than ℵ. Now assume that a Banach space X, of density ℵ, has an equivalent uniformly
Gâteaux smooth norm, say ‖ · ‖. A scheme of the proof will be as follows. We shall show
that (iv) implies that BX admits a countable cover by “almost” weakly compact sets.
This will imply that the space X is weakly K-analytic, even that it admits a projectional
generator, see [F, Definition 6.1.6 and Remark 6.1.8]. We shall then construct a PRI on
X. Further, we shall define the set Γ similarly as in the previous proofs. Finally, using
the uniform Gâteaux smoothness again, together with the induction assumption, we shall
construct the decomposition of Γ with the properties required in the assertion (ii).

For ε > 0 and m ∈ IN we put

Bε
m =

{
h ∈ BX ;

∥∥x + 1
mh

∥∥ +
∥∥x− 1

mh
∥∥− 2 < ε

m whenever x ∈ X and ‖x‖ = 1
}
.

The uniform Gâteaux smoothness of ‖·‖ guarantees that BX =
⋃∞

m=1 Bε
m. Also, it is clear

that the norm ‖ · ‖ is uniformly ε−Bε
m−smooth, i.e.,

lim
t↓0

1
t

sup
{‖x + th‖+ ‖x− th‖ − 2‖x‖; x ∈ X, ‖x‖ = 1, h ∈ Bε

m

} ≤ ε.

Using Goldstine’s theorem, we can easily check that for every ε > 0 and every m ∈ IN
the norm ‖ · ‖∗∗ on X∗∗ is (uniformly) ε−Bε

m−smooth. Hence, by Proposition 3, Bε
m

∗ ⊂
X + εBX∗∗ . Thus BX =

⋂∞
p=1

⋃∞
m=1 B

1/p
m

∗
, and the weak K-analyticity of X is proved.

Indeed, it is enough to put Ks = B1
s1

∗ ∩ · · · ∩ B
1/k
sk

∗
for s = (s1, . . . , sk) ∈ IN<IN. (How

to construct a projectional generator directly from the sets Bε
m can be found in [FGZ,

Remark 9].) We recall that weakly K-analytic spaces are weakly Lindelöf determined.
Then Proposition 1 yields a PRI on X, say (Pα; ω ≤ α ≤ µ). Consider any α ∈ [ω, µ) and
put Qα = Pα+1 −Pα. We realize that the subspace QαX has density less than ℵ, and is a
subspace of the (Hilbert generated) space QαZ. By the induction assumption, find a set
Γα ⊂ BQαX with the property from the assertion (ii). Put then Γ =

⋃
α<µ Γα. We shall

show that this set Γ satisfies the assertion (ii).
So, fix any 0 < ε < 1. For every α ∈ [ω, µ) and every n ∈ IN find the set Γε

α,n ⊂ Γα

as it is stated in the assertion (ii). For n,m ∈ IN put

Γε
n,m =

⋃

α∈[ω,µ)

Γε
α,n ∩Bε/2

m \(Γε
n,m−1 ∪ · · · ∪ Γε

n,1 ∪ {0}
)
;

this is a countable family of mutually disjoint sets since Γα ∩ Γβ ⊂ {0} if α 6= β. Also we
can easily verify that

⋃∞
n,m=1 Γε

n,m = Γ.
Fix any n,m ∈ IN and any x∗ ∈ BX∗ . We shall show that

#
{
γ ∈ Γε

n,m; 〈γ, x∗〉 > ε
}

<
4mn

ε2
,
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and thus the assertion (ii) will be almost proved. Define

F =
{
α ∈ [ω, µ); 〈γ, x∗〉 > ε for some γ ∈ Γε

n,m ∩ Γα

}
.

We claim that #F < 4m
ε2 ; then we easily get, by the induction assumption,

#
{
γ ∈ Γε

n,m; 〈γ, x∗〉 > ε
} ≤

∑

α∈F

#
{
γ ∈ Γε

α,n; 〈γ, x∗|QαX〉 > ε
}

< #F · n <
4mn

ε2
.

Let us prove the claim. Here we shall imitate the proof of [FHZ, Lemma 5] which in
turn elaborates ideas of Troyanski [Tr2]. If the set F is infinite, let N be any fixed
positive integer. Otherwise, denote N = #F . Find α1 < α2 < · · · < αN < µ such that
F ⊃ {α1, α2, . . . , αN}. For j = 1, . . . , N find γj ∈ Γε

n,m ∩ Γαj , with 〈γj , x
∗〉 > ε, and write

vj = γ1 + · · ·+γj . Find i ∈ IN so that m
ε ≤ i ≤ 2m

ε . If i ≥ N , then N ≤ 2m
ε < 4m

ε2 . Further
assume that i < N . Since ‖vi‖ ≥ 〈vi, x

∗〉 > iε ≥ m, Pαi+1 ◦Qαi+1 = 0, and γi+1 ∈ B
ε/2
m ,

the convexity of ‖ · ‖ yields

‖vi+1‖ = ‖vi‖
(∥∥∥ vi

‖vi‖ +
γi+1

‖vi‖
∥∥∥− 1

)
+ ‖vi‖

≤ m
(∥∥∥ vi

‖vi‖ +
γi+1

m

∥∥∥− 1
)

+ ‖vi‖

≤ m
(∥∥∥ vi

‖vi‖ +
γi+1

m

∥∥∥ +
∥∥∥ vi

‖vi‖ −
γi+1

m

∥∥∥− 2
)

+ ‖vi‖ <
ε

2
+ ‖vi‖.

Similarly, we get

‖vi+2‖ <
ε

2
+ ‖vi+1‖ < 2

ε

2
+ ‖vi‖, . . . , ‖vN‖ < (N − i)

ε

2
+ ‖vi‖ < N

ε

2
+ i.

Thus
Nε < 〈vN , x∗〉 ≤ ‖vN‖ < N

ε

2
+ i,

and so N < 2
ε i ≤ 4m

ε2 . This also shows that the set F cannot be infinite. Hence #F =
N < 4m

ε2 and the claim is proved.
Now, it remains to enumerate the (countable) family Γε

n,m, n, m ∈ IN, by one index
running throughout IN, and to insert eventually “a few” empty sets. This will yield (ii).

Now assume that we have already given a total set Γ ⊂ BX which countably supports
X∗ and let (iv) be satisfied. Proposition 1 yields a PRI (Pα; ω ≤ α ≤ µ) on X as above,
with the additional property that Pα(γ) ∈ {γ, 0} for every α ∈ [ω, µ) and every γ ∈ Γ. For
every α ∈ [ω, µ) put Γα = Γ ∩QαX; this is a total set in QαX which countably supports
(QαX)∗. The rest of the proof is as above.

(ii)⇒(iii). Assume the assertion (ii) is satisfied. We realize that this is actually a
Talagrand-Argyros-Farmaki condition from [Fa, Theorem 2.10]. Therefore (BX∗ , w∗) is
a uniform Eberlein compact. However, likewise in the proof of (ii)⇒(iii) in Theorem 2,
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a direct proof exists. Let τi : IR → IR, i ∈ IN, be the same functions as there. Define
Φ : BX∗ → IRΓ×IN by

Φ(x∗)(γ, i) =
1

2n2i
√

n
τi(〈γ, x∗〉) if γ ∈ Γ1/i

n , n ∈ IN, and i ∈ IN.

Clearly, Φ is weak∗ to pointwise continuous. The injectivity of Φ can be checked exactly
as that time.

It remains to prove that Φ(BX∗) ⊂ `2(Γ×IN). Fix an arbitrary x∗ ∈ BX∗ . We observe
that for every n, i ∈ IN

#
{
γ ∈ Γ1/i

n ; Φ(x∗)(γ, i) 6= 0
} ≤ #

{
γ ∈ Γ1/i

n ; |〈γ, x∗〉| > 1
i

}
< 2n.

Therefore

∑ {(
Φ(x∗)(γ, i)

)2; (γ, i) ∈ Γ× IN
}

=
∞∑

i,n=1

∑{(
Φ(x∗)(γ, i)

)2; γ ∈ Γ1/i
n

}

≤
∞∑

i,n=1

1
4n4in

·#{
γ ∈ Γ1/i

n ; Φ(x∗)(γ, i) 6= 0
}

<

∞∑

i,n=1

2
4n4i

=
2
9

< +∞,

and hence Φ(x∗) ∈ `2(Γ× IN).
(iii)⇒(i). Assume that (BX∗ , w∗) is a uniform Eberlein compact. A result of Benyamini,

M.E. Rudin and Wage says that the space of continuous functions on this compact, en-
dowed with the supremum norm, is Hilbert generated, see, e.g., [F˜, Theorem 12.17]. But
X is isomorphic to a subspace of this space. Thus we get (i).

This proves Theorem 6. Though a combination of the above implications gives
(ii)⇒(iv), we shall present a direct proof of this by using Day’s norm ‖ · ‖D on `∞(Γ) and
Proposition 5. Assume that (ii) holds; thus we have at hand the sets Γ, Γε

n, ε > 0, n ∈ IN.
For x∗ ∈ X∗ define Tx∗ = (〈γ, x∗〉; γ ∈ Γ). Put M = Γ and

Mε
i,k = Γε/4

i ∩ Γ2−iε/4
k , ε > 0, i, k ∈ IN;

this is a countable family and
⋃∞

i,k=1 Mε
i,k = M . For ε > 0 define

|x∗|∗ε2 = ‖x∗‖∗2 +
∞∑

i,k=1

2−i−k
∥∥Tx∗|Mε

i,k

∥∥
D

2
, x∗ ∈ X∗;

this is an equivalent dual norm on X∗. Fix any ε > 0 and any i, k ∈ IN. Then

∀x∗ ∈ BX∗ #
{
γ ∈ Mε

i,k; 〈γ, x∗〉 > ε
4

} ≤ #
{
γ ∈ Γε/4

i ; 〈γ, x∗〉 > ε
4

}
< i,

∀x∗ ∈ BX∗ #
{
γ ∈ Mε

i,k; 〈γ, x∗〉 > 2−i ε
4

} ≤ #
{
γ ∈ Γ2−iε/4

k ; 〈γ, x∗〉 > 2−i ε
4

}
< k.
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Now assume that we have x∗n, y∗n ∈ BX∗ , n ∈ IN, satisfying 2|x∗n|∗ε2+2|y∗n|∗ε2−|x∗n+y∗n|∗ε2 →
0 as n →∞. Then, by convexity,

2
∥∥Tx∗n∣∣Mε

i,k

∥∥
D

2 + 2
∥∥Ty∗n∣∣Mε

i,k

∥∥
D

2 −
∥∥T (x∗n + y∗n)∣∣Mε

i,k

∥∥
D

2 → 0 as n →∞.

Therefore, by Proposition 5, lim supn→∞
∣∣〈Mε

i,k, x∗n−y∗n
〉∣∣ ≤ 4· ε

4 = ε. We thus proved that
the dual norm | · |∗ε on X∗ is uniformly ε−Mε

i,k−rotund, and hence, by a “uniform” variant
of Proposition 2, the corresponding predual norm | · |ε on X is uniformly 2ε−Mε

i,k−smooth
for every ε > 0 and every i, k ∈ IN. Thus the norm | · |ε is uniformly 2ε − {h}−smooth
for every h ∈ M . And since M is total in X, the convexity and Lipschitz property of | · |ε
guarantee that this norm is uniformly 2ε − {h}−smooth for every h ∈ X. Now defining
|·|∗2 =

∑∞
j=1 2−j |·|∗1/j

2, a Šmulyan duality argument yields that the corresponding predual
norm | · | on X is uniformly Gâteaux smooth. And this is what (iv) asserts.

Proof of Theorem 7. (i)⇒(ii). We shall elaborate the proof of (i)⇒(ii) in Theorem
6. We require now that the PRI (Pα; ω ≤ α ≤ µ) constructed there has an additional
property that Pα(K) ⊂ K for every α ∈ [ω, µ) where K ⊂ BX is a total convex symmetric
and weakly compact set; this can be done using Proposition 1. Further, the sets Γα are not
taken in BQαX but in 1

2Qα(K). This extra requirement does not damage this argument at
all. Moreover, we are then in the setting of the proof of (i)⇒(ii) in Theorem 1. Therefore
the set Γ so constructed satisfies the assertion (ii) in Theorem 6 as well as (ii) in Theorem
1.

(ii)⇒(iii). Assume that the assertion (ii) holds. By Theorem 1, X admits a total set
M ⊂ BX and an equivalent norm | · | on X such that the dual norm | · |∗ is M−LUR.
By Theorem 6, X admits another equivalent norm, ‖ · ‖ say, which is uniformly Gâteaux
smooth; note that then by a Šmulyan duality argument, the dual norm ‖ · ‖∗ on X∗ is
weak∗ uniformly rotund, see [DGZ, Theorem II.6.7]. Finally, put

‖|x∗|‖∗2 = |x∗|∗2 + ‖x∗‖∗2, x∗ ∈ X∗;

this is an equivalent dual norm. Then a convexity argument together with a Šmulyan
duality argument show that the corresponding predual norm ‖| · |‖ on X is both uniformly
Gâteaux smooth and M−smooth.

(iii)⇒(i). This follows from Theorem 6 (iv)⇒(i) and from Theorem 1 (iv)⇒(i).
(i)⇒(iii). This can be also proved directly, using Theorem 6, and an interpolation

technique and locally uniformly rotund renorming of reflexive space, see [FGHZ].

Proof of Theorem 8. (ii)⇒(i). This immediately follows from Proposition 5, see also
[FGHZ, Theorem 4].

(i)⇒(ii). This implication was proved in [FGHZ] for the density densX = ℵ1. Here
we do so for X with density less than ℵω1 . If M ⊂ BX and the norm ‖ · ‖ on X is
uniformly M−smooth, then a family m(ε) ∈ IN, ε > 0, is called a modulus of uniform
M−smoothness if∥∥x + 1

m(ε)h
∥∥ +

∥∥x− 1
m(ε)h

∥∥− 2 < ε
2m(ε) whenever x ∈ X, ‖x‖ = 1, and h ∈ M

for every ε > 0. We shall need the following
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Lemma 2. Let β be an ordinal. Let Z be a Banach space, with density dens Z = ℵβ+1,
whose norm ‖ · ‖ is uniformly N−smooth for some total convex symmetric and closed set
N ⊂ BZ , with a modulus of uniform N−smoothness m(ε) ∈ IN, ε > 0. Finally, assume
that there exist κ(ε) ∈ IN, ε > 0, such that for every linear bounded projection R : Z → Z,
with dens R(Z) ≤ ℵβ , and with R(N) ⊂ 2N , there exists a set ΓR ⊂ 1

2R(N), total in
R(Z), such that

∀ε > 0 ∀z∗ ∈ BZ∗ #
{
γ ∈ ΓR; 〈γ, z∗〉 > ε

}
< κ(ε).

Then there exists a set Γ ⊂ N , total in Z, such that

∀ε > 0 ∀z∗ ∈ BZ∗ #
{
γ ∈ ΓR; 〈γ, z∗〉 > ε

}
<

4m(ε)
ε2

· κ(ε).

Proof. We observe that the set N is weakly compact. Indeed, using Goldstine’s
theorem, we easily get that the norm ‖ · ‖∗∗ on X∗∗ is (uniformly) N−smooth. Hence, by
Proposition 3, N

∗ ⊂ Z, and so the (closed convex bounded) set N must be weakly compact.
Therefore Z is WCG and hence it admits a PRI

(
Pα; ω ≤ α ≤ µ

)
, with PαN ⊂ N for every

α ∈ [ω, µ), see Proposition 1. Then for every α ∈ [ω, µ), when denoting Qα = Pα+1 − Pα,
we have QαN ⊂ 2N and dens QαZ ≤ ℵβ . From the assumptions, for every α ∈ [ω, µ) we
find a set ΓQα ⊂ 1

2QαN , total in QαZ, such that

∀ε > 0 ∀z∗ ∈ BZ∗ #
{
γ ∈ ΓQα ; 〈γ, z∗〉 > ε

}
< κ(ε).

Put then Γ =
⋃

α<µ ΓQα ; this is surely a total set. We shall show that Γ satisfies the
conclusion.

So fix any ε > 0 and any z∗ ∈ BZ∗ . Define

F =
{
α ∈ [ω, µ); 〈γ, z∗〉 > ε for some γ ∈ ΓQα

}
.

We claim that #F < 4m(ε)
ε2 ; then we shall get that

#
{
γ ∈ Γ; 〈γ, z∗〉 > ε

}
=

∑

α∈F

#
{
γ ∈ ΓQα ; 〈γ, z∗〉 > ε

}
< #F · κ(ε) <

4m(ε)
ε2

· κ(ε).

and we shall be done.
It remains to prove the claim. We shall use ideas from the end of the proof of (iv)⇒(ii)

in Theorem 6. If the set F is infinite, let k be any fixed positive integer. Otherwise, denote
k = #F . Find α1 < α2 < · · · < αk < µ such that F ⊃ {α1, α2, . . . , αk}. For j = 1, . . . , k
find γj ∈ Γαj , with 〈γj , z

∗〉 > ε, and write vj = γ1 + · · · + γj . Find i ∈ IN so that
m(ε)

ε ≤ i ≤ 2m(ε)
ε . (We forgot to assume that ε ≤ 1, hence, we do so now.) If i ≥ k,

then k ≤ 2m(ε)
ε < 4m(ε)

ε2 . Further assume that i < k. Since ‖vi‖ ≥ 〈vi, z
∗〉 > iε ≥

m(ε), Pαi+1 ◦Qαi+1 = 0, and γi+1 ∈ ΓQαi+1
⊂ 1

2Qαi+1N ⊂ N , the convexity of ‖ · ‖ yields

‖vi+1‖ = ‖vi‖
(∥∥∥ vi

‖vi‖ +
γi+1

‖vi‖
∥∥∥− 1

)
+ ‖vi‖

≤ m(ε)
(∥∥∥ vi

‖vi‖ +
γi+1

m(ε)

∥∥∥ +
∥∥∥ vi

‖vi‖ −
γi+1

m(ε)

∥∥∥− 2
)

+ ‖vi‖ <
ε

2
+ ‖vi‖.
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Similarly, we get

‖vi+2‖ <
ε

2
+ ‖vi+1‖ < 2

ε

2
+ ‖vi‖, . . . , ‖vk‖ < (k − i)

ε

2
+ ‖vi‖ < k

ε

2
+ i.

Thus
kε < 〈vk, z∗〉 ≤ ‖vk‖ < k

ε

2
+ i,

and so k < 2
ε i < 4m(ε)

ε2 . This also shows that the set F cannot be infinite. Hence
#F = k < 4m(ε)

ε2 .

Now we continue in proving (i)⇒(ii) in Theorem 8. This implication is contained in
the following subtler statement.

Proposition 6. Let β0 < ω1 be an ordinal. Let X be a Banach space, with densX = ℵβ0 ,
whose norm ‖ · ‖ is uniformly M−smooth for some total convex symmetric and closed set
M ⊂ BX . Then for every β ∈ [0, β0] there exist κβ(ε) ∈ IN, ε > 0, such that for every
linear bounded projection Q : X → X, with densQX ≤ ℵβ , and with QM ⊂ cM for some
c > 0, there exists a set Γβ,Q ⊂ 1

cQM , total in QX, such that

∀ε > 0 ∀x∗ ∈ BX∗ #
{
γ ∈ Γβ,Q; 〈γ, x∗〉 > ε

}
< κβ(ε).

Hence, in particular, there are κ(ε) ∈ IN, ε > 0, and a set Γ ⊂ M , total in X, so that

∀ε > 0 ∀x∗ ∈ BX∗ #
{
γ ∈ Γ; 〈γ, x∗〉 > ε

}
< κ(ε).

Proof. If β0 = 0, there is almost nothing to prove. So further assume that β0 > 0. Let
m(ε) ∈ IN, ε > 0, be the modulus of uniform smoothness of ‖ · ‖ with respect to M . We
shall proceed by transfinite induction over β. First, fix any β ∈ [0, β0) and assume that
the conclusion was already verified for this β. Now, let Q : X → X be any fixed linear
bounded projection, with dens QX ≤ ℵβ+1, and such that QM ⊂ cM for some c > 0.
Denote Z = QX and N = 1

cQM . Then N will be a total set in Z and the restriction of
‖ · ‖ to Z will be uniformly N−smooth, with the same modulus of uniform N−smoothness
m(ε), ε > 0. We shall verify the assumptions of Lemma 2. So let R : Z → Z be any linear
bounded projection, with dens RZ ≤ ℵβ and with RN ⊂ 2N . Then R ◦ Q : X → X is
a linear bounded projection on X, dens (R ◦ Q)X ≤ ℵβ , and (R ◦ Q)M ⊂ 2cM . Hence,
by the induction assumption, there is a set Γβ,R◦Q ⊂ 1

2c (R ◦ Q)M (= 1
2RN), total in

(R ◦Q)X (= RZ) such that

∀ε > 0 ∀x∗ ∈ BX∗ #
{
γ ∈ Γβ,R◦Q; 〈γ, x∗〉 > ε

}
< κβ(ε),

that is,
∀ε > 0 ∀z∗ ∈ BZ∗ #

{
γ ∈ ΓR; 〈γ, z∗〉 > ε

}
< κβ(ε),

where we put ΓR = Γβ,R◦Q. Thus we verified all the assumptions of Lemma 2, and hence
there exists a set Γβ+1,Q ⊂ N (= 1

cQM), total in Z (= QX), such that

∀ε > 0 ∀z∗ ∈ BZ∗ #
{
γ ∈ Γβ+1,Q; 〈γ, z∗〉 > ε

}
<

4m(ε)
ε2

· κβ(ε).
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Then

∀ε > 0 ∀x∗ ∈ BX∗ #
{
γ ∈ Γβ+1,Q; 〈γ, x∗〉 > ε

}
<

4m(ε)
ε2

· κβ(ε).

Therefore we may put κβ+1(ε) = 4m(ε)
ε2 · κβ(ε), ε > 0.

Second, fix any limit ordinal λ ∈ [ω, β0], and assume that we verified the conclusion
of our proposition for every β ∈ [0, λ). We enumerate the (countable) interval [0, λ) by
{β1, β2, . . .}. We shall show that

κλ(ε) =
1/ε∑

i=1

κβi
(ε), ε > 0

satisfies our needs. So, consider any linear bounded projection Q : X → X, with
densQX ≤ ℵλ and with QM ⊂ cM for some c > 0. Assume first that dens QX < ℵλ;
then dens QX = ℵβi for a suitable i ∈ IN and βi < λ. From the induction assumption we
find the set Γβi,Q and put Γλ,Q = 1

i Γβi,Q. Fix any ε > 0 and any x∗ ∈ BX∗ . If i ≥ 1
ε ,

then #
{
γ ∈ Γλ,Q; 〈γ, x∗〉 > ε

}
= 0 < κλ(ε). If i < 1

i , then #
{
γ ∈ Γλ,Q; 〈γ, x∗〉 > ε

} ≤
#

{
γ ∈ Γβi,Q; 〈γ, x∗〉 > ε

}
< κβi,Q(ε) ≤ κλ(ε). Assume further that dens QX = ℵλ. By

Proposition 1, find a PRI (Pα; ω ≤ α ≤ µ) on QX such that Pα(QM) ⊂ QM for every
α ∈ [0, µ). For every i ∈ IN find αi ∈ [ω, µ) so that dens Pαi(QX) = ℵβi . Then, surely,
the set {αi; i ∈ IN} is cofinal in [ω, µ), and hence

⋃
i∈IN Pαi(QX) is dense in QX. By

the induction assumption, for every i ∈ IN find a set Γβi,Pαi
◦Q ⊂ 1

c (Pαi ◦ Q)M , total in
(Pαi ◦Q)X, and such that

∀ε > 0 ∀x∗ ∈ BX∗ #
{
γ ∈ Γβi,Pαi

◦Q; 〈γ, x∗〉 > ε
}

< κβi(ε).

Then, putting Γλ,Q =
⋃∞

i=1
1
i Γβi,Pαi

◦Q, this will be a subset of 1
cQM , total in QX, and

∀ε > 0 ∀x∗ ∈ BX∗ #
{
γ ∈ Γλ,Q; 〈γ, x∗〉 > ε

}
<

1/ε∑

i=1

κβi(ε) = κλ(ε).

Proof of Theorem 9. (i)⇒(ii). Let T : `p(∆) → X be a bounded linear mapping with
dense range. We may assume that ‖T‖ = 1. Let eδ, δ ∈ ∆, denote the canonical basis in
`p(∆). For any x∗ ∈ BX∗ and any

∑
δ∈∆ aδeδ ∈ `p(∆), with finite support, we have

∑

δ∈∆

aδ〈Teδ, x
∗〉 =

〈
T

( ∑

δ∈∆

aδeδ

)
, x∗

〉

≤ ‖T‖
∥∥∥

∑

δ∈∆

aδeδ

∥∥∥
`p(∆)

‖x∗‖ ≤
( ∑

δ∈∆

|aδ|p
)1/p

,

and hence
∑

δ∈∆ |〈Teδ, x
∗〉|q ≤ 1. Now, it is clear that we can take Γ =

{
Teδ; δ ∈ ∆

}
in the case when #∆ = dens X (we always have #∆ ≥ densX). And, if #∆ > densX,
then a simple gymnastics finds a suitable Γ ⊂ {

Teδ; δ ∈ ∆
}

satisfying (ii).
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(ii)⇒(i). For
∑

γ∈Γ aγeγ ∈ `p(Γ), with finite support, we put T
( ∑

γ∈Γ aγeγ

)
=∑

γ∈Γ aγγ (∈ X). Then for every x∗ ∈ BX∗ we have from (ii)

〈
T

( ∑

γ∈Γ

aγeγ

)
, x∗

〉
=

∑

γ∈Γ

aγ〈γ, x∗〉 ≤
( ∑

γ∈Γ

|aγ |p
)1/p( ∑

γ∈Γ

|〈γ, x∗〉|q
)1/q

≤
( ∑

γ∈Γ

|aγ |p
)1/p

.

Thus T can be extended to the whole space `p(Γ), mapping it linearly and continuously
onto a dense subset of X.

The equivalence (i)⇔(iii) for dens X = ℵ1 can be found in [FGHZ, Theorem 2].

Proof of Theorem 10. Necessity. Denote Γ0 = {γ ∈ Γ; k(γ) = 0 for every k ∈ K}.
For γ, γ′ ∈ Γ we write γ ∼ γ′ if k(γ) = k(γ′) for every k ∈ K; this is a relation of
equivalence. For γ ∈ Γ\Γ0 let [γ] = {γ′ ∈ Γ\Γ0; γ′ ∼ γ}. Denote Λ = {[γ]; γ ∈ Γ\Γ0}.
Since K ⊂ Σ(Γ), we get that every λ ∈ Λ consists of at most countably many elements;
let us enumerate it as λ =

{
γλ
1 , γλ

2 , . . .
}
. (The enumeration may not be injective.) For

i ∈ IN put then Γi =
{
γλ

i ; λ ∈ Λ
}
. Clearly Γ = Γ0 ∪ Γ1 ∪ Γ2 ∪ · · · For γ ∈ Γ we define

πγ(k) = k(γ), k ∈ K; then, clearly, πγ ∈ C(K). (It may happen that the correspondence
γ 7→ πγ is not injective. This is why we have to work with the Γi’s.)

Fix for a while any i ∈ IN. Put Γ̃i = {πγ , γ ∈ Γi} and let Xi denote the closed
subspace of C(K) generated by Γ̃i. Fix any x∗ ∈ BX∗

i
. We shall observe that

(4) #
{
γ̃ ∈ Γ̃i; 〈γ̃, x∗〉 6= 0

} ≤ ℵ0.

Find y∗ ∈ BC(K)∗ such that y∗|X = x∗. If y∗ = δk, the point mass at some k ∈ K, then (4)
holds trivially. Also, (4) holds if y∗ is equal to a finite linear combination of point masses.
Further, K being a (uniform) Eberlein, Gul’ko, or Talagrand compact, the space C(K) is
WCG (according to Amir and Lindenstrauss), Vašák, or weakly K−analytic respectively.
Thus Theorems 1, 3, and 4 guarantee that (BC(K)∗ , w

∗) is a Corson compact. Hence every
element of BC(K)∗ lies in the weak∗ closure of a countable subset of the linear span of
{δk; k ∈ K}. Therefore (4) holds for any x∗ ∈ X∗

i . We have thus proved that the set Γ̃i,
total in Xi, countably supports X∗

i .
Now we are ready to prove the necessary conditions of Theorem 10. Consider first

the case of (uniform) Eberlein compacta. So fix any ε > 0. Let Γ̃i =
⋃∞

n=1 Γ̃ε
i,n be the

decomposition provided by the condition (ii) in Theorem 2 (6). Put then

Γε
i,n =

{
γ ∈ Γi; πγ ∈ Γ̃ε

i,n

}
, ε > 0, n ∈ IN.

Clearly, Γi =
⋃∞

n=1 Γε
i,n. Now fix any n ∈ IN and any k ∈ K. Then, profiting from the

injectivity of the mapping γ 7→ πγ between Γi and Γ̃i, we have

#
{
γ ∈ Γε

i,n; |k(γ)| > ε
}

= #
{
γ ∈ Γε

i,n; 〈πγ , δk〉 > ε
}

+ #
{
γ ∈ Γε

i,n; 〈πγ ,−δk〉 > ε
}

= #
{
γ̃ ∈ Γ̃ε

i,n; 〈γ̃, δk〉 > ε
}

+ #
{
γ̃ ∈ Γ̃ε

i,n; 〈γ̃,−δk〉 > ε
}

< ℵ0 (< 2n).
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This holds for every i ∈ IN. We note that Γ =
⋃∞

i=0 Γi =
⋃∞

i,n=1 Γε
i,n∪Γ0. It remains to

enumerate the family Γ0, Γε
i,n, i, n ∈ IN, by elements of IN, to “make” it pairwise disjoint,

and in the uniform case, to insert “a few” empty sets. We thus proved the necessity in (a)
of Theorem 10.

In the case of Gul’ko compacta, we find for every i ∈ IN sets Γ̃i,n ⊂ Γ̃, n ∈ IN, as is
stated in (ii) of Theorem 3. Putting then Γi,n =

{
γ ∈ Γi; πγ ∈ Γ̃i,n

}
, i, n ∈ IN, we get a

countable family which, together with the set Γ0, obviously satisfies the required necessary
condition in (b) of Theorem 10.

Finally, assume that K is a Talagrand compact. Applying (ii) in Theorem 4 for
every i ∈ IN, we get sets (Γ̃i)s ⊂ Γ̃i, s ∈ IN<IN. Putting then Γs1,...,sm =

{
γ ∈ Γs1 ; πγ ∈

(Γ̃s1)s2,...,sm

}
, (s1, . . . , sm) ∈ INm, m = 2, 3, . . ., it is easy to verify the necessary condition

in (c) of Theorem 10.

Sufficiency. Let Γε
n, ε > 0, n ∈ IN, be as in (a) of Theorem 9. Let τi, i ∈ IN, be

the functions defined in the proof of Theorem 2 (6). Define then Φ : K → IRΓ×IN by

Φ(k)(γ, i) =
1

2n2i
√

n
τi(k(γ)) if γ ∈ Γ1/i

n , n ∈ IN, and i ∈ IN

for k ∈ K. Clearly, Φ is continuous. It is also injective. And Φ(K) is a subset of c0(Γ× IN)
(of `2(Γ× IN)). For more details see the proof of (ii)⇒(iii) in Theorem 2 (6). Therefore K
is a (uniform) Eberlein compact.

Now let the condition in (b) or (c) be satisfied. Let X be the subspace of C(K)
generated by the set Γ̃ :=

{
πγ ; γ ∈ Γ

}
. Then we can easily check that this set, provided

by the weak topology of X, is K−countably determined or K−analytic in (BX∗∗ , w∗), see
the proof of (ii)⇒(i) in Theorem 3. And since the set Γ̃ separates the points of K, [T,
Théorème 3.4 (iii)] guarantees that the whole C(K) is Vašák or weakly K−analytic.

References
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