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Abstract

A close connection of the strict convexity of the Day norm to the
concept of the Gruenhage compacta is shown. As a byproduct we give an
elementary characterization of Gul’ko compacta in the sigma-product of
lines and a more elementary proof of Mercourakis’ renorming result for
Vašák spaces.

This note is a result of our effort to classify those Banach spaces with dual ball
Corson (in its weak∗ topology) that would admit a Gâteaux smooth renorming.

Given a non-empty set S, let Σ(S) := {x ∈ [−1, 1]S ; support of x is countable}.
We shall always assume that Σ(S) is endowed with its product topology. A
compact space K is called a Corson compact if K is homeomorphic to a subset
of Σ(S).

It was proved in [AM, p. 425] that a Banach space X with dual ball Corson
need not in general admit any equivalent Gâteaux differentiable norm. We find
here a sufficient condition for a Gâteaux smooth renorming that uses the strict
convexity of the Day norm on the dual space and is closely related to the notion
of Gruenhage compacta (cf. [Gru], [AM, p. 424], [Ri, Def 2.1]). As a corollary,
we prove a renorming theorem which gives, in particular, a result in [Me].

The result in this note is related to the result of Raja that X∗ admits a dual
norm that is weak∗ locally uniformly rotund if and only if BX∗ in its weak∗

topology is a descriptive compact [Ra].

As a byproduct of our efforts, we obtain a characterization, in the Sokolov’s
style [S], of Gul’ko compacta lying in the space Σ(S) in the spirit of the char-
acterization of Eberlein compacta given in [Fa].

∗Supported by grants AV 1019003, A 1019301 and GAČR 201/01/1198.
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Assume that a Banach space X admits a Markushevich basis, i.e. a biorthogonal
system {xα, fα}α∈Γ such that span {xα} = X and {fα} separates points in
X. Then, it was shown in [FMZ] and [FGMZ] that X admits an equivalent
uniformly Gâteaux differentiable norm if and only if the set Γ can be split
into Γ =

⋃
Γn such that the formula |‖f |‖2 := ‖f‖2 +

∑
D2
n(f) gives a dual

weak∗ uniformly rotund norm on X∗. Here by ‖f‖ we mean the original sup
norm of X∗ and Dn(f) is the Day norm applied to the coordinate functionals
{fα}α∈Γn . The norm ‖ · ‖ of X∗ is weak∗ uniformly rotund if fn − gn → 0 in
the weak∗ topology whenever fn, gn ∈ SX∗ and ‖fn + gn‖ → 2 . This property
is known to be the dual property to the uniform Gâteaux differentiability of
the norm, [DGZ]. The norm ‖ · ‖ on X is uniformly Gâteaux differentiable if
lim
t→0

1
t (‖x+ th‖+ ‖x− th‖ − 2) = 0 uniformly for x ∈ SX , the unit sphere of X.

This means that if we know that X admits an equivalent Gâteaux differentiable
norm, we can use the Day norm on the dual space to construct another uniformly
Gâteaux differentiable norm on X. therefore the situation is similar to that of
uniformly Fréchet differentiable norms (James-Enflo theorem, see e.g. [DGZ,
Ch. 4] or Chapter 9 in[F˜]).

In [Fa], the Eberlein compacta lying in Σ(S) were classified by using infinite
combinatorics.

In [FGHZ] and in [FGMZ] we characterized several classes of non-separable
Banach spaces X by the existence of a total subset (i.e. linearly dense) subset
Γ ⊂ X which can be split in a certain way. Our method uses only projectional
resolutions and techniques in Markushevich bases. In particular, it does not use
any combinatorics. Instead, we use the method of projections to characterize
Gul’ko compacta in Σ(S), in the style of Sokolov [S]. A compact space K is
a Gul’ko compact if (C(K), p) is K − cd, where p denotes the topology of the
pointwise convergence. A topological subspace T of a compact space K is K−cd
whenever there exist closed sets Kn ⊂ K, n ∈ IN with the property that for
every t ∈ T and for every k ∈ K \ T there exists n ∈ IN such that t ∈ Kn and
k 6∈ Kn. A Banach space X is Vašák (or weakly countably determined, in short,
WCD), if (X,w) is K − cd. Then, a compact space K is Gul’ko if and only if
(C(K), ‖ · ‖) is Vašák, see, e.g., [F, Thm. 7.1.8].

We follow the standard notation that can be found, for example, in [F˜] and in
[F]. For all concepts and results not explained here we refer to [F˜], [DGZ] and
[F].

Given a subset Γ ⊂ X and a projectional resolution of the identity (in short,
a PRI) (Pα)ω0≤α≤µ on X (see, for example, [F]), we will say that they are
subordinated (to each other) if Pα(γ) ∈ {γ, 0} for all γ ∈ Γ and ω0 ≤ α ≤ µ.
A subset Γ of a Banach space X is said to countably support X∗ if #{γ ∈
Γ : 〈γ, x∗〉 6= 0} ≤ ℵ0, for all x∗ ∈ X∗ (here # denotes the cardinal number
of a set). It follows that if a Banach space X has a total subset Γ which
countably supports X∗, then there exists a PRI on X subordinated to Γ, as
Φ(x∗) := {γ ∈ Γ : 〈γ, x∗〉 6= 0}, for all x∗ ∈ X∗, is a projectional generator
(see, e.g., [F, Def. 6.1.6] and [FMZ]).
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The following result follows by transfinite induction on the density character of
X. For the concept of separable PRI see, for example, [F, Def. 6.2.6]:

Proposition 1 Let X be a WCD Banach space. Let Γ ⊂ X be a total subset
of X that countably supports X∗. Then there exists a separable PRI on X
subordinated to Γ.

A subset Γ ⊂ X of a Banach space X will be called weakly σ−shrinking if there
exists a sequence (Γn)∞n=1 of subsets of Γ such that Γ =

⋃
n∈IN Γn and for each

ε > 0, for each γ0 ∈ Γ and for each x∗ ∈ BX∗ there is n ∈ IN so that γ0 ∈ Γn
and #{γ ∈ Γn; |〈γ, x∗〉| ≥ ε} < ℵ0.
The following theorem is a consequence of the previous proposition and the
method of proof of [FMZ, Theorem 3].

Proposition 2 Let X be a WCD Banach space. Then X contains a bounded
total weakly σ−shrinking subset. Moreover, every total and bounded subset Γ of
X which countably supports X∗ is weakly σ−shrinking.

We can now characterize Gul’ko compacta in Σ(S). Our approach is similar to
that in [FGMZ] and uses ideas in [S].

Theorem 3 Given a compact subset K of the topological space Σ(S), the two
following properties are equivalent:

1. K is a Gul’ko compact.

2. There exists a sequence (Sn)∞n=1 of subsets of S such that S =
⋃∞
n=1 Sn

and given k ∈ K, ε > 0 and s0 ∈ S there exists n ∈ IN such that s0 ∈ Sn
and #{s ∈ Sn : |k(s)| > ε} < ℵ0.

Proof. Given a compact set K in Σ(S), let π : S → C(K) be defined by
π(s)(k) := k(s), for all s ∈ S, k ∈ K. From the fact that K is in Σ(S) it follows
that #π−1(f) ≤ ℵ0 for all f ∈ π(S), say π−1(f) := {s(f,1), s(f,2), . . .} (repeating
elements if π−1(f) is a finite set). Given m ∈ IN , let wm : π(S) → S be the
selector for the multivalued mapping π−1 : π(S)→ 2S given by wm(f) := s(f,m),
f ∈ π(S) and let Sm := wm(π(S)). Obviously, S =

⋃
m∈IN Sm. Now the

mapping Rm : [−1, 1]S → [−1, 1]Sm defined by Rm(x)(s) := x(s) for all s ∈ Sm
and x ∈ [−1, 1]S , is continuous and RmK is one to one. Thus Km := Rm(K) is
homeomorphic to K. Let πm : Sm → C(Km) be defined by πm(s)(Rm(k)) :=
k(s), for all s ∈ Sm, k ∈ K. πm is a one-to-one mapping.
(1 ⇒ 2) Fix m ∈ IN . Let Xm := span{πm(s) : s ∈ Sm} ⊂ C(Km). As it was
mentioned before, (C(Km), ‖ · ‖) is WCD, and then (BC(Km)∗ , w

∗) is angelic (a
compact space is angelic if the closure of every subset is attained by sequences),
see for example [F˜, Ex. 12.55]. The set πm(Sm) countably supports Km as
Km is in Σ(Sm). Thus πm(Sm) countably supports conv(±Km) in the dual
space and hence πm(Sm) countably supports BC(Km)∗ because of the angelicity
of (BC(Km)∗ , w

∗). Thus πm(Sm) countably supports BX∗m . Xm is also WCD.
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Apply now Proposition 2 to get Sm =
⋃∞
n=1 Sm,n from the weakly σ−shrinking

property of πm(Sm). Then the family {Sm,n : m,n ∈ IN} gives the conclusion.
(2⇒ 1) By the definition, we need to prove that (C(K), p) is K− cd. Note that
π(S) separates points of K. From 2 we get a sequence (Sn)∞n=1 of subsets of S
such that ∀k ∈ K, s ∈ S, ε > 0, there exists n ∈ IN such that s ∈ Sn and

#{s′ ∈ Sn : |k(s′)| ≥ ε} < ℵ0. (1)

It follows that (π(S), p) is K−cd: indeed, consider the closure π(S) of π(S) in
([0, 1]K , p), a compact space. By adding one coordinate if necessary, we can
always assume that there exists s0 ∈ S such that k(s0) = 0, ∀k ∈ K. Then
0 ∈ π(S). Given v ∈ π(S)\π(S), there exists k ∈ K such that v(k) 6= 0. Choose
ε > 0 such that 0 < ε < |v(k)|. Then, given s ∈ S, we can find, for these s, k, ε,
some n ∈ IN such that (1) holds. It is then obvious that v 6∈ π(SN ) and this
proves that (π(S), p) is K−cd.
Let W be the algebra generated by π(S). By the Stone-Weierstrass Theorem it
is ‖ · ‖−dense, and by elementary properties of K− cd, it is again K−cd. Define
the mapping

Φ : (W,p)× (BW , p)IN 7→ (C(K), p)

given by

Φ(f, (fn)) := f +
∞∑
n=1

2−nfn.

This is a continuous mapping from theK−cd topological space (W,p)×(BW , p)IN

onto (C(K), p), hence the latter space is also K−cd.

Remark. A similar proof gives Farmaki’s characterization [Fa] of Eberlein
compacta in Σ(S) (see [FGMZ]).

We will now define a property of a Banach space that is related to Gruenhage
compacta. Note that in this definition we do not explicitly assume that the unit
ball of the dual space is a Corson compact.

Definition 4 We will say that a Banach space X has property G if X contains
a bounded total set Γ so that Γ can be split into Γ =

⋃∞
n=1 Γn in such a way that

given f, g ∈ BX∗ , f 6= g, there are γ ∈ Γ and n ∈ IN such that |(f − g)(γ)| > 0,
γ ∈ Γn and either #{γ ∈ Γn ; |f(γ)| > |(f−g)(γ)|

4 } < ∞ or #{γ ∈ Γn ; |g(γ)| >
|(f−g)(γ)|

4 } <∞.

Remark. Clearly, every weakly σ−shrinking total bounded set in a Banach
space X makes X have property G. Thus it follows from Proposition 2 that
Vašák spaces have property G. We conjecture that the non Vašák space C(Ω)
constructed in [AM, p. 421] (see also [F, Sec. 7.3]) has property G.

Theorem 5 Assume that a Banach space X has property G. Then there is an
equivalent norm on X the dual of which is strictly convex.
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Proof. Let {Γn} be the collection of all Γ′ns as in Definition 4. For n ∈ IN , let
‖ · ‖n be a seminorm on X∗ defined for f ∈ X∗ by ‖f‖n := ‖(Re)nf‖D, where
(Re)n is the operator of the restriction to Γn and ‖ · ‖D is the Day norm on
`∞(Γn). Let the dual equivalent norm ‖ · ‖ on X∗ be defined for f ∈ X∗ by

‖f‖2 :=
∞∑
n=0

1
2n
‖f‖2n,

where ‖ · ‖0 is the original dual norm on X∗. We will show that ‖ · ‖ is a strictly
convex norm on X∗. Let f, g ∈ X∗ be such that 2‖f‖2 + 2‖g‖2 − ‖f + g‖2 = 0.
Then a similar equality holds for each n. We may and do assume that f, g ∈
BX∗ . If f 6= g, choose γ ∈ Γ so that ε := |(f − g)(γ)| > 0 and then choose Γn
so that γ ∈ Γn and either #{γ′ ∈ Γn; |f(γ′)| > ε

4} < ℵ0 or #{γ′ ∈ Γn; |g(γ′)| >
ε
4} < ℵ0. Then by [FGMZ, Proposition 4], supγ′∈Γn |(f − g)(γ′)| ≤ 3ε

4 , which
is a contradiction with |(f − g)(γ)| = ε and γ ∈ Γn.

Theorem 5 reminds of a result in [Ta] which says that a very smooth Banach
space X has a dual X∗ with an equivalent (not necessarily dual) strictly convex
norm. However, the space C[0, ω1] has an equivalent Fréchet smooth norm and
yet does not have property G, since does not have norm whose dual is strictly
convex (see, e.g., [DGZ]).
From the remark before Theorem 5 we obtain the following

Corollary 6 ([Me]) Every Vašák space has an equivalent norm the dual of
which is strictly convex.
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