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Abstract

A quantitative version of Krein’s Theorem on convex hulls of weak
compact sets is proved. Some applications to weakly compactly gen-
erated Banach spaces are given.

1 Introduction

A natural question related to the classical Theorem of Krein (see, for example,
[FHHPMZ, Thm. 3.58]) is the following: assume that a bounded subset M

of a Banach space X satisfies M
w∗ ⊂ X + εBX∗∗ for some ε ≥ 0. Does the

same hold for its convex hull? (if ε = 0 the answer is “yes” and this is the
statement of Krein’s Theorem). To answer in the affirmative this apparently
simple question turns to be quite elusive in general.

This question arose when studying the problem of characterizing sub-
spaces of weakly compact generated Banach spaces by countable covers of
its closed unit ball (see [FMZ] and Theorem 15 in section 3 below).

The following definition describes the central object in this note.
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Definition 1 Let X be a Banach space and let M be a bounded subset of X.
Given ε ≥ 0, we say that M is ε−weakly relatively compact (ε−WRK, for

short) if M
w∗ ⊂ X + εBX∗∗.

The case ε = 0 is the classical weakly relatively compactness.
Using techniques of double limits due to Grothendieck and Pták, we will

prove that the answer to the former question for any ε ≥ 0 is affirmative for
Banach spaces X with ω∗−angelic dual closed unit ball 1 (in particular, sep-
arable Banach spaces –a result due to Rosenthal, see the acknowledgements
at the end of this note –or, more generally, weakly compactly generated or
even weakly Lindelöf determined Banach spaces). Moreover, if a relaxation
to 2ε of the constant is allowed, it holds true for any Banach space. The
following is the main result of this note.

Theorem 2 Let (X, ‖ · ‖) be a Banach space. Let M ⊂ X be a bounded
subset of X. Assume that M is ε−WRK for some ε > 0. Then conv(M)
is 2ε−WRK. If (BX∗ , ω∗) is angelic, or if X∗ does not contain a copy of �1,
then conv(M) is ε−WRK.

The following, to our knowledge, is still open2:

Problem 3 Let X be a Banach space. Let M be a ε−weakly relatively com-
pact subset of X. Is conv(M) ε−weakly relatively compact?

Remark 4 The decisive case for Problem 3 seems to be the space �∞. The
answer should be related to the so-called boundary problem (see [DGZ, Prob-
lem I.2]): Let X be a Banach space and B a subset of SX∗ such that every
x ∈ X attains its norm at some point of B (B is called a boundary of X).
Let A be a bounded subset of X that is compact for the topology of the point-
wise convergence on B. Is A weakly compact? (see [DGZ, Chap. I] and the
references therein).

1A topological space T is called angelic if every relatively countably compact set A ⊂ T
is relatively compact and if every point in A is the limit of a sequence in A.

2See the remark added in proof at the end of this paper.
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2 Proofs

Given a Banach space X and an element x∗∗ ∈ X∗∗, the following function on
(BX∗ , w∗) is introduced in [DGZ, III.2, p.105]. x̂∗∗ : BX∗ → IR is the infimum
of the real continuous functions on (BX∗ , w∗) which are greater than or equal
to x∗∗. The following proposition gives two alternative descriptions of x̂∗∗.
The first one is a standard result in general topology. The second one is in
[DGZ, III.2.3].

Proposition 5 Let X be a Banach space. Then, given x∗∗ ∈ X∗∗,
(i)

x̂∗∗(x∗
0) = lim

N∈N (x∗
0)
{sup〈x∗∗, N〉}, ∀x∗

0 ∈ BX∗ , (1)

where N (x∗
0) denotes the filter of neighborhoods of x∗

0 in (BX∗ , w∗).
(ii)

x̂∗∗(x∗
0) = inf{〈x, x∗

0〉 + ‖x∗∗ − x‖; x ∈ X}, ∀x∗
0 ∈ BX∗ . (2)

Remark 6 In particular, it follows from (ii) that if d := dist(x∗∗, X) denotes
the distance in the norm from x∗∗ to X then x̂∗∗(0) = d. From (i) we get
then that for every N ∈ N (0), d ≤ sup〈x∗∗, N〉, and for every ε > 0, there
exists Nε ∈ N (0) such that sup〈x∗∗, Nε〉 < d + ε.

The use of double limits in the study of compactness is implicit in the
approach of Eberlein [Eb] and explicit in Grothendieck (see, for example,
[Gr]). The following concept relaxes the usual double limit condition.

Definition 7 Let M be a bounded set of a Banach space X, and let S be
a bounded subset of X∗. We say that M ε−interchanges limits with S (and
in this case we shall write M§ε§S) if for any two sequences (xn) in M and
(x∗

m) in S such that the following limits exist,

lim
n

lim
m
〈xn, x∗

m〉, lim
m

lim
n
〈xn, x∗

m〉,

then
| lim

n
lim
m
〈xn, x∗

m〉 − lim
m

lim
n
〈xn, x∗

m〉| ≤ ε.

Proposition 8 Let M be a bounded set and ε ≥ 0 some number. Then we
have
(i) If M is ε−WRK then M§2ε§BX∗.
(ii) If M§ε§BX∗ then M is ε−WRK.
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Proof. (i) Let (xn) and (x∗
m) be sequences in M and BX∗ , respectively,

such that both limits

lim
n

lim
m
〈xn, x∗

m〉, lim
m

lim
n
〈xn, x∗

m〉

exist. Let x∗∗ ∈ M
w∗

be a w∗−cluster point of (xn). Then

lim
n
〈xn, x∗

m〉 = 〈x∗∗, x∗
m〉, ∀m.

Fix δ > 0. We can find x ∈ X such that ‖x∗∗ − x‖ ≤ ε + δ. Choose a
subsequence of (x∗

m) (denoted again by (x∗
m)) such that limm〈x, x∗

m〉 exists.
Let x∗ ∈ X∗ be a w∗−cluster point of (x∗

m). We get

lim
m
〈xn, x∗

m〉 = 〈xn, x∗〉, ∀n,

lim
n

lim
m
〈xn, x∗

m〉 = lim
n
〈xn, x∗〉 = 〈x∗∗, x∗〉,

and then

| lim
n

lim
m
〈xn, x∗

m〉 − lim
m

lim
n
〈xn, x∗

m〉| = | lim
n
〈xn, x∗〉 − lim

m
〈x∗∗, x∗

m〉| =

= |〈x∗∗, x∗〉 − limm〈x∗∗, x∗
m〉| = | limm〈x∗∗, x∗ − x∗

m〉| ≤
≤ | limm〈x, x∗ − x∗

m〉| + 2(ε + δ) = 2(ε + δ).

As δ > 0 is arbitrary, we get the conclusion.

(ii) Assume now M§ε§BX∗ . Let x∗∗ ∈ M
w∗

and let d := d(x∗∗, X). We
shall define inductively two sequences, (xn) in M and (x∗

m) in BX∗ . To begin
with, choose any x1 ∈ M . Define then N(x1; 1) := {x∗ ∈ BX∗ ; |〈x1, x

∗〉| <
1}, a neighbourhood of 0 in (BX∗ , w∗). By Remark 6 we can find x∗

1 ∈
N(x1; 1) such that

d − 1 ≤ 〈x∗∗, x∗
1〉 < d + 1.

Choose x2 ∈ M such that |〈x∗∗ − x2, x
∗
1〉| < 1/2. Define N(x1, x2; 1/2) :=

{x∗ ∈ BX∗ ; |〈xi, x
∗〉| < 1/2, i = 1, 2}, a neighborhood of 0 in (BX∗ , w∗).

Again by Remark 6 we can find x∗
2 ∈ N(x1, x2; 1/2) such that d − 1/2 ≤

〈x∗∗, x∗
2〉 < d + 1/2. Continue in this way. We get (xn) and (x∗

m) such that

xn ∈ M, x∗
m ∈ BX∗ , ∀n, m,

|〈x∗∗ − xn, x∗
m〉| <

1

n
, m = 1, 2, . . . , n − 1,

|〈xn, x∗
m〉| <

1

m
, n = 1, 2, . . . , m,

d − 1

m
≤ 〈x∗∗, x∗

m〉 < d +
1

m
, m = 1, 2, . . .
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Then

lim
n
〈xn, x∗

m〉 = 〈x∗∗, x∗
m〉, ∀m,

lim
m

lim
n
〈xn, x∗

m〉 = lim
m
〈x∗∗, x∗

m〉 = d,

lim
m
〈xn, x∗

m〉 = 0, ∀n,

lim
n

lim
m
〈xn, x∗

m〉 = 0,

so
| lim

m
lim

n
〈xn, x∗

m〉 − lim
n

lim
m
〈xn, x∗

m〉| = d ≤ ε.

Remark 9 The case ε = 0 gives Grothendieck’s characterization of rela-
tively weak compactness (see [Gr]).

Remark 10 In Proposition 8, (i) cannot be improved. There are examples
where BX is (obviously) 1-WRK although BX§ε§BX∗ is false for every 0 <
ε < 2. A simple instance is provided by X := (�1, ‖ · ‖1): let N be a non-
trivial ultrafilter on IN and, for every u ∈ �∞, let 〈x∗∗, u〉 be the limit of
u along the ultrafilter N . By using (i) in Proposition 5 we get easily that
〈x∗∗, x∗〉 = 1 for all x∗ ∈ BX∗ , and this implies that, for every 0 < δ < 1,
S(x∗∗; δ) is dense in (BX∗ , ω∗), where

S(x∗∗; δ) := {x∗ ∈ BX∗ ; 〈x∗∗, x∗〉 > 1 − δ}
(see Proposition 11 below). Choose 0 < δ < (2 − ε)/2 and an element x∗ ∈
S(−x∗∗; δ). We can find then a sequence (x∗

m) (as (BX∗ , w∗) is metrizable) in
S(x∗∗; δ) such that x∗

m → x∗ in the w∗−topology. By a diagonal procedure we
can choose a sequence (xn) in BX such that xn → x∗∗ on the set {x∗, x∗

m; m ∈
IN}. Then we have

| lim
n

lim
m
〈xn, x∗

m〉 − lim
m

lim
n
〈xn, x∗

m〉| =

| limn〈xn, x∗〉 − limm〈x∗∗, x∗
m〉| = |〈x∗∗, x∗〉 − limm〈x∗∗, x∗

m〉| =

= | limm〈x∗∗, (x∗ − x∗
m)〉| > 2 − 2δ > ε.

and the assertion is proved.
The construction in the previous example can be carried over to every

separable Banach space X which contains an isomorphic copy of �1. It follows
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that an equivalent norm can be found on X such that, in this norm, BX is
(obviously) 1-WRK although BX§ε§BX∗ is false for every 0 < ε < 2. The
argument depends on the notion of an octahedral norm. A norm ‖ · ‖ on
X is said to be octahedral (see, for example, [DGZ, III.2]) if for every finite
dimensional subspace F of X and every η > 0, there exists y ∈ SX such that
for every x ∈ F , we have

‖x + y‖ ≥ (1 − η)(‖x‖ + 1).

By [DGZ, Lemma III.2.2], if there exists x∗∗ ∈ X∗∗\{0} such that ‖x∗∗+x‖ =
‖x∗∗‖+‖x‖ for every x ∈ X, then ‖·‖ is octahedral. The converse implication
is true if X is separable ([GK]). The following proposition characterizes such
elements x∗∗ in X∗∗.

Proposition 11 Let X be a Banach space and let x∗∗ ∈ SX∗∗. The following
assertions are equivalent:
(i) ‖x∗∗ + x‖ = ‖x∗∗‖ + ‖x‖ for every x ∈ X.
(ii) x̂∗∗(x∗) = 1, for every x∗ ∈ BX∗.
(iii) For every 0 < δ < 1, S(x∗∗; δ) is dense in (BX∗ , w∗), where

S(x∗∗; δ) := {x∗ ∈ BX∗ ; 〈x∗∗, x∗〉 > 1 − δ}.

Proof. The equivalence between (i) and (ii) is proved in [DGZ, III.2.4].
(ii) ⇒ (iii). Let x∗

0 ∈ BX∗ . Let N1(x
∗
0) be a neighborhood of x∗

0 in
(BX∗ , w∗). By Proposition 5, given 0 < δ < 1 we can find N2(x

∗
0) ⊂ N1(x

∗
0),

a neighborhood of x∗
0 in (BX∗ , w∗), such that sup〈x∗∗, N2(x

∗
0)〉 ≥ 1. Choose

x∗ ∈ N2(x
∗
0) such that 〈x∗∗, x∗〉 > 1 − δ. Then x∗ ∈ S(x∗∗; δ) ∩ N1(x

∗
0). It

follows that S(x∗∗; δ) is dense in (BX∗ , w∗).
(iii) ⇒ (ii) follows from Proposition 5.

Now, in any separable Banach space X containing an isomorphic copy of
�1 there exists an octahedral equivalent norm |‖ · |‖, and according to [GK],
there exists x∗∗ ∈ SX∗∗ such that |‖x∗∗ +x|‖ = |‖x∗∗|‖+ |‖x|‖ for every x ∈ X.
The rest of the argument follows from Proposition 11 as in the example.

The proof of the following theorem is a quantitative modification of the
proof of Krein’s Theorem due to Pták, in which he used his combinatorial
lemma together with Grothendieck’s double limit criterion (see, for example,
[Pt], [Ko, §24.5] or [BHO]).
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We need the following definitions.

C(IN) := {λ : IN → [0, 1] : supp λ finite , λ(IN) = 1},

where supp λ denotes the support of λ , i.e., the set {n ∈ IN : λ(n) 
= 0},
and λ(B) :=

∑
n∈B λ(n) for any B ⊂ IN . Let G be a family of finite subsets

of IN . Given B ⊂ IN , let

C(B) := {λ ∈ C(IN) : supp λ ⊂ B}.

Given γ > 0, let C(B,G, γ) := {λ ∈ C(B) : λ(G) < γ, ∀G ∈ G}. Pták’s
Combinatorial Lemma reads

Lemma 12 (Pták[Pt]) The two following conditions on G are equivalent:

1. There exists a strictly increasing sequence A1 ⊂ A2 ⊂ . . . of finite
subsets of IN and a sequence (Gn) in G with An ⊂ Gn for all n.

2. There exists an infinite subset B ⊂ IN and an γ > 0 such that

C(B,G, γ) = ∅.

Theorem 13 Let (X, ‖ · ‖) be a Banach space. Let M ⊂ X be a bounded
subset of X. Assume that M§ε§BX∗ for some ε ≥ 0. Then conv(M)§ε§BX∗.

Proof. Assume ‖x‖ ≤ µ for all x ∈ M and some µ > 0. Choose ε > 0 and
0 < β < ε. Select now δ > 0 and γ > 0 such that β + 2γµ < ε − δ. Suppose
that there exists a sequence (xn) in conv(M) and a sequence (x∗

m) in BX∗

such that
| lim

n
lim
m
〈xn, x∗

m〉 − lim
m

lim
n
〈xn, x∗

m〉| = ε > 0.

Let x∗
0 ∈ BX∗ be a cluster point of (x∗

m) in (BX∗ , w∗). Let T ⊂ M be a
countable set such that {xn : n ∈ IN} ⊂ conv(T ) and choose a subsequence
(denoted again by (x∗

m)) such that x∗
m → x∗

0 on the set T . Then, for some
σ ∈ {−1, 1},

σ(lim
n
〈xn, x∗

0〉 − lim
m

lim
n
〈xn, x∗

m〉) = ε.

By suppressing a finite number of indices, we may assume

σ(lim
n
〈xn, x∗

0〉 − lim
n
〈xn, x∗

m〉) = σ lim
n
〈xn, x∗

0 − x∗
m〉 > ε − δ, ∀m.
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Define
Γ(t) := {m ∈ IN : |〈t, x∗

0 − x∗
m〉| ≥ β}, t ∈ T.

Those are finite subsets of IN . Let

G := {Γ(t) : t ∈ T}.
Assume C(IN,G, γ) 
= ∅ and choose λ ∈ C(IN,G, γ). It follows that

λ(Γ(t)) < γ, ∀t ∈ T.

Form
x∗ :=

∑

k∈IN

λ(k)(x∗
0 − x∗

k) ∈ 2BX∗ .

Given t ∈ T ,

|〈t, x∗〉| =

∣∣∣∣∣∣

∑

k∈IN

λ(k)〈t, x∗
0 − x∗

k〉
∣∣∣∣∣∣
≤

≤ ∑
Γ(t) λ(k)|〈t, x∗

0 − x∗
k〉| +

∑
IN\Γ(t) λ(k)|〈t, x∗

0 − x∗
k〉| < 2γµ + β.

It follows that |〈xn, x∗〉| ≤ 2γµ + β, ∀n. Then

2γµ + β ≥ lim
n

|〈xn, x∗〉| =

= |∑k∈IN λ(k) limn〈xn, x∗
0 − x∗

k〉| = σ
∑

k∈IN λ(k) limn〈xn, x∗
0 − x∗

k〉 > ε − δ,

a contradiction.
Assume then C(IN,G, γ) = ∅. Then, by Lemma 12 we can find Ap :=

{m1, m2, . . . , mp} ⊂ IN and tp ∈ T such that

Ap ⊂ Γ(tp), ∀p ∈ IN,

i.e., |〈tp, x∗
0 − x∗

mk
〉| ≥ β, k = 1, 2, . . . , p. Choose a subsequence of (tn)

(denoted again by (tn)) such that there exists limn〈tn, x∗
0 − x∗

mk
〉, for any k.

Then we get

lim
n

lim
k
〈tn, x∗

mk
〉 = lim

n
〈tn, x∗

0〉,
| lim

n
〈tn, x∗

0〉 − lim
k

lim
n
〈tn, x∗

mk
〉| = lim

k
lim

n
|〈tn, x∗

0 − x∗
mk

〉| ≥ β,

so

| lim
n

lim
k
〈tn, x∗

mk
〉 − lim

k
lim

n
〈tn, x∗

mk
〉| ≥ β. (3)

8



As β satisfies 0 < β < ε and it is otherwise arbitrary, we get the conclu-
sion.

Proof of Theorem 2. The general case follows from Proposition 8
and Theorem 13. In order to prove the case when (BX∗ , ω∗) is angelic, the
following modification of Proposition 8 is needed, together with the fact that,
according to the proof of Theorem 13, if some sequence in the convex hull of
a set “fails” the double limit condition against a sequence (x∗

m)m∈IN in the
dual, the same is true for the set and a certain subsequence of (x∗

m)m∈IN :

Proposition 14 Let M be a bounded set and let ε > 0. Then
(i) If M is ε−WRK then M§ε§(x∗

n), where (x∗
n) is any w∗−null sequence in

BX∗.
(ii) If (BX∗ , ω∗) is angelic and M§ε§(x∗

n) for any w∗−null sequence in BX∗

then M is ε−WRK.

Proof. (i) follows directly from the proof of (i) in Proposition 8. In order

to prove (ii), let x∗∗
0 ∈ M

(X∗∗,ω∗)
, and let d := dist(x∗∗

0 , X). There exists
x∗∗∗

0 ∈ SX∗∗∗ such that

〈x∗∗
0 , x∗∗∗

0 〉 = d, 〈x, x∗∗∗
0 〉 = 0, for all x ∈ X.

Fix δ > 0. Let

C := BX∗ ∩ {x∗∗∗ ∈ X∗∗∗; 〈x∗∗
0 , x∗∗∗〉 ∈ (d − δ, d + δ)}.

Then x∗∗∗
0 ∈ C

(X∗∗∗,ω∗)
and then 0 ∈ C

(X∗,ω∗)
. As (BX∗ , ω∗) is angelic, there

exists a sequence (x∗
m)m∈IN in C which converges to 0 in (X∗, ω∗). By passing

to a subsequence (denoted by the same symbol) we may and do assume that
(〈x∗∗

0 , x∗
m〉)m∈IN converges.

Let (xn)n∈IN be a sequence in M which converges to x∗∗
0 in X∗∗ on the set

{x∗
m; m ∈ IN}. Then

lim
n

lim
m
〈xn, x∗

m〉 = 0, and

limm limn〈xn, x∗
m〉 = limm〈x∗∗

0 , x∗
m〉 ∈ [d − δ, d + δ].

As δ > 0 was arbitrary, we are done.

To finish the proof of Theorem 2 it remains to show the case when X∗

does not contains a copy of �1: let C := conv(M)
w∗

, a w∗−compact convex
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subset of X∗∗. It is well known (see, for example, [Di, p.215]) that

C = conv(Ext C)
‖·‖

,

where Ext C denotes the set of extreme points of C. By Milman’s Theorem

(see, for example, [Ko, §25.1.7]), Ext C ⊂ M
w∗

. As {x∗∗ ∈ X∗∗ : d(x∗∗, X) ≤
ε} is ‖ · ‖−closed, where d denotes the distance in the norm, this proves that
conv(M) is ε−WRK.

3 Applications

In [FMZ] a characterization of subspaces of weakly compact generated Ba-
nach spaces was provided in terms of countable coverings of the closed unit
ball by absolutely convex subsets (Mn,p)n,p∈IN . Using Theorem 2, the con-
vexity requirement on those sets can be removed, and the following is true:

Theorem 15 ([FMZ]) A Banach space X is a subspace of a weakly compact
generated Banach space if and only if it admits a family {Mn,p; n, p ∈ IN}
of subsets of BX such that

⋃∞
n=1 Mn,p = BX for every p ∈ IN, and Mn,p

w∗ ⊂
X + 1

p
BX∗∗ for every n, p ∈ IN.
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Added in Proof: The problem mentioned in 3 has been solved recently
in the negative by A. Suárez-Granero in a forthcoming paper. Assuming CH,
he provides an example of a space where the best constant in the quantitative
Krein’s Theorem is 2. Thus the positive result in our paper is in fact optimal.
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