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Abstract

We study countable splitting of Markushevich bases in weakly Lin-
delöf Banach spaces in connection with the geometry of these spaces.

1 Introduction

A Markushevich basis (in short, an M-basis) of a Banach space X is a
biorthogonal system {γ, γ∗}γ∈Γ in X×X∗ such that span Γ = X and {γ∗}γ∈Γ

separates points of X.
We say, typically, that an M-basis {γ, γ∗}γ∈Γ is weakly compact, resp. weakly
Lindelöf, if Γ ∪ {0} is a compact set, resp. Lindelöf space, in its relativized
weak topology from X.
A Banach space X is weakly compactly generated (in short, WCG) if there is
a weakly compact set K ⊂ X such that X = span K.
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A Banach space X is a Vašák space (or weakly countably determined space)
if there is a sequence {Bn} of weak∗ compact sets in X∗∗ such that given
x ∈ X and u ∈ X∗∗ \X, there is n0 such that x ∈ Bn0 and u 6∈ Bn0 .
A compact space K is an Eberlein compact if K is homeomorphic to a weakly
compact set (endowed with its weak topology) in a Banach space.
A compact space K is a Gul’ko compact if C(K) is a Vašák space.
A compact space K is a Corson compact if, for some Γ, K is homeomorphic
to a set S ⊂ [−1, 1]Γ in the pointwise topology and such that {γ; x(γ) 6= 0}
is countable for all x ∈ S.
If a Banach space X admits a Markushevich basis, then X is weakly Lindelöf
(i.e. X in its weak topology is a Lindelöf space) if and only if BX∗ in its
weak star topology is a Corson compact [F∼, Thm12.48].
Let X be a Banach space and let µ be the first ordinal of cardinality dens(X),
the density of X, the smallest cardinality of a dense subset of X. A projec-
tional resolution of the identity (in short, a PRI) on X is a long sequence of
norm one projections (Pα)ω0≤α≤µ in X such that Pω0 = 0, Pµ = IdentityX ,
PαPβ = Pmin(α,β), dens(PαX) ≤ #α, for all α and the map α 7→ Pαx is
continuous from the order topology on ordinals into the norm topology of X,
for every x ∈ X.

2 The results

The purpose of this paper is to study countable coverings of Markushevich
bases in several subclasses of weakly Lindelöf Banach spaces. We will show
that such covering enjoying some extra property actually characterizes these
subclasses and that every Markushevich basis in a particular subclass shares
this property. We will give proofs to these results that use Lindenstrauss’
technique of projectional resolutions. Some results in this paper can alterna-
tively be shown by using the results of Farmaki [Fa].
For more information in this area we refer to e.g. [DGZ], [F], [F∼] and [Z].

Definition 1 (a) An M-basis {γ, γ∗}γ∈Γ of a Banach space X is σ−shrinking
if Γ =

⋃∞
n=1 Γn so that for every neighborhood U of the origin in X∗∗[‖ · ‖]

and for every γ ∈ Γ there is n ∈ IN such that γ ∈ Γn and Γ′n ⊂ U, where Γ′n
is the set of all accumulation points of the set Γn in X∗∗[ω∗].
(b) An M-basis {γ, γ∗}γ∈Γ of a Banach space X is weakly σ−shrinking if
Γ =

⋃∞
n=1 Γn so that for every neighborhood U of the origin in X∗∗[ω∗] and

for every γ ∈ Γ, there is n ∈ IN such that γ ∈ Γn and Γ′n ⊂ U .
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The main results in this paper are the following three theorems.

Theorem 2 Let X be a Banach space. Then, the following are equivalent.
(i) X is a subspace of a WCG Banach space.
(ii) X admits a σ−shrinking M-basis.
(iii) BX∗ [w∗] is an Eberlein compact.
Moreover, if this is the case, then every M-basis of X is σ−shrinking.

Theorem 3 Let X be a Banach space. Then the following are equivalent.
(i) X is a Vašák space.
(ii) X admits a weakly σ−shrinking M-basis.
(iii) BX∗ [w∗] is a Gul’ko compact.
Moreover, if this is the case, then every M-basis in X is weakly σ−shrinking.

Theorem 4 Let K be a compact space. Then the following (i) and (ii) are
equivalent.
(i) K is a Corson compact.
(ii) C(K) admits a pointwise Lindelöf M-basis.
If K is a Corson compact, then every M-basis {γ, γ∗} of C(K) such that
{fα} ⊂ span ‖·‖K is pointwise Lindelöf.

Remarks.
An equivalent definition of a σ−shrinking M-basis {γ, γ∗}γ∈Γ is the following:
for every ε > 0, Γ = ∪∞n=1Γ

ε
n so that

(Γε
n)′ ⊂ εBX∗∗ for each n ∈ IN.

Examples of Banach spaces that are Vašák spaces but not subspaces of WCG
spaces and examples of non-Vašák spaces whose dual balls are Corson com-
pacts are discussed , e.g., in [F].
Note that a Banach space X is an Asplund WCG space if and only if X
admits a shrinking M-basis {γ, γ∗}γ∈Γ, i.e. an M-basis {γ, γ∗}γ∈Γ such that
span ‖·‖{γ∗; γ ∈ Γ} = X∗ ([F, Thm. 8.3.3]).

Note that, if Γ ⊂ X is bounded, an M-basis {γ, γ∗}γ∈Γ in a Banach space
X is weakly compact if and only if X∗ = span τ{γ∗; γ ∈ Γ}, where τ is the
topology of the uniform convergence on the set Γ. Indeed, if the M-basis is
weakly compact, we can use the Mackey-Arens theorem to show the state-
ment. On the other hand, if the condition holds and (γn)∞n=1 is a sequence
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of distinct points in Γ, given f ∈ X∗ and ε > 0 find g ∈ span{γ∗; γ ∈ Γ}
such that sup |〈Γ, f − g〉| < ε. Now, there exists n0 ∈ IN such that, for
every n ≥ n0, 〈γn, g〉 = 0, due to the orthogonality of the system, so
lim supn→∞ |〈γn, f〉| ≤ ε and this implies that γn

ω→ 0. Thus the M-basis
is weakly compact by Eberlein’s theorem. Note that an M-basis {γ, γ∗}γ∈Γ

is σ−weakly compact (i.e. Γ ∪ {0} is a weakly σ−compact set in X) if and
only if for every γ ∈ Γ there exists δγ > 0 such that {δγγ}γ∈Γ ∪{0} is weakly
compact. This then means that X is WCG and every WCG space admits a
weakly compact M-basis (see e.g. [F∼, Thm. 11.12]).
It is not true that every M-basis in a WCG Banach space is necessarily
σ−weakly compact. Indeed, assuming the Continuum Hypothesis, let X be
a WCG space of density character ℵ1 and Y be a non-WCG subspace of
X ([R]). Then let {γ, γ∗}γ∈Γ1 be an M-basis of Y extended to an M-basis
{γ, γ∗}γ∈Γ of X ([JZ, Proposition 4]). By extending an M-basis {γ, γ∗}γ∈Γ1

to {γ, γ∗}γ∈Γ we mean that new elements γ are added, γ∗ are extended to
X for γ ∈ Γ1, and new elements γ∗ are added. If {γ, γ∗}γ∈Γ were σ−weakly
compact so it would be {γ, γ∗}γ∈Γ1 , which is a contradiction as Y is not
WCG.
This fact is in contrast with the result of Johnson (see [R] or [D]) who showed
that if X is a WCG Banach space and {γ, γ∗}γ∈Γ is an unconditional basis
of X, then {γ, γ∗}γ∈Γ is necessarily σ−weakly compact.
By the Hahn-Banach Theorem, an M-basis {γ, γ∗}γ∈Γ is σ−shrinking if and
only if for every ε > 0, Γ =

⋃∞
n=1 Γε

n so that #{γ ∈ Γε
n; |〈γ, x∗〉| ≥ ε} <

ℵ0, for all x∗ ∈ BX∗ .
An M-basis {γ, γ∗}γ∈Γ is weakly σ−shrinking if and only if Γ =

⋃
n∈IN Γn

so that for each ε > 0, for each γ0 ∈ Γ and for each x∗ ∈ BX∗ there is
n ∈ IN so that γ0 ∈ Γn and {γ ∈ Γn; |〈γ, x∗〉| ≥ ε} is finite. Note that if
{γ, γ∗}γ∈Γ is a weakly σ−shrinking M-basis of X, then {γ ∈ Γ; 〈γ, x∗〉 6= 0}
is countable for all x∗ ∈ X∗. Indeed, observe that if x∗ ∈ X∗ and ε > 0 are
given, from the preceding remark we get that Γ is covered by such Γn that
{γ ∈ Γn; |〈γ, x∗〉| ≥ ε} is finite. Thus {γ ∈ Γ; |〈γ, x∗〉| ≥ ε} is countable.
It follows then from Theorem 3 that BX∗ in its weak∗ topology is a Corson
compact if X is a Vašák space.
If BX∗ in its weak∗ topology is a Corson compact, then X admits an M-basis
and every M-basis in X is weakly Lindelöf. On the other hand, if X admits
a weakly Lindelöf M-basis, then BX∗ endowed with the weak∗ topology is a
Corson compact [O], [VWZ], see e.g. [F∼, Ch 12].
Recall that an M-basis {γ, γ∗}γ∈Γ is norming if there exists λ > 0 such that
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for every x ∈ SX ,

sup〈x, span {γ∗; γ ∈ Γ} ∩BX∗〉 ≥ λ.

A norming M-basis {γ, γ∗}γ∈Γ of a Banach space X is σ−shrinking if and
only if given ε > 0, Γ =

⋃
n∈IN Γε

n so that for each n ∈ IN , (Γε
n)′ ⊂ X +εBX∗∗ .

In order to prove one implication, let {γ, γ∗}γ∈Γ be a norming M-basis (for
some λ > 0) and Γ0 ⊂ Γ a set such that Γ′0 ⊂ X + εBX∗∗ . We shall prove
that Γ′0 ⊂ ε(1 + 1/λ)BX∗ .
This can be shown as follows:
Let x∗∗ ∈ Γ′0. Then x∗∗ = x + u∗∗, where x ∈ X and u∗∗ ∈ εBX∗∗ . Choose
x∗ ∈ span{γ∗; γ ∈ Γ} ∩BX∗ . Then

0 = 〈x∗∗, x∗〉 = 〈x, x∗〉+ 〈u∗∗, x∗〉,

so |〈x, x∗〉| < ε. As the basis is norming, we get ‖x‖ < ε/λ, so ‖x∗∗‖ <
ε(1 + 1/λ). The reverse implication is obvious.
This can be compared with [FMZ3], where a similar covering was required
for BX in order to characterize that X is a subspace of a WCG Banach space.

3 Proofs

We will now prove the main results in this paper.

Definition 5 Given an M-basis {γ, γ∗}γ∈Γ of a Banach space X and a PRI
(Pα)ω0≤α≤µ on X, we say that they are subordinated (to each other) whenever
Pα(γ) = γ or 0 for every ω0 ≤ α ≤ µ and γ ∈ Γ.

The following result, a consequence of [JZ, Lemma 6], will be frequently used.

Lemma 6 Let Z be a WCG Banach space generated by a weakly compact
absolutely convex set K and X be a subspace of Z. Then any M-basis
{γ, γ∗}γ∈Γ1 of X can be extended to an M-basis {γ, γ∗}γ∈Γ of Z and a PRI
(Pα)ω0≤α≤µ can be constructed on Z such that it is subordinated to {γ, γ∗}γ∈Γ

and Pα(K) ⊂ K for all ω0 ≤ α ≤ µ and all γ ∈ Γ. In particular, PαX ⊂ X
for all ω0 ≤ α ≤ µ.
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Remark. Part of the preceding statement (the construction of a subordi-
nated PRI) can be proved in a more general context using the concept of a
projectional generator (see, e.g., [F, Def. 6.1.6]). A Banach space Z is called
weakly Lindelöf determined if BZ∗ [ω

∗] is Corson. As it is well known, Z has,
in this case, an M-basis, and every M-basis {γ, γ∗}γ∈Γ of Z satisfies that

Φ(z∗) := {γ ∈ Γ : 〈γ, z∗〉 6= 0}
is countable for every z∗ ∈ Z∗ (see, e.g., [F∼, Prop. 12.51]). It is obvious that
the couple (Z∗, Φ) is a projectional generator, so Z has a PRI (Pα)ω0≤α≤µ

(see, e.g., [F, Prop. 6.1.7]). This fact depends on the construction of two
long sequences (Aα)ω0≤α≤µ and (Bα)ω0≤α≤µ of subsets Aα ⊂ Z, Bα ⊂ Z∗

where Φ(Bα) ⊂ Aα for all α. Then Pα(Z) = Aα and P−1
α (0) = (Bα)⊥ for all

α (see, [F, Prop. 6.1.4] and the proof of [F, Prop. 6.1.7]). Assume γ 6∈ Pα(Z)
for some γ ∈ Γ and ω0 ≤ α ≤ µ. Then γ 6∈ Φ(Bα), so 〈γ, z∗〉 = 0 for all
z∗ ∈ Bα. We have then γ ∈ (Bα)⊥ = P−1

α (0). It follows that, for any γ ∈ Γ
and ω0 ≤ α ≤ µ, Pα(γ) = γ or 0, and so (Pα)ω0≤α≤µ is subordinated to
{γ, γ∗}γ∈Γ.

Definition 7 We will say that a PRI (Pα)ω0≤α≤µ on a Banach space X is
σ−shrinking if there is a countable collection {Bn}∞n=1 of subsets of BX such
that for every x0 ∈ BX and for every ε > 0, there is n0 ∈ IN such that
x0 ∈ Bn0 and lim supα↑β sup |〈Bn0 , (P

∗
α − P ∗

β )f〉| ≤ ε, for all f ∈ BX∗ and
all limit ordinals β ∈ (ω0, µ].

Proposition 8 Let X be a Banach space with an M-basis {γ, γ∗}γ∈Γ and a
subordinated PRI (Pα)ω0≤α≤µ. Then {γ, γ∗}γ∈Γ is σ−shrinking if and only if
(Pα)ω0≤α≤µ is σ−shrinking.

Proof: Assume first that {γ, γ∗}γ∈Γ is σ−shrinking. We may and do assume
that Γ ⊂ BX . Let (Γn)∞n=1 be the covering of Γ given by the definition of
σ−shrinking. Given ε > 0 let n ∈ IN be such that Γ′n ⊂ εBX∗∗ . Suppose
that, for some limit ordinal ω0 < β ≤ µ and some x∗ ∈ BX∗ ,

lim sup
α↑β

sup |〈Γn, (P ∗
β − P ∗

α)(x∗)〉| > ε.

Then we can find an increasing net (αi)i∈I in [ω0, β) such that αi → β and
elements γi ∈ Γn such that

|〈γi, (P
∗
β − P ∗

αi
)x∗〉| = |〈(Pβ − Pαi

)γi, x
∗〉| > ε, for all i ∈ I.
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If Pβγi = 0 then Pαγi = 0 for all α ≤ β, so Pβγi = γi and Pαi
γi = 0 for all

i ∈ I. It follows that |〈γi, x
∗〉| > ε for all i ∈ I. Let γ∗∗ be an accumulation

point of {γi : i ∈ I}. Then |〈γ∗∗, x∗〉| ≥ ε, a contradiction. It follows that

lim sup
α↑β

sup |〈Γn, (P
∗
β − P ∗

α)(x∗)〉| ≤ ε for all x∗ ∈ BX∗ .

Now, a simple argument involving sets of the form

[a1Γ1 + a2Γ2 + . . . + amΓm + εBX ] ∩BX ,

where
∑m

j=1 |aj| ≤ K, ε > 0, m ∈ IN , K > 0, proves that (Pα)ω0≤α≤µ is
σ−shrinking.
Assume now that (Pα)ω0≤α≤µ is a σ−shrinking long sequence of projections
on X which satisfy all properties of a PRI but not necessarily the requirement
that µ be the first ordinal of cardinality densX (let’s call it, for now on, a PRI′

on X), and let {γ, γ∗}γ∈Γ be a subordinated M-basis. We shall prove that it
is σ−shrinking. This will be done by transfinite induction on the density of
X. If X is separable, then every M-basis on X is countable and the result
is obvious. Assume that the result has been proved for every Banach space
of density less than ℵ, a certain uncountable cardinal, having a σ−shrinking
PRI′. Let X be a Banach space of density ℵ with a σ−shrinking PRI′ and
let {γ, γ∗}γ∈Γ be a subordinated M-basis on X. We may and do assume that
Γ ⊂ BX .
Given γ ∈ Γ, let b(γ) be the first ordinal in (ω0, µ] such that Pb(γ)(γ) =
γ. Then b(γ) has a predecessor a(γ); it follows that, for all γ ∈ Γ, γ ∈
[Pa(γ)+1 − Pa(γ)](X). Define a well-order in each of the sets {γ ∈ Γ; a(γ) =
α}, α ∈ [ω0, µ]. This induces a lexicographic well-order ≺ in Γ and the
mapping a : Γ → [ω0, µ] is obviously increasing. Given ε > 0 we can write
BX =

⋃
n∈IN Bε

n and

lim sup
α↑β

sup |〈Bε
n, (P ∗

β − P ∗
α)x∗〉| ≤ ε,

for all limit ordinal β ∈ (ω0, µ] and x∗ ∈ BX∗ .
Define Γε

n := Γ ∩ Bε
n, n ∈ IN . It follows that Γ =

⋃
n∈IN Γε

n. Let x∗∗ ∈ (Γε
n)′.

Let W be the family of neighborhoods of x∗∗ in X∗∗[ω∗] partially ordered by
inclusion. Given W ∈ W let g(W ) be the first element (in the order ≺) in
Γε

n∩W . The net {g(W ); W ∈ W} is w∗−convergent to x∗∗ and the mapping
g : W → Γε

n is increasing. It follows that the mapping a ◦ g : W → [ω0, µ] is
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also increasing. Let β := limW∈W [a ◦ g(W ) + 1]. If β is not a limit ordinal,
then consider the Banach space Pβ(X) (whose density is less than ℵ), the
long sequence (Pα)ω0≤α≤β of projections on it (a σ−shrinking PRI′ on Pβ(X)
for the sets Bε

n ∩ Pβ(X)) and carry on the construction in this setting to
get, by the induction hypothesis, ‖x∗∗‖ ≤ ε. If β is a limit ordinal, given
x∗ ∈ BX∗ we get

〈g(W ), x∗〉 = 〈(Pβ − Pa◦g(W ))g(W ), x∗〉 = 〈g(W ), (P ∗
β − P ∗

a◦g(W ))x
∗〉,

and
〈g(W ), x∗〉 → 〈x∗∗, x∗〉.

As g(W ) ∈ Bε
n, we get |〈x∗∗, x∗〉| ≤ ε for all x∗ ∈ BX∗ , so ‖x∗∗‖ ≤ ε.

We will use the following statement.

Lemma 9 Let X be a Banach space, W be an absolutely convex and weakly
compact subset of X and (Pα)ω0≤α≤µ be a PRI on X such that Pα(W ) ⊂
W, for all α. Then, given x∗ ∈ X∗ and a limit ordinal β ∈ (ω0, µ], P ∗

αx∗ →
P ∗

βx∗ uniformly on W when α ↑ β.

Proof. Obviously, P ∗
αx∗

ω∗→ P ∗
βx∗ when α ↑ β, so

P ∗
βx∗ ∈

⋃

α<β

P ∗
αX∗

ω∗

=
⋃

α<β

P ∗
αX∗

µ(X∗,X)

,

where µ(X∗, X) denotes the Mackey topology on X∗, i.e., the topology of the
uniform convergence on the family of absolutely convex and weakly compact
subsets of X (see, e.g., [F∼, Thm. 4.33]).
Given ε > 0, find y∗ ∈ X∗ and α0 < β such that sup |〈W,P ∗

βx∗−P ∗
α0

y∗〉| < ε.
Let α0 ≤ α < β. Then sup |〈Pα(W ), P ∗

βx∗ − P ∗
α0

y∗〉| < ε, as Pα(W ) ⊂ W .
This implies sup |〈W,P ∗

αx∗ − P ∗
α0

y∗〉| < ε. Then

sup |〈W,P ∗
βx∗ − P ∗

αx∗〉| ≤
≤ sup |〈W,P ∗

βx∗ − P ∗
α0

y∗〉|+ sup |〈W,P ∗
αx∗ − P ∗

α0
y∗〉| < 2ε.
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Lemma 10 Let X be a WCG Banach space. Let W ⊂ X be an abso-
lutely convex and weakly compact set spanning X (i.e., span(W ) = X).
Let (Pα)ω0≤α≤µ be a PRI on X such that Pα(W ) ⊂ W, for all α. Then
(Pα)ω0≤α≤µ is σ−shrinking. If X is a subspace of a WCG Banach space,
then X has a σ−shrinking PRI.

Remark. By the well-known theorem of Amir and Lindenstrauss (see [AL]
or, e.g., [F∼, Thm. 11.6]) a WCG Banach space X generated by W as above
has a PRI (Pα)ω0≤α≤µ such that Pα(W ) ⊂ W, for all α.

Proof of Lemma 10. Given ε > 0, let Bε
n := (nW + εBX) ∩ BX , n ∈ IN .

Given x ∈ BX we can find y ∈ span(W ) such that ‖x−y‖ < ε. Now, y ∈ nW
for some n ∈ IN , so x ∈ Bε

n. By Lemma 9 we get

sup |〈nW,P ∗
βx∗ − P ∗

αx∗〉| → 0, when α ↑ β, for all ω0 < β ≤ µ.

Then there exists α0 < β such that

sup |〈nW,P ∗
βx∗ − P ∗

αx∗〉| < ε, for all α such that α0 ≤ α < β,

so
sup |〈Bε

n, P
∗
βx∗ − P ∗

αx∗〉| < 2ε, for all α such that α0 ≤ α < β,

and this proves the first part.
In order to prove the second part, observe first that if a Banach space X of
density ℵ is a subspace of a WCG Banach space, then it is also a subspace of a
WCG Banach space Z of density ℵ (indeed, let D be a dense subset of X such
that #D = ℵ and let K be a weakly compact set generating Z. Given x ∈ D,
find a countable set Nx ⊂ K such that x ∈ spanNx. Let W :=

⋃
x∈D Nx,

a weakly relatively compact subset of Z. Then Z1 := span(W ) is a WCG
Banach space of density ℵ and containing X; it is enough to take now Z1 as
Z). Let µ be the first ordinal of cardinality ℵ. By Lemma 6 we can find a
PRI (Pα)ω0≤α≤µ on Z such that Pα(K) ⊂ K and Pα(X) ⊂ X for all α, so
σ−shrinking by the first part of the proof. It follows that (Pα|X)ω0≤α≤µ is a
σ−shrinking PRI on X.

Corollary 11 Let X be a WCG Banach space. Then every M-basis on X
is σ−shrinking.
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Proof. It is enough to put together Lemma 6 (or just the remark following
its proof), Proposition 8 and Lemma 10.

We will now give an elementary proof to the following lemma. An alternative
proof to it can be obtained by using the results in [Fa].

Lemma 12 Assume that X admits a σ-shrinking M-basis. Then BX∗ in its
weak∗ topology is an Eberlein compact.

Proof. Let {γ, γ∗}γ∈Γ be a σ−shrinking M-basis of X. We will construct a
homeomorphism of BX∗ in its weak∗ topology onto a subset of c0(∆) in its
weak topology for some ∆.
Given n ∈ IN, let {Γ1/m

n }∞n=1 be the sets that cover Γ for U = (1/m)BX∗∗ (see
Definition 1). For i ∈ IN, let the real valued function τi be defined on the
reals by τi(t) = t + (1/i) for t ≤ −(1/i), τi(t) = 0 for t ∈ [−(1/i), (1/i)] and
τi(t) = t− (1/i) if t ≥ (1/i).
The set ∆ will be an infinite matrix whose first row is a display of Γ1

1, followed
by a disjoint display of Γ1

2, then Γ1
3, etc. The second row is the display of

Γ
1/2
1 followed by a disjoint display of Γ

1/2
2 , etc.

If f ∈ BX∗ and γ ∈ ∆ is in the ith row, in the display Γ
1/i
k , we put Φf(γ) =

2−(i+k)τi(f(γ)). Then it is easy to see that Φ maps BX∗ into c0 (∆). Indeed,
due to the “weights” 2−i, it suffices to note that on each row, the values are in
c0. This holds due to the properties of Γ

1/m
n and due to the weights 2−k. The

map Φ is weak∗ to pointwise continuous and thus weak∗ to weak continuous.
The one-to-one property follows from the observation that if t1 and t2 are two
different real numbers then for sufficiently large i, τi(t1) 6= τi(t2). Hence BX∗

in its weak∗ topology is homeomorphic to a weakly compact set in c0(∆).

Proof of Theorem 2. (i)⇒ (ii) Let X be a subspace of the WCG Banach
space Z. Then X admits a M-basis (see e.g. [JZ1]). Take any M-basis in X.
This basis can be extended to an M-basis of Z (see Lemma 6). By Lemma
9, this extended M-basis is σ−shrinking, so the original M-basis on X is
σ−shrinking, too.

(ii)⇒(iii) Assuming (ii), we apply Lemma 12 to see that BX∗ in its weak∗

topology is homeomorphic to a weakly compact set in c0 (∆) considered in
its weak topology for some ∆. This proves (iii).
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The implication (iii)⇒(i) is well known (see e.g. [F∼, Thm. 12.12]).

Proof of Theorem 3.
First note that (i) and (iii) are equivalent [F, Thm 7.2.5]. (i)⇒(ii). We will
use the approach of Sokolov [S]. A Vašák space X admits a separable PRI
(Pα)ω0≤α≤µ, i. e., a long sequence of continuous projections not necessarily of
norm one such that µ is the first ordinal with cardinality densX, Pω0 = 0, Pµ

is the identity operator, PαPβ = Pmin{α,β} for all ω0 ≤ α, β ≤ µ, (Pα+1−Pα)X
is separable for all ω0 ≤ α < µ and x ∈ span {(Pα+1 − Pα)(x); ω0 ≤ α < µ}
for all x ∈ X. Then X has an M-basis {γ, γ∗}γ∈Γ subordinated to (Pα)ω0≤α≤µ

(see the proof of [F, Prop. 6.2.4]). We may an do assume Γ ⊂ BX . Let
{γα

n}n∈IN = {γ ∈ Γ; (Pα+1 − Pα)γ = γ}, ω0 ≤ α < µ.
Let Bm ⊂ BX∗∗ , m ∈ IN, be the weak∗ closed sets witnessing that X is
Vašák, i.e., for every x ∈ BX there is N ⊂ IN so that x ∈ ⋂

m∈N Bm ⊂ X;
we may an do assume that for every m,n ∈ IN there exists k ∈ IN such that
Bm ∩Bn = Bk. Put then Γ =

⋃∞
m,n=1 Γm,n, where

Γm,n = {γα
n ; ω0 ≤ α < µ} ∩Bm, m, n ∈ IN.

Now, fix any x∗ ∈ X∗, γ0 ∈ Γ, and ε > 0.
Let N := {m1, m2, . . .} ⊂ IN such that

γ0 ∈
∞⋂

k=1

Bmk
⊂ X.

We claim that #{γ ∈ Γm,n : 〈γ, x∗〉 > ε} < ℵ0 for some m ∈ IN . Assume
not. Let α1 be the first ordinal α ∈ [ω0, µ) such that γ = γα

n ∈ Bm1 and
〈γ, x∗〉 > ε. Let α2 > α1 be the first ordinal α ∈ [ω0, µ) \ {α1} such that
γ = γα

n ∈ Bm1∩Bm2 and 〈γ, x∗〉 > ε. Continue in this way. We get a sequence
α1 < α2 < . . . converging to some α ≤ µ; then (γαk

n )k∈IN weak-clusters to
some point x ∈ ⋂∞

k=1 Bmk
⊂ X. It follows that (Qβγαk

n )k∈IN weak-clusters to
Qβx for every ω0 ≤ β < µ, so Qβx = 0 for every ω0 ≤ β < µ. Then x = 0, a
contradiction with 〈x, x∗〉 ≥ ε, and this proves the claim.

(ii)⇒(i). Assume that X contains a weakly σ− shrinking M-basis {γ, γ∗}γ∈Γ,
and Γ =

⋃∞
n=1 Γn from the definition. For i ∈ IN, let τi(t) be a function on

the real line such that τi = 0 on [−1
i
, +1

i
] and τi(t) = t − 1

i
on [1

i
,∞) and

τi(t) = t + 1
i

on (−∞, −1
i

]. Let ∆ be the infinite matrix whose first row
consists of countably many disjoint copies of Γ1, call them Γ1

1, Γ2
1 etc. the
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second row consists of countably many disjoint copies of Γ2, call them Γ1
2,

Γ2
2 etc. Define the map ϕ from BX∗ into `∞(∆) by ϕ(x∗)(γi

n) = τi(〈γi
n, x∗〉)

where γi
n is an element of Γ1

n. Then it can be checked that ϕ is one-to-one
continuous map from the weak∗ topology of BX∗ into the pointwise topology
of `∞(∆). Then X is a Vašák space by [F, Thm. 7.2.5 (vi)].

(iii)⇒(i) is well known (see, e.g., [F, Thm. 7.1.9]).

Before proving Theorem 4, we state and prove the following simple fact.

Lemma 13 Let K be a compact space and {γ, γ∗}γ∈Γ be an M-basis of C(K).
Then the following are equivalent.
(i) {γ, γ∗}γ∈Γ is pointwise Lindelöf.
(ii) {γ ∈ Γ; γ(k) 6= 0} is countable for all k ∈ K.
In this case, K is a Corson compact.

Proof. (i)⇒(ii) Assume that Γ ∪ {0} is pointwise Lindelöf. Let k ∈ K
and p ∈ IN . Let U be the open cover of Γ ∪ {0} formed by U = {f ∈
C(K); |f(k)| < 1

p
} and by the sets Uγ = {f ∈ C(K); 〈f, γ∗〉 > 1

2
}, γ ∈ Γ. Let

V be a countable subcover of U . As 0 6∈ Uγ for all γ, the subcover V has to
be formed by U and by some Uγi

, i = 1, 2, . . . As γ 6∈ Uγ′ for γ 6= γ′, all but
countably many γ’s are in U , i.e. for all but countably many γ′s, |γ(k)| < 1

p
.

This holds for all p. Hence γ(k) = 0 for all but countably many γ′s.
In particular, this shows that K is a Corson compact.

(ii)⇒(i) Let U be an open cover of Γ ∪ {0} in the pointwise topology. Then
there is U ∈ U such that 0 ∈ U . Assume that (ii) is satisfied. Then γ ∈ U
for all but countably many γ. Thus {γ, γ∗}γ∈Γ is pointwise Lindelöf.

Proof of Theorem 4. (i)⇒(ii) If K is Corson, then C(K) is Lindelöf in the
pointwise topology (Corson, see e.g. [F∼]). Moreover, there is an M-basis
{γ, γ∗}γ∈Γ so that {γ∗; γ ∈ Γ} ⊂ span ‖·‖K (see e.g. [DGZ, Thm. VI.7.6]
and [F, Prop. 6.2.4]). We shall prove that such an M-basis is pointwise
Lindelöf. We may and do assume that Γ ⊂ BC(K). Γ ∪ {0} is obviously
closed in the topology of the pointwise convergence on the set {γ∗; γ ∈ Γ},
so it is also closed in the topology of the pointwise convergence on span‖·‖(K).
Observe now that every pointwise limit in C(K) of a net of elements in Γ∪{0}
is also in BC(K). It follows easily that Γ ∪ {0} is also pontwise closed, hence
it is pointwise Lindelöf.

12



(ii)⇒(i) If {γ, γ∗}γ∈Γ is pointwise Lindelöf, then by Lemma 13, K is a Corson
compact.
As an application of the methods studied in this paper we present a new
proof of the following well known result [BRW] (see also [Gu], [MR] and
[NT]). For a different new proof of this result see [FMZ3].

Theorem 14 Let K be an Eberlein compact. Let ϕ be a continuous map of
K onto ϕ(K). Then ϕ(K) is an Eberlein compact.

Proof. The space C(ϕ(K)) is a subspace of the WCG space C(K). Let
{γ, γ∗}γ∈Γ be an M-basis of C(ϕ(K)) with ‖γ‖ ≤ 1 for all γ. By Theorem 2,
{γ, γ∗}γ∈Γ is σ−shrinking and thus by Lemma 12, BC(ϕ(K))∗ is an Eberlein
compact. Hence such is its closed subset ϕ(K).
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E.T.S.I. Telecommunicación, Universidad Politécnica de Valencia
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