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Abstract

It is shown that most of the well known classes of nonseparable Ba-
nach spaces related to the weakly compact generating can be charac-
terized by elementary properties of the closure of the coefficient space
of Markuševič bases for such spaces. In some cases, such property is
then shared by all Markuševič bases in the space.

Let X be a Banach space and let 〈 ·, ·〉 denote the canonical duality pairing
between X and its dual space X∗. A system {xγ; x

∗
γ}γ∈Γ, where xγ ∈ X, x∗γ ∈

X∗, γ ∈ Γ, is called a Markuševič basis for X if 〈xγ, x
∗
γ〉 = 1 for every γ ∈

Γ, 〈xγ, x
∗
γ′〉 = 0 whenever γ, γ′ ∈ Γ and γ 6= γ′, the linear span sp{xγ; γ ∈ Γ}

is dense in X and sp{x∗γ; γ ∈ Γ} is weak∗ dense in X∗.
A compact space K is a Corson compact if for some set Γ, K is homeomorphic
to a subset T of a product [−1, 1]Γ taken in its pointwise topology, such that
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cia and the Generalitat Valenciana (Spain)

§Supported by grant NSERC 7926 (Canada), Institutional Research Plan of the
Academy of Sciences of Czech Republic AVOZ 10190503 and GAČR A1019205 (Czech
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for every t ∈ T , {γ ∈ Γ; t(γ) 6= 0} is at most countable. A compact space
K is called an Eberlein compact respectively a uniform Eberlein compact if
for some set Γ, K is homeomorphic to a compact set in c0(Γ) (respectively
`2(Γ)) endowed with the weak topology.
A Banach space X is called weakly compactly generated (WCG) if it contains
a weakly compact subset whose linear span is dense in X.We will call a set
S ⊂ X total if its linear span is dense in X. A Banach space X is called a
Vašák space (i.e., weakly countably determined Banach space ) if there exists
a countable family K of weak∗ compact subsets of X∗∗ such that, given any
x ∈ X and x∗∗ ∈ X∗∗ \ X, there is K ∈ K such that x ∈ K and x∗∗ /∈ K.
A Banach space X is called weakly Lindelöf determined (WLD) if BX∗ in its
weak star topology is a Corson compact which is the same as if there is a set
∆ ⊂ X, with sp∆ dense in X, such that ∆ countably supports X∗, that is,
for every x∗ ∈ X∗ the set {δ ∈ ∆; 〈δ, x∗〉 6= 0} is at most countable (cf. e.g.
[Fa97]). It is well known that every WLD space admits a Markuševič basis,
see, e.g., [F, Propositions 8.3.1, 6.1.7, 6.2.4], [F˜01, Theorem 12.50] and the
proof of Theorem 4 below. A Banach space is called an Asplund space if
every of its separable subspaces has separable dual. We refer to [DGZ93],
[Fa97] and [F˜01] for more on these concepts.

A result in [Fa87] has the following known consequence, see, e.g., [F, page
112 and Theorem 8.3.3]:

Theorem 0 A Banach space X is simultaneously WCG and Asplund if and
only if X admits a Markuševič basis {xγ; x

∗
γ}γ∈Γ which is shrinking, that is,

sp{x∗γ; γ ∈ Γ} is norm dense in X∗.

Note that not every Markuševič basis on a WCG Asplund space is shrinking.
Indeed, in any nonreflexive separable Asplund space there exists a Schauder
basis which is not shrinking, [Zi68].

The purpose of this note is to show that the property of biorthogonality,
together with known techniques of projectional resolutions of the identity
operator make it possible to dualize and extend some results in [FGMZ04],
[FGHZ03] and [FMZ05] to the case of Markushevic bases in the spirit of
Theorem 0. More precisely, we show that most of the classes of Banach
spaces related to the weakly compact generating, like WCG spaces, sub-
spaces of WCG spaces, Vašák spaces can be characterized by replacing the
norm topology in Theorem 0 by the topology of uniform convergence on
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an appropriate family of subsets of the Markuševič basis for X. Note that
the classes of spaces involved are known not to coincide (cf. e.g [Fa97] and
references therein).
The approach to these spaces that uses Markuševič bases provides a good
insight into these spaces (compare the statement in Theorems 2 and 3 for
instance).
This is useful in questions in the renormings by smooth norms, smooth ap-
proximations, weak Asplund spaces, Asplund generated spaces and in the
area of topology of special compacta (Eberlein, Corson, Gul’ko, Talagrand
compacta), cf.e.g.[FGMZ], [FMZ], [HMVZ]).

We made an effort to systematically present the results of this paper together
with some folklore results in the area in order to provide the reader with a
compact information on this subject.

Theorem 1 A Banach space X is WCG if and only if it admits a Markuševič
basis {xγ; x

∗
γ}γ∈Γ such that sp{x∗γ; γ ∈ Γ} is dense in X∗ in the topology of

uniform convergence on the set {xγ; γ ∈ Γ}.

It follows that the Markuševič basis from Theorem 1 is weakly compact,
that is, the set {xγ; γ ∈ Γ} ∪ {0} is weakly compact. Indeed, any sequence
of distinct elements in it converges to 0 in the topology of the pointwise
convergence on {x∗γ} (by the orthogonality) and thus converges to 0 in the
weak topology by the uniformity in the condition in Theorem 1. Note that
it follows from [Ro74] and from known results on Markuševič bases that
there exists a WCG space X with a Markuševič basis such that the set
{xγ; γ ∈ Γ}∪ {0} cannot be written as the union of countably many weakly
compact sets [AM] [FMZ05].
On the other hand, W. Johnson proved that any unconditional basis in WCG
space can be so decomposed (see Proposition 1.3 in [Ro74]).
Note also that sp{x∗γ; γ ∈ Γ} from the Markuševič basis in Theorem 1
may not be weak∗ sequentially dense in X∗, i.e not every element of X∗

can be reached as the weak star limit of a sequence from sp{x∗γ; γ ∈ Γ}.
Indeed, according to S. Banach, [Ba32, Theorem 1, Annexe] there exists a
weak∗ dense subspace Y ⊂ c∗0 which is not weak∗ sequentially dense in c∗0.
Then, [F˜01, Theorem 6.41] yields a Markuševič basis {xγ; x

∗
γ}γ∈Γ such that

sp{x∗γ; γ ∈ Γ} ⊂ Y . See also Godun [Go78] who showed such a phenomenon
in every separable quasireflexive Banach space.
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Given a system of vectors xγ ∈ X, γ ∈ Γ and a set ∆ ⊂ Γ, we define a
semimetric

ρ∆(x∗1, x
∗
2) = sup

γ∈∆
|〈xγ, x

∗
1 − x∗2〉|, x∗1, x

∗
2 ∈ X∗.

For x∗ ∈ X∗ and a set M ⊂ X∗ we define

ρ∆(x∗,M) = inf{ρ∆(x∗, y∗); y∗ ∈ M}.

Theorem 2 A Banach space X is a subspace of a WCG space if and only if
X admits a Markuševič basis {xγ; x

∗
γ}γ∈Γ with the following property: there

are sets Γn ⊂ Γ, n ∈ IN, such that

∀ε > 0 ∀γ ∈ Γ ∃n ∈ IN so that γ ∈ Γn and

∀ x∗ ∈ BX∗ ρΓn(x∗, sp{x∗γ; γ ∈ Γ}) < ε.

In this case every Markuševič basis in X has this property.

It should be noted that the above sets Γn’s usually overlap, see [FGMZ04,
Theorem 2] for how to get a ”non-overlapping” version of the above theorem.

Theorem 3 A Banach space X is a Vašák space if and only if X admits
a Markuševič basis {xγ; x

∗
γ}γ∈Γ with the following property: there are sets

Γn ⊂ Γ, n ∈ IN, such that

∀ε > 0 ∀γ ∈ Γ ∀x∗ ∈ BX∗ ∃n ∈ IN so that γ ∈ Γn and

ρΓn(x∗, sp{x∗γ; γ ∈ Γ}) < ε.

In this case every Markuševič basis in X has this property.

Theorem 4 A Banach space X is WLD if and only if it has a Markuševič
basis {xγ; x

∗
γ}γ∈Γ with one of the equivalent properties listed in Proposition 1

below.
If this is the case, all Markuševič bases in X share the same properties.
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Proposition 1 Given a Markuševič basis {xγ; x
∗
γ}γ∈Γ in a Banach space X,

then the following are equivalent.
(i) For every x∗ ∈ X∗ the set {γ ∈ Γ; 〈xγ, x

∗〉 6= 0} is at most countable.
(ii) sp{x∗γ; γ ∈ Γ} is sequentially dense in X∗ endowed with the topology of
the pointwise convergence on the set {xγ; γ ∈ Γ}.
(iii) sp{x∗γ; γ ∈ Γ} is countably dense in X∗ in the weak∗ topology, i.e.
every element of X∗ is in the closure in this topology of a countable set in
sp{x∗γ; γ ∈ Γ}.

It is known that a Banach space X admits an equivalent uniformly Gâteaux
smooth norm if and only if its dual unit ball BX∗ in the weak∗ topology
is a uniform Eberlein compact, see [FGZ01], [FGMZ04] for definitions and
proofs. For M ⊂ X∗ and κ ∈ IN we define

spκM =
{ κ∑

i=1

aix
∗
i ; ai ∈ IR, x∗i ∈ M, i = 1, . . . , κ

}
.

Theorem 5 The dual ball (BX∗ , w∗) of a Banach space X is a uniform Eber-
lein compact if and only if X admits a Markuševič basis {xγ; x

∗
γ}γ∈Γ with the

following property: there are numbers κ(n) ∈ IN and sets Γn ⊂ Γ, n ∈ IN,
such that

∀ε > 0 ∀γ ∈ Γ ∃n ∈ IN so that γ ∈ Γn and

∀x∗ ∈ BX∗ ρΓn(x∗, spκ(n){x∗γ; γ ∈ Γn}) < ε.

In this case every Markuševič basis in X has this property.

The next theorem characterizes a subclass (called in [FGHZ03] strongly uni-
formly Gâteaux smooth if dens X ≤ ω1) of the uniformly Gâteaux smooth
Banach spaces –spaces admitting an equivalent uniformly M -smooth norm,
with M ⊂ BX a total set, see [FGMZ04, Theorem 8].

Theorem 6 A Banach space (X, ‖ · ‖) admits a total set Γ ⊂ BX such that

∀ε > 0 ∃κ ∈ IN ∀x∗ ∈ BX∗ #{γ ∈ Γ; |〈γ, x∗〉| ≥ ε} ≤ κ. (1)

if and only if X admits a Markuševič basis {xλ; x
∗
λ}λ∈Λ such that xλ ∈ spΓ

for every λ ∈ Λ, and denoting ∆ = {xλ; λ ∈ Λ}, we have

∀ε > 0 ∃κ ∈ IN ∀x∗ ∈ BX∗ ρ∆(x∗, spκ{x∗λ; λ ∈ Λ}) < ε.
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Theorem 7 Let 1 < p ≤ 2, let Γ be an uncountable set, and let eγ, γ ∈ Γ,
denote the canonical basis vectors in `p(Γ). A Banach space X admits a
linear bounded mapping from `p(Γ) onto a dense subset of X if and only
if X admits a Markuševič basis {xλ; x

∗
λ}λ∈Λ, and a bounded linear operator

T : `p(Λ) → X such that xλ = Teλ for every λ ∈ Λ.

Note that the property exhibited in Theorem 7 characterizes, in case that
dens X ≤ ω1, the superreflexive generated spaces (see [FGHZ03]).

Proofs

The following simple statement will be of frequent use.

Lemma 1 Let {xγ; x
∗
γ}γ∈Γ be a biorthogonal system in a Banach space X.

Let x∗ ∈ X∗, ε > 0, and κ ∈ IN be given. Then
(i) #{γ ∈ Γ; |〈xγ, x

∗〉| ≥ ε} ≤ κ if and only if ρΓ(x∗, spκ{x∗γ; γ ∈ Γ}) < ε.
(ii) #{γ ∈ Γ; |〈xγ, x

∗〉| ≥ ε} < ω if and only if ρΓ(x∗, sp{x∗γ; γ ∈ Γ}) < ε.

Proof. (i) Necessity. Denote F = {γ ∈ Γ; |〈xγ, x
∗〉| ≥ ε}. If γ0 ∈ Γ \F then

∣∣∣
〈
xγ0 , x

∗ −
∑
γ∈F

〈xγ, x
∗〉x∗γ

〉∣∣∣ = |〈xγ0 , x
∗〉| < ε.

If γ0 ∈ F , then even

∣∣∣∣∣
〈
xγ0 , x

∗ −
∑
γ∈F

〈xγ, x
∗〉x∗γ

〉∣∣∣∣∣ = 0.

It follows that

ρΓ(x∗, spκ{x∗γ; γ ∈ Γ}) ≤ ρΓ(x∗, sp{x∗γ; γ ∈ F}) < ε.

Conversely, find F ⊂ Γ, with #F ≤ κ, such that ρΓ(x∗, sp{x∗γ; γ ∈ F ) < ε.
Assume that there exists γ0 ∈ Γ\F such that |〈xγ0 , x

∗〉| ≥ ε. Then, for every
y∗ ∈ sp{x∗γ; γ ∈ F} we get ρΓ(x∗, y∗) ≥ |〈xγ0 , x

∗ − y∗〉| = |〈xγ0 , x
∗〉| ≥ ε.

Hence ρΓ(x∗, sp{x∗γ; γ ∈ F}) ≥ |〈xγ0 , x
∗〉| ≥ ε, a contradiction. Therefore

{γ ∈ Γ; |〈xγ, x
∗〉| ≥ ε} ⊂ F and we are done.

(ii) follows immediately from (i).
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Let (X, ‖ · ‖) be a non-separable Banach space. Let µ be the first ordinal
whose cardinality is equal to the density dens X of X. A transfinite sequence
of linear projections (Pα)ω≤α≤µ on X is called a projectional resolution of
identity (PRI ) if Pω ≡ 0, Pµ ≡ IX (the identity on X) and for all α, β ≤ µ
we have ‖Pα‖ = 1, dens Pα(X) ≤ #α (the cardinality of α), PαPβ = PβPα =
Pmin(α,β), and for every x ∈ X the mapping α 7→ Pα(x) from the ordinal
segment [ω, µ] in its standard topology into X is continuous. A separable
projectional resolution of the identity (separable PRI) on X is a transfinite
sequence {Qα : ω ≤ α ≤ µ} of linear projections on X such that Qω ≡ 0,
Qµ ≡ IX , (Qα+1 − Qα)X is separable for ω ≤ α < µ, for all α, β ≤ µ
we have ‖Qα‖ < +∞, QαQβ = QβQα = Qmin(α,β), and for every x ∈ X,
x ∈ sp {(Qα+1 −Qα)(x); α < µ}. If Γ is a subset of X, a PRI (a separable
PRI) (Pα)ω≤α≤µ on X is said to be subordinated to Γ if Pα(γ) ∈ {0, γ} for all
γ ∈ Γ and all α ∈ [ω, µ].

Proposition 2 Let X be a Banach space with a total subset Γ which count-
ably supports X∗. Then X has a separable PRI subordinated to Γ.

Proof. If X is separable there is nothing to prove. Assume now that the
lemma holds for every Banach space with density character less than a certain
uncountable cardinal ℵ. Let X be a Banach space with density character
ℵ and with a total subset Γ which countably supports X. By [FGMZ04,
Proposition 1], X has a PRI (Pα)ω≤α≤µ subordinated to Γ. Now, for ω ≤
α < µ, the set (Pα+1−Pα)Γ (⊂ Γ∪{0}) is total in (Pα+1−Pα)X and countably
supports the dual ((Pα+1−Pα)X)∗. Moreover, dens (Pα+1−Pα)X is less than
ℵ. Then, by the induction hypothesis, (Pα+1 − Pα)X has a separable PRI
subordinated to (Pα+1 − Pα)Γ.
Now, it is enough to use [Fa97, Proposition 6.2.7].

Proof of Theorem 1. Necessity. A well known result of Amir and Lin-
denstrauss [AL68] yields a weakly compact Markuševič basis {xγ; x

∗
γ}γ∈Γ in

X, i.e. an Markuševič basis {xγ, x
∗
γ} such that {xγ} ∪ 0 is a weakly com-

pact set in X. This means that for every ε > 0 and every x∗ ∈ X∗ the
set {γ ∈ Γ; |〈xγ, x

∗
γ〉| ≥ ε} is finite. Now it is enough to apply Lemma 1.

The sufficiency is obvious since then the set {xγ : γ ∈ Γ} ∪ {0} must be
weakly compact. Alternatively, one can use the Mackey-Arens theorem in
this context.

Proof of Theorems 2 resp. 5. The sufficiency follows from [FGMZ04,
Thm. 2 resp. 6] and our Lemma 1. As regards the necessity, let {xγ; x

∗
γ}γ∈Γ
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be any Markuševič basis in X with all xγ’s in BX . Write γ instead of xγ.
Thus we have that Γ ⊂ BX . For this Γ find sets Γε

n, n ∈ IN, ε > 0, as in
(ii) of [FGMZ04, Theorem 2 resp. 6]. Then the (countable) family of sets

Γ
1/i
n , n, i ∈ IN, satisfies, according to Lemma 1, the condition of Theorem 2,

resp. Theorem 5.

Proof of Theorem 3. Combine [FGMZ04, Theorem 3] with Lemma 1 as
it was done in the the previous proof.

Proof of Theorem 4. The condition (i) in Proposition 1 implies that X
is WLD. Conversely, assume that X is WLD, that is, there exists a total
set ∆ ⊂ BX which countably supports X∗. By Proposition 2, we find in
X a separable PRI (Pα)ω≤µ subordinated to the set ∆. Fix an arbitrary
α ∈ [ω, µ). We note that ∆α := (Pα+1−Pα)∆ ⊂ ∆∪{0} and that this set is
total in the (separable) subspace (Pα+1−Pα)X. By the classical Markuševič
Theorem (see, for example, [F˜01, Theorem 6.41]), in (Pα+1 − Pα)X, there
exists a Markuševič basis {xα,n; x∗α,n}n∈IN such that xα,n ∈ sp∆ for every n ∈
IN. Define Qα : X → (Pα+1 − Pα)X by Qαx = (Pα+1 − Pα)x, x ∈ X. Then,
replacing PRI by separable PRI in the proof of [F, Proposition 6.2.4], we can
conclude that the system {xα,n, Q∗

αx∗α,n}n∈IN, ω≤α<µ forms a Markuševič basis
in X. It remains to check the cardinality condition in (i) of Proposition 1.
Consider any x∗ ∈ X∗ and any n ∈ IN. If α ∈ [ω, µ) satisfies 〈xα,n, x

∗〉 6= 0,
then 〈δ, x∗〉 6= 0 for some δ ∈ ∆α (⊂ ∆ ∪ {0}). Thus

#{(α, n) ∈ [ω, µ)× IN; 〈xα,n, x
∗〉 6= 0} ≤ #{δ ∈ ∆; 〈x∗, δ〉 6= 0} · ω = ω,

and (i) in Proposition 1 is verified.
Finally, assume that X is WLD and let {xγ; x

∗
γ}γ∈Γ be any Markuševič basis

in X. Put Y = {x∗ ∈ X∗; #{γ ∈ Γ; 〈xγ, x
∗〉 6= 0} ≤ ω}; this is a linear

set. Take any ξ in the weak∗ closure of the intersection Y ∩ BX∗ . Since
(BX∗ , w∗) is a Corson compact, there exists a sequence in Y ∩ BX∗ which
weak∗ converges to ξ ([F˜01, Exercise 12.35]). Therefore ξ ∈ Y ∩ BX∗ . We
have thus proved that the latter set is weak∗ closed. Then Banach-Dieudonné
Theorem ensures that Y is weak∗ closed. Moreover it contains {x∗γ; γ ∈ Γ},
so Y = X∗ and (i) is verified.

Proof of Proposition 1. (i)⇒(ii). Fix any x∗ ∈ X∗. Enumerate the
set {γ ∈ Γ; 〈xγ, x

∗〉 6= 0} as {γo
1 , γ

o
2 , . . .}. Find x∗1 ∈ sp{x∗γ; γ ∈ Γ} so
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that |〈xγo
1
, x∗ − x∗1〉| < 1. Enumerate {γ ∈ Γ; 〈xγ, x

∗
1〉 6= 0} by {γ1

1 , γ
1
2 , . . .}.

Find x∗2 ∈ sp{x∗γ; γ ∈ Γ} so that |〈xγo
1
, x∗ − x∗2〉| < 1

2
, |〈xγo

2
, x∗ − x∗2〉| < 1

2
,

|〈xγ1
1
, x∗−x∗2〉| < 1

2
, and |〈xγ1

2
, x∗−x∗2〉| < 1

2
. Assume that for some i ∈ IN we

found x∗j with “support” on Γ given by {γj
1, γ

j
2 . . .}, j = 1, 2, . . . , i. Find then

x∗i+1 ∈ sp{x∗γ; γ ∈ Γ} so that |〈xγj
l
, x∗ − x∗i+1〉| < 1

i+1
for all j = 0, 1, . . . , i

and l = 1, 2, . . . , i. Then we can easily see that 〈xγ, x
∗ − x∗i 〉 → 0 as i →∞

for every γ ∈ Γ, and (ii) is proved.

(ii)⇒(i). Take any x∗ ∈ X∗. Let x∗i ∈ sp{x∗γ; γ ∈ Γ}, i ∈ IN, be such
that 〈xγ, x

∗ − x∗i 〉 → 0 as i → ∞ for every γ ∈ Γ. Now if γ ∈ Γ satisfies
〈xγ, x

∗〉 6= 0, then necessarily 〈xγ, x
∗
i 〉 6= 0 for some i ∈ IN. Hence

{γ ∈ Γ; 〈xγ, x
∗〉 6= 0} ⊂

∞⋃
i=1

{γ ∈ Γ; 〈xγ, x
∗
i 〉 6= 0}

and the set on the right hand side is countable.

(i)⇒(iii). Let Y denote the set of all x∗ ∈ X∗ which lie in the weak∗ closure
of a countable subset of sp{x∗γ; γ ∈ Γ}. We want to show that Y = X∗.
Clearly, Y is linear. Let ξ be any element of the weak∗ closure of BY . (i)
guarantees that (BX∗ , w∗) is a Corson compact, hence ξ can be reached as
the weak∗ limit of a sequence (x∗i )

∞
i=1 in BY . Now, for every i ∈ IN we can

find a suitable at most countable set Ci ⊂ sp{x∗γ; γ ∈ Γ} so that x∗i lies in
the weak∗ closure of Ci. Then ξ lies in the (at most countable) set

⋃∞
i=1 Ci,

and so ξ ∈ Y . Now, the Banach-Dieudonné Theorem guarantees that Y is
weak∗ closed. But Y contains {x∗γ; γ ∈ Γ}. Therefore Y = X∗.

(iii)⇒(i). Fix any x∗ ∈ X∗. Find an at most countable set C ⊂ sp{x∗γ; γ ∈ Γ}
so that x∗ belongs to the weak∗ closure of C. Then

{γ ∈ Γ; 〈xγ, x
∗〉 6= 0} ⊂

⋃
y∗∈C

{γ ∈ Γ; 〈xγ, y
∗〉 6= 0},

and the latter set is countable.

Proof of Theorem 6. The sufficiency is trivial.
The necessity. Assume first that X is separable. By [F˜01, Theorem 6.41],
there exists a Markuševič basis {xn; x∗n}n∈IN in X such that xn ∈ spΓ and
‖xn‖ < 1

n
for every n ∈ IN. Then for every ε > 0 and for every x∗ ∈ BX∗ we

have #{n ∈ IN, |〈xn, x∗〉| ≥ 1
ε
} < 1

ε
and Lemma 1 finishes the proof.
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Second, assume that X is non-separable. Let Γ ⊂ BX be a total set satisfying
(1). This set countably supports X∗. Thus, by Proposition 2, there exists
a separable PRI (Pα)ω≤α<µ in X subordinated to Γ. Fix any α ∈ [ω, µ)
and denote Γα = (Pα+1 − Pα)Γ (⊂ Γ ∪ {0}). Fix any α ∈ [ω, µ). Let
{xα,n; x∗α,n}n∈IN be a Markuševič basis in the (separable) subspace (Pα+1 −
Pα)X such that xα,n ∈ conv (Γα∪−Γα) and ‖xα,n‖ < 1

n
for every n ∈ IN; this

can be done owing to [F˜01, Theorem 6.41] and by an eventual rescaling.
Define Qα : X → (Pα+1 − Pα)X by Qαx = (Pα+1 − Pα)x, x ∈ X. Then,
replacing PRI by separable PRI in the proof of [F, Proposition 6.2.4], we can
conclude that the system {xα,n, Q∗

αx∗α,n}n∈IN,ω≤α<µ forms a Markuševič basis
in X. Now fix any x∗ ∈ B∗

X and consider any ω ≤ α < µ and any n ∈ IN such
that |〈xα,n, x∗〉| ≥ ε. Then n < 1

ε
and there is γ ∈ Γα so that |〈γ, x∗〉| ≥ ε.

Now, if κ ∈ IN was found for our ε and our x∗ by (1), we can estimate that

#{(α, n) ∈ [ω, µ)× IN; |〈xα,n, x
∗〉| ≥ ε} <

1

ε
· κ.

Finally, Lemma 1 completes the proof.

Proof of Theorem 7. The sufficiency part is trivial. Let us prove the
necessity. To achieve this, assume for simplicity that `p(Γ) is a dense subset
of X and that ‖f‖ ≤ ‖f‖`p for every f ∈ `p(Γ). Fix any x∗ ∈ X∗. Then
the restriction x∗|`p(Γ) lies in `p(Γ)∗ (≡ `q(Γ)) where q = p

p−1
. Thus the

set {γ ∈ Γ; 〈eγ, x
∗〉 6= 0} is at most countable which means that the set

{eγ; γ ∈ Γ} countably supports all elements of X∗. Then we can apply
Proposition 2 and get a separable PRI (Pα)ω≤α≤µ on X subordinated to

the set Γ̃ := {eγ; γ ∈ Γ}. Fix any α ∈ [ω, µ). Put Γ̃α = (Pα+1 − Pα)Γ̃.

Note that Γ̃α ⊂ Γ̃ ∪ {0} and that Γ̃α is linearly dense in the (separable)
subspace (Pα+1−Pα)X. By [F˜01, Theorem 6.41], we find a Markuševič basis

{xα,n; x∗α,n}n∈IN in the subspace (Pα+1−Pα)X such that xα
n ∈ spΓ̃α (⊂ `p(Γ))

and ‖xα
n‖`p = 1 for every n ∈ IN. Define Qα : X → (Pα+1 − Pα)X by

Qαx = (Pα+1 − Pα)x, x ∈ X. Performing this for every ω ≤ α < µ, we get
the system { 1

n
xα,n; nQ∗

αx∗α,n}n∈IN, ω≤α<µ, which will be a Markuševič basis
in X, see, e.g, the proof of [Fa97, Proposition 6.2.4]. For every element
(aα,m; ω ≤ α < µ, m ∈ IN) of `p([ω, µ)× IN), with finite support, we define

T (aα,m) =
∞∑

m=1

∑
ω≤α<µ

aα,m
1
m

xα,m.
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This is a linear mapping from a dense subset of `p([ω, µ)× IN) into X. Now,
using Hölder inequality and a disjoint support argument in the last of the
following inequalities, we can estimate

‖T (aα,m)‖ ≤
∞∑

m=1

1

m

∥∥∥
∑

ω≤α<µ

aα,mxα,m

∥∥∥

≤
( ∞∑

m=1

1

mq

) 1
q
( ∞∑

m=1

∥∥∥
∑

ω≤α<µ

aα,mxα,m

∥∥∥
p) 1

p

≤ C
( ∞∑

m=1

∥∥∥
∑

ω≤α<µ

aα,mxα,m

∥∥∥
p

`p

) 1
p ≤ C

( ∞∑
m=1

∑
ω≤α<µ

|aα,m|p
) 1

p

= C‖(aα,m)‖`p
;

here we put
( ∑∞

m=1
1

mq

) 1
q

= C. Therefore the mapping T can be extended

to the whole space `p([ω, µ) × IN). Now, every canonical basic vector from
this space is mapped by T to 1

m
xα,m with a suitable m ∈ IN and ω ≤ α < µ.

Therefore the range of T is dense in X and the proof is finished.

Open problem. Characterize Banach spaces X such that every subspace
of X is WCG.
Remark. It is likely that in this problem additional axioms of set theory
may play a role (see, for example, the use of Martin’s axiom in [Av05] and
[MeSt]).
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