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This is a short survey on porm-attaining functionals. The first part deals with some basic
facts., most known. W streamline the prools iryinp to convey some geometrical
intuition. The second part focuses on seme new facls concerning a problem of Namicka
on renormings and norm-2itaining functionals.
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1. Introduction and notations

Let (X, § - 1) be a real Banach space, X* its dual. We shall use the same symbol
[+ | for the the corresponding dual norm in X* if there is no risk of misunder-
stand-ing, We shall denote, as usual, Bix ) the closed unit ball and Six ;-5 the unit
sphere of {X, {- §). If the norm {- |} is understood we shall speak about the Banach
space X. If S is a subset of X. conv{S) stands for its convex hull, 67V (S) its
closed hull, F(S) its absolutely convex hull (i.c., the convex hull of the circled hull

of §) and T (S) its closed absolutely convex hull.
If a subset K = X is w-compact then it is bounded and every clement x* e X'*

surely attains its supremum on K. If K is not w-compact, we cannot expect that
every element in X* should attain its supremum on K. A fundameatal result in
weak compactness says that a closed convex and bounded subset C of X is
w-compact if and only if every x* € X* attains its supremum on it [Jai}, [Jat].
A number of consequences follow from this important result. For example, the
Krein-Milman and the Eberlein-Smulyan Theorems can be casily deduced from it
as well as the following characterization of reflexivity: A Banach space X is
reflexive iff every element x* € X'* attains its supremum on By.

Most of the time we shall be interested in the unit ball By of (X, { - {). The set
of elements x* € X* which attain their supremum on By (i.e., its norm) is denoted
by A(X), or by A(X,]- [} if we want to signify the norm on X. It is, certainly,
a cone in X with vertex at 0. James Theorem for the unit ball of X says then that
a Banach space is reflexive if (and only i) A{X, |- 1E} == X* It is remarkable that
A [:X, t- 1) is always [} - [-dense in X* [BP]. This result plays also a key role in the
Theory (for the failure in the compicx case, see {Loq], [Loi] and [Loj]). Ths
survey focuses on the “size” of the sets A(X,[[-}]) and its complement
CA(X, B 1) = X*\NA(X, || ). The set A{X, §-1l) depends strongly on the norm,
so much that by changing it to an equivalent onc it can be completely different,
both in shape and in “size”. The following problem has been raiscd several times
even in this Winter School (by V. Zizler and V. Moatesinos): assume that a Banach
space has the property that all x* & X'* attain their norm on By Let [||- ] be
an equivalent norm on X, Is the corresponding statement for (X, Il IH) true, t.c.,
docs every clement x* € X* attains [f|x*[[| on Byx.y1y? Formulated in this way it is
not a “problem™ at all: we know from James Theorem that then X is reflexive so
the answer is, immediately, “yes”. The point is to prove the statement by
a “simple” geometric argument not depending on James Theorem. This will
provide an easier proof of this not-casy-at-all-to-prove resull (we may at this
moment remark that James provided an accessible proof for the case of scparable
Banach spaces (see [Ja72]). Simons isolated the combinatorial mechanism 1o his
“Simons inequality”, G. Godefroy's “faverite inequality in Analysis™ (sce, for
example, [Gos]). A simple proof of Simons inequality has been given by E. Qja
[Of]. and it is recorded in [FHH, Thm. 3.47]). The general result has a very delicate
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proof {(see the paper [Jat], Floret's version in [Fl] and a recent approach by M.
Morillon in [Mor]).

An instance of the drastic change in the set A(X,}-|) when going to an
equivalent norm is worked out betow: the set A (4, |- {i) which has a nonempty
| - {o-interior in £, (the norm-interior of a set M will be denoted by M)
However, there is an equivalent norm on 4, say [+, such that A%(A, - ) = @
{see Theorem 23). This was the starting point for providing an (atmost) complete
solution to Namioka's problem (sce 4.2.1 below and the preprint [AM]). |

2. Some tools
2.1 Simons inequality and some of ifs consequences

Simons inequality is an imporant tool in the geometry of Banach spaces. It
originates in Simon’s analysis of James' proof of his weak compactness characte-
rization. It is difficult to give an account of the broad scope of its applications. We
refer, for example, to [DGZ, Ch. [.3], {FHH, Ch. 3] and [Gos]. For a proof we refer
to [Qj] (see. also, [FHH, Lemma 3.47]}. Let's recall the main result. (£, (B). |+ )
is the space of all real and bounded functions defined on a non-cmpty sel B,
equipped with the supremum norm [ - {. Given a bounded set A in a Banach
space X we denote by scunv(/i] the set { At a4, € A, A, = 0 for all ne iy,

¥ 4 = 1}and we call it the superconvex envelope of A.

Lemma 1 (Simens inequality). Let B be a non-empry set. Let {x,) be a bounded
sequence in (£, (), || ||..) such that every element of sconv {x, : n € N) atains the
supreman on B, Let u = lim sup x,. Then

sup (B} = inf  sup x (B}. (B)

xecony [ xyine N}
A simple consequence is alse useful:

Corecllary 2. Let X be a Banach space and let A and B be two bounded subsets
in X* such that B © A. Let (x,) be a bounded sequence of X and assume that
every element of Tonv {x, : ne N} attains its supremum on A ar some point of B.
Let 1 2= lim sup x,. Then

sup u (B} = sup u (4},

Proof. Assume sup u{B) < « < sup u{A)} for some a. Find a € A such that w{a} > .
We may and do assume that x, (@) > « for all n. Given x € conv (x,ine N} we
have x(a) > «, hence sup x (A) > o for all xeconv {x,:ne N} We get

inf  sup x(B) = x > supu(B),

xcony fryinc N}

a contradiction with (1). M



It is possible to give a simple (and still useful) estimate for the distance (in
the comresponding norm in the bidual) from an element x**e X** to X by
computing valucs of x** on the unit ball of (X*, |- il} for some equivalent norm,
Precisely

dist(x**, X} < 2sup {x** By,

where Y:= Ker x**, This was obtained from the parallel hyperplane Lemma ({see,
for example, [FMZ]). In the separable sefting another estimate comes from
incquality (1); we state and prove it in Lemma 4. Recall that & (x}:=
= {x*€ By {x,x*y = 1i:~:ﬂ} for all x € X this set is called the subdifferential of
the norm at x. The following simple proposition is standard; it will be used in the
proof of Lemma 4.

Proposition 3. Let X be a Banach space. Then, given x,ye X, we have
d* |- Hx)(y) = sup . a il ((x)), where d* § || (x}{y} denotes the right derivative
af the norm at x in the dircction y.

For a proof see, for example, {Phl, Prop. 2.4].

Remark, Notice that a consequence of Proposition 3 is that [+ || in X™** is
differentiable at some 0 # xe X in the direction x**e X** if and only if
inf,..o Osc (x**,S(x,a)) = 0, where S(x,0):= {x*€ Bye: {x,x*> > x| — o}
and Osc{x**, M) denotes the oscillation of x** on the set M < X*. This is casily
seen by abserving that 2]+ [|{x} = NanoS{x.a)" (here 311 {x} is the Fréchet
differential of ||-{ in X** at x, ic., a subset of Syw., and S{x,a):=

= {x*€ By 1 xx*) > [Ixl — a})
Then we have

Lemma 4 ([ARI, Lemma 4)). Let X be a separable Banach space. Assume that
there exists x2e Sy and some r > O such that x3 + rBy. < A{X,{|}). Then, for
all xqe Sy such that {6, x5 = 1 we have

(x**, x¥ 4+ rdist (x**, X) < sup (x**8 1 | (x0)?, (2)
where the subdifferential is calculated in X***,

Proof. The conclusion is trvial for elements x** € X, so we shall assume
x** e X**\ X. We shall prove first that

(x** x5 + rdist(x**, X) < [x**]. (3)

Noticing that d ;= dist{x**, X} = [lg{x**)}l, where y: X** - X**/X is the ca-
nonical mapping, we can find x' € Sy: < X*** such that d = (x**,x">. As X is
separable we can find a sequence {x}} in By. which converges to x* on
X v {x**}.Fix £ > 0. We may then assume (x**,x) 2{(x**x") —e=d —¢
for all n. We shall apply Lemma 1 to the sequence (x§ + rxf).n, and the sct
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B:= By. From now on we work in /., {B). Obviously, 1= lim sup{x¥ ¥ rx}) =
= x§ From (1) we get

1 = sup I;T(B) = inf Sup I*(B) = inf Hx*[l. (4)

o ooony {5+ red} x* G eony {x§+ rxi}

We also have, for all a,

x** l
< Xy + r:-:,;"> p (c**xE + r(d — &)

x**{’ i

This applies also to every element x* € conv {xF+ rx}}, 50

Tx*)) = o ({x**xH + r(d — ¢}
and we obtain from (d4)
|
D2 gy (e + rd — e)),

from what (3) follows letting ¢ tend to 0.
In order to prove (2), fix xq € Sy such that (x4 x5 = 1. Fort > 0 apply (3) to

Xo + txX** to obtain
(X + txX**, x® 4 rdist{xg + x**,X) < [[xp + tx**,
1.c.,
I + t{x** x> + rtd < lxo + 1X**].

We get
xg + tx**f — {lxl

(x** x> +rd <

Letting ¢ | O we get
Cxrn, X + rd < d* I [ (xa){x**).
In order to obtain {2) it is enough now to apply Proposition 2. [

Remark. Some facts follow from the estimates (2} and (1). For example

1. If x** attains the supremum on By. at some norm-interior element of
A(X, i), then x**e X. In other words, the face of By.. defined by some
element x* € A°(X, 1 }) is contained in X. This ensures reflexivity of
a separable X such that A{X,{- [} = X*, proving James' Theorem in the

separable case.

2. Let (X, - ) be @ Banach space such that A{X, ]~ 1) aes non-empty interior
(in norm). Then, every sequence {x,‘,‘) in a convex li-ll-open subser O of
A(X, 1) which is w*-mudl is w-niel, In order to prove it, assume, on the
contrary, that (x}} is not w-null. Then, by passing to a subscquence if
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necessary, we can find x** € Sy.. and some & > 0 such that (xX**. x5 > ¢
for all # € N. From now on, cverything will be done in £ (By). The set O is-

| - §-open and convex, hence superconvex, and it is contained in A (X, ] |}
Put u := lim sup x} This is just 0. By Simons incquality (1) we have

e

£® o oonv fuli

= inf sup x* Byl (5)

Notice that for x* € conv {x4f5 we have {x**x*)> = ¢ It follows that
sup x* (By)(= sup x*(By..)} = # and we reach a contradiction with (5).

3. When A(X, - ]}is small

Take the separable Banach space (¢ |- o) U is very easy to show that
Afce, [+ I,,) is the subspace ¢ < £, of all elements in ¢, with finite support. This
set is the unien of a countable number of finite-dimensional subspaces of £, so 1l
is 1% category (in particalar CA (cﬂ, - o) is dense and A{ce, [ o) has empty
interior) in (¢, - [}5)-

The closed unit ball of {cq, | * {|,) is not dentable, i.c., we cannot produce sections
of arbitrary small diameter. In fact, every scction of By .y has norm-diameter 2.
It is not by chance that we chose ¢, as an example of how small the set A (X, fi-1])
can be: in fact. all separable Banach spaces sharing this property with (co. |- |) (e,
having non-dentable closed unit balls) behave in the same way: the set A(X, - )
is I* category in {X* |- [|). This result is duc to Bourgain and Stegall (see, for
example, [Bou, Thm. 3.5.5]). The proof nceds two very useful geometric femmata.
The first one, due to Phelps, has been called the paralle! hyperplane lemmina:

Lemma 5 (Parallel-hyperplane). Ler X be a Banach space and x* and y* mwo
norm-one elemenis in X* such that, for some 6 = 0 we have x,y*>| < ¢ for
every X € By s Ker x*, Then [ x* — y*[| < 20 or [[x* + y*|| < 24.

Figure 1: The Pamallel Hyperplane Lemma
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For a simple proof we refer to [FHH, Ex. 3.1}, This result has been recently
extended to the setting of multitinear forms [ACGZ].

The second one is due to Bourgain and Namioka and is frequendy referred as
the Superlemma. We provide a version of the statement equivalent, as it is easy 10
prove, to the original one (see, for example, [Dies]), although casier to visualize:

Lemma 6 (Superlemma). Ler X be a Banach space. Let A and B be two closed
convex and bounded subsets of X such that B & A and diam {B) < ¢ for some
£ > 0, Thes there exists a slice S of oiv(A v B} imersecting B and witl

diam(S) < &

Figure 2: The Supetlemima

Theorem 7 (Bourgain, Stegall, sce [Bou, Thm. 3.5.5]). Let K be a separable
closed, bounded, convex and non-dentable subset of a Banach space X. Then, the

set of all elements in X* attaining their suprema on K is 1" category in (x* I 1).

Proof. There exists some 8 > O such that every slice of K has a diamcter = 3d.
Let {x,:n e R} be a dense subset of K. Define, for ne N,

0,:= {x*e X*: x* defines a slice of K disjoint from B(x,8) n K}.

o)

Obviously, 0, is norm-open for every n e [, and A (K. I} [} < X*\.ﬂn,d Q.. It
is enough to prove that, for every n e N, 0, is norm-dense. To that end, fix ne i
and x*e X* and let 0 < ¢ < | be arbitrary. We shall prove that there exists
y* e 0, such that x* — y*|j < & Observe first that 0, is closed under multiples
by positive scalars, so we may henceforth assume fix*} = 1. Pick y € X such that
{x— px*> >0 for xeK and let M:=sup{lx— yl:xeK}. Choose
{ = 2M/s, tet Vis= Ker x* » B(0;0) and C:= ¥ + y. Apply Lemma 6 to the sets
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Theorem 9 ([Bou, Cor. 3.5.71). Let C be u closed convex subset of a Banach
space X. Then, the following are equivalent:

1. C has RNP.
2. Every {non empty) closed convex and bounded subset K of C satisfies

B{xu8) n K and C to obtain a slice of @iV {{B(x;d) n K) U C) intersecting
B{x.:8) n K and having diameter < 36. If K < onv {(B(x,;d) an) w C} we
slt?uld obtain a slice of K of diameter < 34, a contradiction. Tt follows that Ijhcn;:
exists Xo € K\Tonv {(B(x,;8) » K)w C). It is enough now to scparate X, and
conv{(B(x. 6} n K) u C} using some p* € Sy.; this clement obviously belongs to

Q, and Lemma 5 gives |x* — y*} < = K = conv (str. exp (K}),

where str. exp{K)} denotes the set of strongly exposed points of K.

3. Every (non empty) closed convex and bounded subser K of C satisfies that
the set of elements in X* attaining their suprema on K is 2™ caregory.

Remark. To our krowledge, it is not known whether Theorem 7 holds without
the separability assumption,

Another result in the same vein was obtained by Talagrand (sec [Bou, p. 58))
and K ] -
intd Kenderov, Moers and Sciffer [KMSI: Remark. Obviously, if A(X,}-1)is 1" category then CA (X, 0" I} is dense and

A{X, - I) has an empty norm-interior.

4. When A (X, {-])is big
4.1 The isometric approach

4.1.1 Using the norm topology

We fix a norm on a Banach space X. As cvery metric concept used here refers
(o this norm. we will omit ||+ [ from the subsequent expressions. So, for example,
A(X} will denote the set of elements in X* attaining their norms on the closed

unit batl By of X.
In some sense, the set A(J"{, i - 1{) is always big. This is the content of the

Bishop-Phelps Theorem:

Theorem 10 (Bishop-Phelps [BPY). For every Banach space (X, 4 i), the set
A(X,}-1) is abways norm-dense in X*.

X"= constant
If A{X) is as large as possible, the space is already reflexive. This is James
Theorem:

Theorem 11 (James [Jaa)). Let X be a Banach space. Then, X s reflexive if
(and only ify A(X) = X*.

Let us try to obtain a similar result by diminishing the requirements. We can
state that X is reflexive if O belongs to the norm-interior of A (X). However, this
is not an improvement: A (X} is a cone. As soon as 0 belongs to its norm-intesior
we have A{X} = X*and we arc in James Theorem’ setling,

A naive conjecturc is that A{X) having a non-cmpty norm-interior will be
sufficient for the reflexivity of X. Maybe a sort of translation will force then O to

y'= constant

Figure 3: Prof aof Theorem 7

Theorem 8 (Talagrand, Kenderov, Moors, Sciffer). Letr K be an infinite
compact topolagical space. Then A({C {K], | - f}m) is 1¥ category in C (H )*.

There is a kind of converse. Recall that a subsct M of a Banach spacc X has

the Radon-Nikodym Property (RNP, in short) if every closed, bounded and convex
subsct of M is dentable.
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be a norm-interior point of A{X). That this (dramatically) fails can be seen by the
(very easy to prove) fact that every Banach space has an equivalent norm such
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that, in this new norm, A (X) has a non-empty norm interior (see [AR1)). Right
now we can state the following result,

Proposition 12. Let X be a Banach space such that By = T (E) for some subset
I X, Assume thar there exist o€ Sy. and e e E such that {e, el >
> sup {{eedy e € EN{g} !} (such a point g is called a strong vertex). Then, 3 is
in the norm-interior gf A (X).

Proof. It 15 obvious that if jx* — g3l is small enough, then x* still attains its
norm {at the same point ¢g). [}

Remark. (£, [[- |};) has this property (and is not reflexive). We shall see later
(see Proposition 20} that every Banach space can be renormed to satisfy the
coadition in Proposition 12.

It is remarkable that a special kind of norm-open subsct of the set A{X, || - E|)
forces the space (o be reflexive.

Proposition 13 (Jiméncz-Sevilla, Moreno [JiM]). Let (j‘f, il - H] be a Banach
space, Assume that A(X, |-} contains a section S{x**;d}:= {x*e By.;
(x*,x*> > | — 8} for some x** € Sy.. and & > 0. Then X is reflexive,

The key idea of the proof of this resuit is to use in the dual the (dual) norm
whose unit ball ts given by

B = (5(.\:**;{5] —_ -":3) M ("* S[I**; 5) + IE‘),

Figurc 4: The now dual ball in Proposition 13
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where the clement xFe A* satisfies that x5 < 1 and :t:**(:-:a} > 1 — § and then

apply James’ Theorem.

It is natural now to look at the denting points of the unit ball of the dual in order
to obtain characterizations of reflexivity in terrmns of the set of norm-attaining
functionals. This is why we focus on two special properties. Recall fiest that a point
x € Sixq Is denting if for every & > 0 there exists x* € Sy 1.4 defining a slice of
By 1y which contains x and has diameter < &. Similarly, a point X* € Sixey.q 18
w*-denting if for cvery & > 0 there exists x &Sy defining a shce of
By« 1y which contains x* and has diameter < &.

Definition 14, A Banach space (X, ] |E) has the Mazur Intersection Property (in
short, MIP) whencver every closed convex and bounded subser of X is an
intersection of closed balls. A dual Banach space X* has the w*-Mazur Intersec-
tion Property (in short, w*-MIP} whenever every convex and w*-compact subset
is an intersection of closed balls.

MIP has been characterized by Giles, Gregory and Sims [GGS] in the following
terms: @ Banach space X, | - |[) has MIP if the only if the set of w*-denting points
of By« 4 is dense is Syxe .y Similarly. a dual Banach space (X*, | - |) has w*-MIP
if and only if the set of denting points of Bix y.y is dense in Six 1y [GGS). With this
characterizations at hand, it is now obvious that if (X,[j-}) has MIP then
(:Y"'*, i |1) has w*-MIP. It is also clear (usc the Bishop-Phelps Theorem and the
Smulyan characterization of Fréchet differentiability) that every Banach space with

a Frécher differentiable norm has MIP {Ph).
We have the following renorming characterization of reflexivity:

Theorem 15 (Jiménez-Sevilla, Moreno [JiM]). Let (X, |- ) be a Banach
space. Then the following are equivalent:

{i) X is reflexive.

(ii) There exists in X an equivalent norm [li-|il with MIP and such that

A(X, - 11)) has non-crpty norm-interior.
(iii) There exists in X an cquivalent norm |- || such that (X**|-ill) has
w*-MIP A(X.||-{) has non-empty norm-interior.

Proof. (i) = (ii} follows from the classical Troyanski's renorming theorem:
there exists an equivalent dual LUR norm {f - |} in X™*, so the corresponding norm
-8 in X is Fréchet differentiable: hence (X, ||l -{]l) has MIP (and it is reflexive,
s0 A{X, |- |Il} = X*)(ii) = (iti) is obvious. (iii) = (i). If (X** 1l |ll) has w*-MIP
then the set of denting points of Syyeyy is dense. At least one of them is in the
norm-interior of A(X,|li-1f), hence there exists a slice of Byayy inside
A(X,[{ - 1}). It is enough to apply now Proposition I3, O

Definition 16. A Banach space (X, 1]+ I} is very smooth if the duality mapping
x = & [H{x) from X\{0}inte Sx. is || i-w-continuous.
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This definition is due 10 Diestel and Faires [DF]. They proved, for example, that
if X** is very smooth then the space X is reflexive (sce, for example, [Dieg]).

The following result gives, in the separable case, another characterization of
reflexivity in tcrms of the set of norm-attaining functionals, now using the property
of being very smooth.

Theorem 17 (Acosta, Ruiz-Galdn [AR1)). Let (X, || - |I) be a separable Banach
space, Then the following are equivalent:

(i) X is reflexive.
(ii) There exists an equivalent norm |||} in X such that (X, 111} is very
smooth and A(X, [} W} has a non-empty norm-inierior.

Proof. (i) = (ii) is obvious. (ii} = (i): Let x§e A°(X, I ]), Ixd] = 1. Let
Xy€Sxey be such that {gxdy =1 U (X)) is very smooth,
1l (o) = Sgxees .y consists of only one point, namely xg. Then use incguality
(2 to conclude that x** & X for every x** € X**, 50 X is reflexive. 1

By {AR2, Thm. 1], the previous characterization also holds in general,

4.1.2 Using some other topologies

The use of the w* topology in the evaluation of “how big” the set A(X, | I} is
gives way 10 some ather sufficient conditions for reflexivity. Debs, Godefroy and
Saint-Raymond produced the following result. We shall omit its proof as it was
exteded by Jiménez-Sevilla and Moreno to non-necessarily-separable Banach

spaces.

Theorem 18 (Debs, Godefroy, Saint-Raymond {DGS]). Let (X, I} be a se-
parable Banach space such that A (X, 1 1) has a non-empty w*-interior. Then X i
reflexive.

Theorem 19 (Jiménez-Sevilta, Moreno [JiM]). Given a Banach space X,
either the set C 1= Sper g\ A (X, i) is w*-dense in Sy q. or X is reflexive. Also,
in the first case, Toiv  H{C} = Biyeyy.

In order to prove the first assertion, it is assumed that C 15 not w*-dense 1n the
unit sphere of the dual. Then the key idea is to use the dual norm whose unit ball
15 given by '

U= (W~ ¥ n {3 — W

where Wis a w*-closed set given by an intersection of slices of the dual unit ball
and y¥is a certain element in the norm intertor of M. Then it 1s shown that for this
new norm the assumption of James’ Theoreim is satisficd. For the second part, if
woitv H (C) were a proper set of the dual unit ball, then Proposition 13 can be
applied and X will be reflexive, a contradiction.

16

Figure 5: The new dual ball in Theorem 19

4.2 The isomorphic approach

We can trace the origin of James' characterization of reflexivity in an earlier
work by Klee: he proved [KI] that @ Banach space X, with the property that for
each equivalent norm ||| - [l we have A (X, i -1} = X% is reflexive. Of course, this
was superseded by the theorem of James, However, we shall return to Klee's
original approach (i.c.. allowing cquivalent norms) asking less in order to obtain
reflexivity. :

First of all, it is an elementary {and kaown) fact that every Banach space can
be renormed to have a set of norm-attaining functionals with a non-empty interior.
This is made precise in the following

Proposition 20, Let {X, " |l) be a Banach space. Take eq€ X\ By 1y Then
there exists an equivalent norm || - ||| in X such that ey € Sy 44 15 4 Strong vertex
of Bixyyy In particular, the set A (X, 1) has a non-empty norm-interior.

Proof. Define the ball of the new norm ||| | as conv {Byxp v { &)} It is
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obvious then that g is a strong ventex of the new norm (take a functional x* € X'*
strongly separating {g,} and By q); then x* attains the supremum on By gy pre-
cisely at &,). Apply now Proposition 12. ]

Figure 6: The new unit ball in Proposition 20

It is plain now that, in a very dramatic way, the conjecture that having
4 nop-empty norm-open set of norm-attaining functionals is not enough for

reflexivity.
4.2.1 A conjecture of I. Namioka

I. Namioka, in a seminar hold in Murcia (Spain} in 1999, posed the following

problem:
Assume (X, |- |)) is @ Banach space such that for every equivalent norm || - ]
the set A(X,||-|}) has a non-empty norm interior. Is then X reflexive?

No answer was known even for separable Banach spaces.
There were early attempts 1o solve this problem. A partial answer was given in

the following.

~ Theorem 21 (Acosta, Ruiz-Galén [ARL]). Let (X, - |l} be a separable Banach
space. If X is not weakly seqentially complete then there exists an equivalent norm

1§~ [} such that A°(X,11-[H) = ©.

~ The theorem relies heavily on a renorming result of Godefroy. Precisely, when
studying rough norms in Banach spaces, he proved the following result (part of
41 broader one, see [Gom, Thm. L2}): '

Theorem 22 (Godefroy, [Gom]). Let (X, |- iE) be a separable Banach space.
Let x** € X*\X such that there exists a sequence {x,) in X which w*-converges

18

to x**. Then there exists an equivalent norm ||| ||| on X such that the correspon-
ding norm ||| - ||| on X** is differentiable in ihe direction x** af every point x € X,

Proof. Let (d,) be a dense sequence in By. The norm

a2 172
Il i= 15l + (X 275Cdx"?) , xte X2, (6)
hom
is an equivalent strictly convex dual norm in X* We define now a second
equivalent dual norm [/ - [|| on X* by the formula
¥l = Ix*ly + 3277 sup [<% ~ i x*l. (7)
Hee | klo-n
The norm } - §, is strictly convex. It follows that |f|- |l ts strictly convex, too.
Hence |] - 1]l is the dual norm of a smooth norm at S,. If we can show that
lixth < Lo lx*lf =1, xF= x* (8)
implies {x** x5 — {x**x*) then, according to Proposition 3 and the remark
after it, we are done. Since the functionals defining ||| -{|| are w* - Is¢, the
conditions (8) imply that
for every me N, lim sup j{x — x, x| = sup |{x — x, x*>|. (9)
i ki=n fdzn

Take ¢ > 0. Since (x,) converges to x** in the w** topology, then it is
a w-Cauchy sequence, so there 1s N such that

sup {{x** — x, x*)| < ¢, (10)
o N

and also
sup |[(g — X, x*)| < ¢. (t1)
kimN

By the w*-convergence of (x?} to x*,
AlL,i 2z 5, [Cenxf— x*) < e, (12)
From {11) and (9), there is f» = f; such that

i= 5= sup |{x — x,x»] <,

kiz=N
and so

iz L= osup [x* — x, x| < ¢, (13)

iaN
By using (10), (12) and (13) we deduce that for { = I, it holds
|{x** x* — x| <3¢,

as we wanted to show., L]
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Proof of Theorem 21. If X is not weakly sequantially complete, sve can find
an element x** € X**\ X which is the w*-limit of a sequence in X. From Theorem
22 there exists an equivalent norm [§f -} on X such that the corresponding norm
[ 1 on X** is diffentiable at every point x € X in the direction x**, Assume that
A{X,1I- i} contains a norm-interior point xg Since the set of norm attaining
functionals is a cone, we can assume that xg'e Siyep . Choose Xg€ Sy p.y) such
that . X% == 1. Observe now that {x** x***) = {(x**x) for all x***¢
e 3 1H{xg) = Sixeeeyyy It is enough to use (2) to get distyy(x** X) =0,
a contradiction. ]

In view of Theorem 21 it is natural to ask what is the sitvation n the
nonseflexive weakly sequentially complete case. The prototype of such a space is
/.. The following result holds:

Theerem 23. ((AM, Thm. 1]) There is an equivalent norm |- |} in (£ 1 [1)
such that A% - 1) = 0.
[n fact, the set B = B, + A, wherc B,, is the closed unit ball for the usual norm

in ¢, and

.
A = cuslv”'{z,?,"-j;e,;{,] Al =1 Vi, ol B - B injﬂt:livc}

o)

is the unit ball of a norm satisfying the previous condition.
The above result can be used in order 1o get the following extension:

Theorem 24. {{AM, Thm. 2]} Let (X, il - EE) be a Banach space with an
isomorphic copy of £,. Then X has an equivalent norm p such that A°(X,p} # 0.

Proof. Consider Z, as a vector subspace of X, so |- induces on £, a norm

(again denoted by || - ) which is cquivatent to || - |, the canonical norm of £, Then
(€1 - 1)* = {¢. ] - ), where |- || denotes also the dual norm bothh on X* and on
.. (in the last case, a norm equivalent to |- |l.. Denote by ¢: X* — £ the

quotient mapping. Now, ¢, < £, is a norming subspace for (1. 1* [} (not necessa-
rily 1-norming), hence, by {FHH, Exercise V.5.22], N := g~ '(c} is a norming
subspace of X* for (X, |} - }}), in particular w*-dense in X* W can define on A an
equivalent norm || in such a way that N is l-porming for (X.|- 1) preciscly,
B(X,1" [} = B{X, T~ )™ The topology (X, N) on X of the pointwise con-
vergence on N obviously induces on ¢, the topology @(f1,co). Let - [If be
an equivalent norm on ¢, such that the set A (7, - 1) has an empty interior.
Such a norm exists by Theorem 23, and it is a dual norm. We may and do assume
that B(£, lll- ) = B(X,|']) n ¢,. Observe that B{7, 11 1) is a{}, co)-compact
(and so o {X,N)-compact), and that B(X,}]} is o (X, N}-closed. It is trivial then
that

W= B({¢ull 1) + B{X.]])

il

'« a bounded absolutely convex and o{X,N}-closed subset of X containing the
closed unit ball B(X,|-1). and so it is the closed unit ball of an equivalent norm
pon X. Now, fet x* € A(X,p}. [t is clear that its restriction q(x*) to £, belongs to
A2, 81- ). Assume for a moment that A{X,p) had a non-empty interior. The
restriction mapping q: {(X*.p) — (£.. i §l} is continuous and onto, so an open
mapping, taking open sets onto open sets. We should bave then that 4 (5, 1 1)
has a non-empty interior, a contradiction. ]

The previous result, Theorem 21 and Rosenthal’s £, Theorem can be used as the
main ingredients to deduce validity of Namioka's conjecture mentioned 1n 4.2.11n
the case of separable Banach spaces.

Theorem 25. ([AM. Thm. 3]) If a separable Banach space X is not reflexive
then it has an eguivalent norm ||| || such that A{X, - i) has an empty

norm-interior.

The spaces which can be renormed such that the set of nmorm attaiming
functionals has an empty norm-interior have the foliowing stability property:

Proposition 26. Assume that (X.} i) is a Banach space and Y < X s

a complemented subspace of (X, |- ) such that Y admits an equivalent narm |- {|
satisfying that A(Y. §}- ) has an empty norm-interior. Then It 1| can be extended

to a norm || - [ in X with the same properiy.
Proof. Let X = Y @ M be a topological direct sum. Define a norm on X by

iy + mil:= max {liyiLimi}  {re Y.me M)

This norm induces |[|- i} on Y. Of course, X* = Y* (B M* and the dual norm
is given by

H* 4+ m = i+ fm* (e Y mte MY

where we used the same symbol to denote a norm and the corresponding dual

norm. A functional x* = y* + m* attains its norm if ard only if both y* and m*
attain their corresponding norm, that is

A = A 1) + A1

Since any ball in X* contains a product of balls of ¥* and M* and, by
assumption, the sct A(Y,fil- [} has an empty norw-intedor, then the subsct
A(X, |- §) has also an empty norm-interior. 3

Recall that a Banach space X is weakly Lindeldf determined (in short, WLD),
if (Bys, w*) is a Cerson compact, i.¢., a compact subspace of a product of lines
such that every clement has only a countable number of non-zero coordinates.
Every weakly compactly generated Banach space (i.c.. a Banach space with
21
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a weakly compact linecarly dense subset) is WLD. It is well known that a WLD
Banach space X has the separable complementation praperty, i.e., the fact that for
every separable subspace Y < X there exists a separable space Z such that
Yo Z < X and Z is complemented in X (for these concepts and properties see,
for example, [Fa, Chap. 7] and [FHH, Chap. 12]).

The following result extends the class of spaces where Namioka's conjecture
holds truc:

Theorem 27. [If a non-reflexive Banach space X has the separable complemen-
tation property, in particular, if X is WLD, then it has an equivalent norm 1" |||
such thar A {}‘i’, - i) has an empty norm-interior.

Proof, If X is not reflexive, it contains, by the Ebetlein-Smulyan Theorem,
a non-reflexive and separable closed subspace Y. There exists then a complemented
and separable subspace Z containing Y, so in particular Z is not reflexive either.
It follows from Theorem 25 that Z can be renormed with a norm [l ||| such that
A(Z, §|- 1}) has an empty norm-interior. We apply now Proposition 26 to define
a nornt {i{* i[l on X with the same property. (]

Remark, There are Banach spaces X with the separable complementation
property and without a Projectional Resolution of the Identity; in particular, they
are not WILD, see {DGZ, Defimuon VI1.1 and Example V1.8.6].

5. Open Problems

There were several questions disseminated along this paper. We collect all of them
below.

1. Is Namioka's conjecture true in the case of a general (non-separable} Banach
space?

2. Let (X, 1-{) be a Banach space such that every x*e X* attains the
supremum on By ). Prove, without using James Theorem, that for every
equivalent noem on X the same is true.

3. Let {X, |} be a Banach space with a non-dentable unit ball. Is the set
A{X, -]} 1* category?

4. Let (X,}-]I) be a Banach space. Assume that for every nonemptly
norm-closed, bounded and convex subset A of X* there exists x € X which
attaing its supremum on A, Is X Asplund?

Acknowledgement, We would like to express our thanks to Prof. Manan
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reading of the manuscript (suggesting several changes to mmprove its final
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Measurability of Classes of Lipschitz Manifolds with respect
to Borel o-Algebra of Vietoris Topolegy
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The measurahility of the classes of all k-dimensional Lipschitz marifolds with respects
10 the Borel a-algebm of the Viclors tapology on the hyperspace of ¢losed subsets of
e d-dimensional Euclidean space is proved. By a k-dimensional Lipschilz manifold we
snderstand a manifold without boundary locally representable by bi-Lipschitz imagcs of
closed haifspaces in &' or BY iisell, respecnvely.

Introductian

The classes of k-dimensional Lipschitz manifolds can be used as a domain of
generalized curvature measures (cf. [3]). Further a kinematic formula fnr tl}is
general classes was proved. This enables us to consider the classes .D{ [tlpschltz
manifolds as an object of intcrest of stochastic geometry. In this d:rccum.h
measurability with respect to the usual o-algebra generated by the Victoris

tepology, is needed. .
The first section provides an overview, where the Yictoris topology of a hyper-

space of all closed subscts of a locally compact, Hausdorff and separable space l'-‘i
introduced. semicontinuity is defined and a relationship between the Vietoris
topology and the semicontinuity 1s briefly described.

Further the class . of k-dimensional Lipschitz manifolds, the class 4%, of
k-dimensional Lipschitz manifolds with boundary are introduced. Next, the class
Hurg of d — l-dimensional strong Lipschitz manifolds without t_mundary and
the class #/subgry of d-dimensional strong Lipschitz manifolds with boundary,
defined in [5], are presented. The latest two classes are locally rcpmscntahlj: :;15
a graph or a subgraph, respectively, qf some Lipschitz function defined on E7°
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