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ABSTRACT

"This short note announces a forthcoming paper [9] on the subject of character-
izing Banach spaces admitting uniformly Géateaux smooth equivalent norms in
terms of o-finite dual dentability indices.
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1. Introduction

Banach spaces admitting uniformly Gateaux smooth equivalent norms were charac-
terized in [4] as those having a uniform Eberlein compact dual unit ball (equipped
with the weak*-topology). In terms of Walsh-Paley martingales (a device used by
Enflo, James and Pisier in renormings of superreflexive Banach spaces by equivalent
uniformly Fréchet smooth norms), it was done by Troyanski [16]. A different tech-
nique to deal with the superreflexive case was used by Lancien [11]. Here we use
Lancien approach in the uniformly Géateaux smooth case.

Our notation is standard. Let M be a bounded subset of X. Given f € X*, we
denote | f|a = supen |f(2)] and, for a bounded set S c X*, we let diamp(S) :=
sup{|f — glm; f,g € S}, the M-diameter of S. Let € > 0 be given. We say that the
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dual norm || - || on X* is (M,e)-LUR if limsupy, | fn — flum < € whenever f, fn € Sx-
are such that lim,, || fn+ f|| = 2. The dual norm ||| on X™ is called o-LUR if for every
€ > 0, there is a decomposition Bx = Jy—; M such that Il -l is (Mg,e)-LUR for
every k € N. We say that the dual norm || -|| on X™ is M-L URif it is (M, )-LUR for
every € > 0. The dual norm || - || on X* is called weak”-LUR if it is M-LUR for every
finite subset M of X. We say that the norm ||-|| on X is M-uniformly Gateauz smooth
if imy, | fn — gn)m = 0 whenever fn,gn € Sx- are such that limy, | fr + gnll = 2. We
say that the norm ||- || on X is strongly uniformly Géteauz smooth if it is M -uniformly
Gateaux smooth for some bounded linearly dense set M in X. Using the Smulyan
duality (see, e.g., [2, Section L1]), we can also define that || - || on X is uniformly
Giteauz smooth [2, Definition IL6.5] if it is M-uniformly Gateaux smooth for every
finite subset M of X [2, Lemma II.6.6].

The notion of dual o-LUR norms represents a sort of a common roof over uniformly
Gateaux smooth and Fréchet smooth norms (see Theorem 2 and Theorem 4 below).
It is closely related to weak compactness (see [6] and [7]). In particular, the existence
of such a norm in a weakly Lindelof determined space implies that this space is
necessarily a subspace of a weakly compactly generated space [6]. We recall that a
Banach space X is weakly Lindeldf determined if (Bx~,w*) is a Corson compact space
(for definitions see, e.g., [2, Chapter VI], [3], and [5, Chapter 12]). By a weak"-slice
of a set D C X* we understand the intersection of D with a weak*-open halfspace
in X*. Given a bounded set M C X, € > 0, and D C Bx-, we introduce the
(M, €)-dentability derivative of D by

E me =1f €D; diamp(S) > € for each weak*-slice S of D containing f}

Let @ > 1 be an ordinal number and assume that we already defined a dentability

derivatve Dgz@, o) for every ordinal 8 < a. If a — 1 exists, we define the a-th (M,¢)-

dentability derivative of D as Dg?} o = (Dg:l‘::)) '( M) Otherwise, we put Dg;‘} o =

N s<a Déﬁ} o We observe a simple fact that, if D is convex and weak*-closed, then
so is DE M)

Definition 1. Let (X, ]| -||) be a Banach space. Let a bounded set M C Xande>0
be given. We say that M has finite (resp. countable) e-dual indez if (B X‘)E;}, o= @ for
some finite (resp. countable) ordinal number a. The first ordinal with this property,
if it exists, is called the e-dual index of M.

We say that a Banach space (X, || - ||) has o-finite (resp. o-countable) dual indez if,
for every € > 0, there is a decomposition Bx = U, ME such that each set M has
finite (resp. countable) e-dual index.

2. The results

Theorem 2. Let (X,| - |) be a Banach space. Then the following assertions are
equivalent.

(i) X admits an equivalent uniformly Gateauz smooth norm.

(i) X has o-finite dual indez.
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Theorem 3. Let (X, - ||) be a Banach space. Then the following assertions are
equivalent.

(i) X admits an equivalent strongly uniformly Gateaux smooth norm.

(ii) There ezists a bounded linearly dense set M C X that has finite £-dual indezx for
every € > 0.

Theorem 4. Assume that X has o-countable dual index. Then X* admits an equiv-
alent dual o-LUR, and hence weak*-LUR norm.

Theorem 5. Assume that a bounded set M in a Banach space X has countable -dual
indez for every € > 0. Then X™ admits an equivalent dual M-LUR norm.

Examples and remarks

As it is usual, (P) denotes that a Banach space has an equivalent norm with property
P. If this concerns a dual space X*, (P)* denotes that the equivalent norm on X*
is, moreover, a dual norm. The following diagram (see Figure 1) summarizes some of
the information given by the former results, and establish some connections among
them. The thick-boxed examples justify that the broken-line implications do not hold
(this is emphasized by a cross). The description of those examples is provided below.
The meaning of the acronyms should be clear from the context. For example, SUG
means strongly uniformly Gdteauz, and so on.

(i) A Banach space X is said to be strongly generated by a Banach space Z if
there exists a bounded linear operator T : Z — X such that, for every weakly
compact subset M of X and for every € > 0, there exists n € N such that
M C nT(Bz) + eBx (see [15]). Every Banach space strongly generated by
a superreflexive Banach space admits an equivalent norm that is M-uniformly
Giateaux smooth for every weakly compact set M C X (see, e.g., [8]); thus such
a porm is then uniformly Gateaux smooth. For a finite measure p, the space
Ly(p) is strongly generated by the Hilbert space Ly(u). Let Xo be the Rosenthal
subspace of Ly (p), for a certain finite measure p, that is not weakly compactly
generated ([14]). By Theorem 2, Xo has o-finite dual index. The space Xp is
weakly Lindelsf determined as it is a subspace of the weakly compactly gener-
ated space L1(y) (see, e.g., [5, Chapters 11 and 12)). Assume that X, contained
a bounded linearly dense set M that had countable e-dual index for every € > 0.
By Theorem 5, Xo* would then admit an equivalent dual M-locally uniformly
rotund norm. Thus Xy would be weakly compactly generated ([6, Theorem
1]). Therefore, X, is a space that has o-finite dual index but for no € > 0, Xo
contains a bounded linearly dense set having countable e-dual index.

(i) Let X be the Ciesielski-Pol space C(K), where K is a scattered compact of finite
height (see e.g., [2, Chapter VI]). Thus Bx has countable e-dual index for every
e > 0 ([12]). However, X does not admit any equivalent uniformly Gateaux
smooth norm. Indeed, otherwise X would be a subspace of a weakly compactly
generated Banach space ([4], see, e.g., [5, Theorem 12.18]). However, this is
not the case as there is no bounded linear injection of X into any co(T) (12,
Chapter VI]). Thus the Ciesielski-Pol space does not have o-finite dual index
by Theorem 2. This space is somehow an optimal example. Indeed, for every
¢ > 0 the e-dual index of By is not only countable but it is also the smallest
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(i) There exists M C X, linearly [ ®] = X* (M-LUR)"
dense, bounded, with wp-dual in-
dex.

[

= = < The following are equivalent X haf a-count:ible dual index

(i) (UG). » =X (a’LUR) a------- :
- =4 (ii) X has o-finite dual index. | a-M
i = X* (w-LUR)" - - - p&- -
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C(K) (Ciesielski-Pol)

Figure 1: Some connections and counterexamples

possible for a space that does not have a o-finite dual index. Namely, we have
that

sup {a; a is the dual index of By } <w

This follows from the separable determination of this index and from a compu-
tation made by P. Hijek and G. Lancien in [10].

(iii) The space X in [1, page 421] admits a dual weak*-LUR norm ([13]) but does not
have o-countable dual index. Indeed, otherwise, it would admit an equivalent
dual o-LUR norm by Theorem 4. Thus X would be a subspace of a weakly
compactly generated space as X is weakly Lindeldf determined ([6]). However,
as it is proved in 1], X is not a subspace of a weakly compactly generated space.

(iv) If M is the unit ball of the space C[0,w], then for every € > 0 there is an
ordinal a such that (B X')Ei}, ¢y = 0. This is so as C[0,w] is an Asplund space
(see, e.g., [2, Theorem 12.29]), and hence its dual is weak* dentable. However,
C|[0, w1] does not have o-countable dual index as otherwise C[0,w;] would admit
an equivalent dual strictly convex norm by Theorem 3, which is not the case by
a classical Talagrand’s result (see, e.g., [2, page 313]).
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