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Abstract

We prove that every Banach space containing an isomorphic copy
of `1 can be renormed in such a way that, in the new norm, the set
of norm-attaining functionals has an empty norm-interior. As a con-
sequence, we prove the rightness of a conjecture of Isaac Namioka in a
wide class of Banach spaces containing, for example, the weakly com-
pactly generated ones.

Mathematics Subject Classification (2000): 46B10, 46B04, 46B03.

In [AR1] and [AR2] some isometric conditions were provided (mainly smooth-
ness) such that if a Banach space satisfies one of these assumptions and the
set of norm attaining functionals has a non empty norm-interior, then the
space has to be reflexive.

In 1999 Isaac Namioka posed the following problem:
Question. Assume that X is a Banach space such that for every equivalent
norm, the set of norm attaining functionals has a nonempty norm-interior.
Does X have to be reflexive?

In [AR1, Corollary 7] it was proved that a separable Banach space that is
not weakly sequentially complete, admits an equivalent norm for which the
set of norm attaining functionals has an empty norm-interior. This result
gives a partial answer to the previous Question. However, there are even
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†Instituto de Matemática Pura y Aplicada. Universidad Politécnica de Valencia.
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1



some classical spaces which are weakly sequentially complete, non reflexive,
and it was not known whether or not they can be renormed to fulfill the
mentioned property.
We will prove that any space containing an isomorphic copy of `1 can be
renormed such that the set of norm attaining functionals has an empty norm-
interior. As a consequence of this fact and the result in [AR1, Corollary 7]
quoted above, we answer in the positive Namioka’s question in the class of
separable Banach spaces and, more generally, in the class of Banach spaces
with the separable complementation property.

In the following, for a Banach space (X, ‖ · ‖), B(X,‖·‖) will be its closed unit
ball, S(X,‖·‖) its unit sphere and X∗ the topological dual of X. NA(X, ‖ · ‖)
will denote the set of norm attaining functionals, i.e.,

NA(X, ‖ · ‖) := {x∗ ∈ X∗ : there exists x ∈ S(X,‖·‖), 〈x, x∗〉 = ‖x∗‖},

a set norm-dense in X∗, according to Bishop-Phelps Theorem.

Let’s begin by renorming `1 with a norm having the sought property.

Theorem 1 There is a Banach space (X, ‖·‖) isomorphic to (`1, ‖·‖1) such
that NA(X, ‖ · ‖) has an empty norm-interior.

Proof:
Let

W :=

{ ∞∑

n=1

λn
1
2n

eσ(n) : |λn| = 1, ∀n, σ : N −→ N injective

}
⊂ S(`1,‖·‖1),

(1)
where en denotes the n-th vector of the canonical basis of `1, and put

A := conv w∗(W ),

where w∗ denotes the topology σ(`1, c0) of the pointwise convergence on
the elements of c0. Since `1 has the Radon-Nikodým property, then A =
conv ‖·‖1(Ext(A)), where Ext(A) denotes the set of extreme points of A. In
view of the reverse Krein-Milman Theorem, Ext(A) ⊂ W

w∗ . Observe that

W
w∗ =

{ ∑

n∈M

λn
1
2n

eσ(n) : M ⊂ N, |λn| = 1, ∀n ∈ M, σ : M −→ N injective

}
.
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It is then easy to check that

Ext(A) ⊂ W
w∗ ∩ S`1 = W (2)

and so, A = conv ‖·‖1(W ).
We will prove that the space X = `1 with the equivalent norm ‖ · ‖ whose
closed unit ball is given by the set B, where

B := B`1 + A,

satisfies the desired statement.
First of all, B is a w∗-compact subset of `1, which is also convex, circled and
contains B`1 , hence B is the closed unit ball of an equivalent dual norm ‖ · ‖
in `1.
From this point on we use the identification X∗ ≡ `∞. We will denote also
by ‖ · ‖ the dual norm of ‖ · ‖ on X∗. Being ‖ · ‖ in X∗ a supremum on the
sum of two sets, we have, for x∗ = (x∗n) ∈ X∗,

‖x∗‖ = ‖x∗‖∞ + sup

{ ∞∑

n=1

1
2n
|x∗σ(n)| : σ : N −→ N injective

}
.

Since B = B`1 + A, a functional x∗ ∈ X∗ attains ‖x∗‖ if, and only if,
sup |〈B`1 , x

∗〉| and sup |〈A, x∗〉| are attained. It is known that a functional
x∗ on (`1, ‖·‖1) attains its norm, if, and only if, supn |x∗n| is attained at some
n. We will show that x∗ attains its supremum on A if, and only if, the set

M := {m ∈ N : |x∗m| ≥ lim sup |x∗n|}

is infinite.
If M is infinite, it is very easy to check that there is an injective mapping
τ : N −→ N such that M = τ(N) and |x∗τ(n)| ≥ |x∗τ(n+1)| for every n. Then,
if we fix an injective mapping σ : N −→ N we get that, for every n ∈ N,

n∑

k=1

1
2k
|x∗σ(k)| ≤

n∑

k=1

1
2k
|x∗τ(k)| ≤

∞∑

n=1

1
2n
|x∗τ(n)|.

Clearly, the supremum of x∗ on A is attained at

a0 :=
∞∑

n=1

1
2n

λneτ(n),
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where {λn} is a choice of normalized scalars satisfying that

λnx∗τ(n) = |x∗τ(n)|, ∀n ∈ N.

We proved that x∗ ∈ NA(X, ‖ · ‖) if the set M is infinite.
Suppose now that M is finite, say M := {n1, . . . , nk} where |x∗n1

| ≥ . . . ≥
|x∗nk

|. Assume that x∗ attains the supremum at A.
Every closed convex subset of `1 has the Radon-Nikodým property, hence
the Krein-Milman property. In particular, so it does the face A(x∗) of A
defined by x∗, a non-empty set by assumption. Every extreme point of A(x∗)
is an extreme point of A, hence an element in W by (2).
Let s ∈ W be an element where x∗ attains its supremum. As W is symmet-
ric, we can assume that all coordinates involved are non-negative. We have
necessarily weights 1/2, . . . , 1/2k at n1, . . . , nk, respectively. As regard to the
rest, put n for the coordinate of s with weight 1/2k+1 and find p ∈ N \M
such that |x∗p| > |x∗n| and r > k + 1, where 1/2r is the weight at p (such a
p exists in our situation). Keep all weights in place but at n and p, where
they are interchanged, defining a new element of W . Then, clearly,

1
2k+1

|x∗n|+
1
2r
|x∗p| <

1
2k+1

|x∗p|+
1
2r
|x∗n| .

This contradicts the sup-attaining at s.
We just proved that in case that M is finite, x∗ does not attain its supremum
on A and so x∗ does not attain its norm on (X, ‖ · ‖).
Clearly the subset of elements of X∗ = `∞ given by

{
z = (zn) ∈ `∞ : {m ∈ N : |zm| ≥ lim sup |zn|} is infinite

}
,

i.e., NA(X‖ · ‖), has an empty norm-interior.

The following result extend the previous one to Banach spaces containing
an isomorphic copy of `1.

Theorem 2 Let (X, ‖ · ‖) be a Banach space with an isomorphic copy of
`1. Then X has an equivalent norm p such that the set of norm attaining
functionals NA(X, p) ⊂ X∗ has an empty norm-interior.

Proof. Consider `1 as a subspace (algebraically) of X, so ‖ · ‖ induces on `1

a norm (again denoted by ‖ · ‖) which is equivalent to ‖ · ‖1, the canonical
norm of `1. Then (`1, ‖ · ‖)∗ = (`∞, ‖ · ‖), where ‖ · ‖ denotes also the dual
norm both on X∗ and on `∞ (in the last case, a norm equivalent to ‖ · ‖∞).
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Denote by q : X∗ −→ `∞ the quotient mapping. Now, c0 ⊂ `∞ is a norming
subspace for (`1, ‖·‖) (not necessarily 1-norming), hence, by [FHH, Exercise
V.5.22], N := q−1(c0) is a norming subspace of X∗ for (X, ‖·‖), in particular
w∗-dense in X∗. We can now define on X an equivalent norm | · | in such a

way that N is 1-norming for (X, |·|); precisely, B(X, |·|) := B(X, ‖ · ‖)σ(X,N)
.

The topology σ(X, N) on X of the pointwise convergence on N obviously
induces on `1 the topology σ(`1, c0). Let |‖ · |‖ be an equivalent norm on `1

such that the set NA(`1, |‖ · |‖) has an empty interior. Such a norm exists by
the previous Proposition and it is a dual norm. We may and do assume that
B(`1, |‖ · |‖) ⊃ B(X, | · |)∩ `1. Observe that B(`1, |‖ · |‖) is σ(`1, c0)-compact
(and so σ(X, N)-compact), and that B(X, | · |) is σ(X, N)-closed. It is trivial
then that

W := B(`1, |‖ · |‖) + B(X, | · |)
is a bounded absolutely convex and σ(X,N)-closed subset of X containing
the closed unit ball B(X, |·|), and so it is the closed unit ball of an equivalent
norm p on X. Now, let x∗ ∈ NA(X, p). It is clear that its restriction q(x∗)
to `1 belongs to NA(`1, |‖ · |‖). Assume for a moment that NA(X, p) had
a non-empty interior. The restriction mapping q : (X∗, p) → (`∞, |‖ · |‖) is
continuous and onto, then an open mapping, taking open sets onto open
sets. We should have then that NA(`1, |‖ · |‖) has a non-empty interior, a
contradiction.

We can prove now the validity of Namioka’s conjecture mentioned in the
introduction in the case of separable Banach spaces.

Theorem 3 If a separable Banach space X is not reflexive then it has an
equivalent norm |‖ · |‖ such that NA(X, |‖ · |‖) has an empty norm-interior.

Proof:
Assume that X is not reflexive. If X is not weakly sequentially complete
then, by [AR1, Corollary 7], there exists such a norm |‖ · |‖. If, on the
contrary, X is weakly sequentially complete, we have two possibilities: 1)
Every bounded sequence (xn) in X has a weakly Cauchy subsequence. This
obviously implies that X is reflexive, a contradiction. 2) There exists a
bounded sequence (xn) in X with no weakly Cauchy subsequence. According
to Rosenthal’s dichotomy [Ro], there exists a subsequence equivalent to the
canonical `1-basis, so X contains an isomorphic copy of `1 and, by Theorem
2, X has such a norm |‖ · |‖.

The spaces which can be renormed such that the set of norm attaining func-
tionals has a nonempty norm-interior have the following stability property:
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Proposition 4 Assume that (X, ‖ · ‖) is a Banach space and Y ⊂ X is a
complemented subspace of (X, ‖ · ‖) such that Y admits an equivalent norm
|‖ · |‖ satisfying that NA(Y, |‖ · |‖) has an empty norm-interior. Then |‖ · |‖
can be extended to a norm |‖ · |‖ in X with the same property.

Proof:
Let us consider the decomposition X = Y ⊕M . Define a norm on X by

|‖y + m|‖ := max{|‖y|‖, ‖m‖} (y ∈ Y,m ∈ M).

This norm induces |‖ · |‖ on Y . Of course, X∗ = Y ∗⊕M∗ and the dual norm
in given by

|‖y∗ + m∗|‖ = |‖y∗|‖+ ‖m∗‖ (y∗ ∈ Y ∗,m∗ ∈ M∗),

where we used the same symbol to denote a norm and the corresponding
dual norm. A functional x∗ = y∗ + m∗ attains its norm if, and only if, both
y∗ and m∗ attain their corresponding norm, that is

NA(X, |‖ · |‖) = NA(Y, |‖ · |‖) + NA(M, |‖ · |‖).

Since any ball in X∗ contains a product of balls of Y ∗ and M∗ and, by
assumption, NA(Y, |‖ · |‖) has an empty norm-interior, then the subset
NA(X, |‖ · |‖) has also an empty norm-interior.

Recall that a Banach space X is weakly Lindelöf determined (in short, WLD),
if (BX∗ , w∗) is a Corson compact, i.e., a compact subspace of a product
of lines such that every element has only a countable number of non-zero
coordinates. Every weakly compactly generated Banach space (i.e., a Banach
space with a weakly compact linearly dense subset) is WLD. It is well known
that a WLD Banach space X has the separable complementation property,
i.e., the fact that for every separable subspace Y ⊂ X there exists a separable
space Z such that Y ⊂ Z ⊂ X and Z is complemented in X (for these
concepts and properties see, for example, [Fa, Chap. 7] and [FHH, Chap.
12]).
The following result extends the class of spaces where Namioka’s conjecture
holds true:

Theorem 5 If a non-reflexive Banach space X has the separable comple-
mentation property, in particular, if X is WLD, then it has an equivalent
norm |‖ · |‖ such that NA(X, |‖ · |‖) has an empty norm-interior.
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Proof:
If X is not reflexive, it contains, by the Eberlein-Šmulyan Theorem, a non-
reflexive and separable closed subspace Y . There exists then a comple-
mented and separable subspace Z containing Y , so in particular Z is not
reflexive either. It follows from Theorem 3 that Z can be renormed with a
norm |‖ · |‖ such that NA(Z, |‖ · |‖) has an empty norm-interior. We apply
now Proposition 4 to define a norm |‖ · |‖ on X with the same property.

Remark. There are Banach spaces X with the separable complementation
property and without a Projectional Resolution of the Identity; in particular,
they are not WLD, see [DGZ, Definition VI.1.1 and Example VI.8.6].

Question. Is Namioka’s conjecture true in the case of a general (non-
separable) Banach space?

Acknowledgement. We would like to express our thanks to Prof. Marian
Fabian for his valuable remarks.
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