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Abstract

Every relatively convex-compact convex subset of a locally convex
space is contained in a Banach disc. Moreover, an upper bound for the
class of sets which are contained in a Banach disc is presented. If the
topological dual E′ of a locally convex space E is the σ(E′, E)-closure of
the union of countably many σ(E′, E)-relatively countably compacts sets,
then every weakly (relatively) convex-compact set is weakly (relatively)
compact.

1 Introduction

The possibility to include a certain bounded subset A of a locally convex space
(E, T ) in a Banach disc (i.e., a bounded absolutely convex set in (E, T ) such
that EA :=

⋃
n nA, endowed with the norm ‖ ·‖A given by the Minkowski gauge

of A, is a Banach space) has a big impact on its structure (in particular, the
set A becomes strongly bounded, i.e., bounded on bounded subsets of the space
(E′, σ(E′, E)) —the topological dual E′ of (E, T ) endowed with the topology
σ(E′, E) of the pointwise convergence on all points in E), and is the basic
fact in the proof of the important Banach-Mackey theorem (see, for example,
[4, §20.11(3)]). It is then convenient to be able to check if this happens with
a minimum of requirements. This is so for sequentially complete absolutely
convex bounded subsets of a locally convex space ([4, §20.11(2)]) and for convex
relatively countably compact subsets ([2, p. 17]).
Let (E, T ) be a locally convex space. An adherent point of a filter (Fi)I in E is
an element in

⋂
I Fi. An adherent point of a net (xi) in E is an adherent point

(in the former sense) of the filter (Fi := {xj : j ≥ i}).
We collect in the following definition several of the most useful concepts when
dealing with compactness in a general locally convex space.

Definition 1 A subset A of a locally convex space (E, T ) is said to be
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• (relatively) countably compact ((R)NK) if every sequence of points in A
has an adherent point in A (in A).

• (relatively) sequentially compact ((R)SK) if every sequence in A has a
subsequence which converges to a point in A (in A).

• (relatively) compact ((R)K) if every net in A has an adherent point in A
(in A)

• (relatively) convex-compact ((R)CK) if the following holds: suppose that
K1 ⊃ K2 ⊃ . . . is a decreasing sequence of closed convex subsets of E
for which all the intersections Kn ∩ A are non-empty; then the sequence
(Kn ∩A) has an adherent point in A (in A).

Obviously, (R)K sets are (R)NK and (R)SK sets are (R)NK, too. It is easy
to prove (see, for example, [4, §24.3(3)]) that every (R)NK set is (R)CK. The
converse does not hold. A RCK set is always bounded ([4, §24.3(3)]). The
closure of a RCK set does not need to be CK (see Example 9 below). The
concept of (R)CK is due to Šmulian (see references in [1, Ch. III, §2]).
As we mentioned before, the following result holds:

Theorem 2 ([2], p.17) Every convex RNK subset A of a locally convex space
E is contained in a Banach disk U ⊂ E.

In this paper, we extend this result to the class of RCK sets. We provide also an
upper bound for classes of sets which are contained in a Banach disc together
with some other results about CK sets; in particular, we prove that σ(E, E′)-
(R)CK implies σ(E, E′)-(R)K when there is a sequence of σ(E′, E)-RNK subsets
of E′ whose union is σ(E′, E)-dense in E′ (in particular, if (E, T ) has a coarser
metrizable locally convex topology).

2 Banach discs

The following result is well known, so its proof will be omitted.

Theorem 3 Let A be a bounded subset of a complete locally convex space E.
Then, the map

T : `1(A) −→ E

given by
(αa)a∈A

T−→
∑

a∈A

αa a

is well defined and continuous and D := T (B`1(A)) is a Banach disc.

The following result extends [4, §20.11(2)] and [2, p.17, Lemma] to the class of
convex and CK subsets of an arbitrary locally convex space.

Theorem 4 Every convex, RCK subset A of a locally convex space (E, T ) is
contained in a Banach disc D ⊂ E.
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Proof Let Ẽ be the completion of E and D the Banach disc in Ẽ constructed in
Theorem 3. We shall prove that, in fact, D ⊂ E. This will conclude the proof.
To that end, let us denote by ẼD the Banach space generated by D in Ẽ and
let ‖ · ‖D be its norm. Given a ∈ D, it can be written as a =

∑∞
i=1 αi ai (the

sum converges in ‖ · ‖D and, in particular, also in T ), where ai ∈ A, αi 6= 0 for
every i and

∑∞
i=1 |αi| ≤ 1. We can split this sum as

a =
∞∑

i=1

βi bi

︸ ︷︷ ︸
b

−
∞∑

i=1

γi ci

︸ ︷︷ ︸
c

,

where βi > 0, γi > 0, bi ∈ A and ci ∈ A.
Let sn =

∑n
1 βi, s =

∑∞
1 βi and xn = (1/sn)

∑n
1 βi bi. Then xn ∈ A and (xn)

‖ · ‖D-tends to (1/s) b ∈ Ẽ.
Let Kn be the sequence of closed convex sets in (E, T ) defined as

Kn = conv
[
{xi : i ∈ N}

⋂ (
1
s

b +
1
n

D

)]

Thus, K1 ⊃ K2 ⊃ · · · and Kn∩A 6= ∅ (observe that D contains the open unit ball
in the norm ‖ · ‖D). Therefore, there exists x ∈ E such that x ∈ ⋂∞

1 (Kn ∩A).
Let U(0) be any closed neighborhood of 0 in (E, T ). By the fact that D is
bounded, there exists n ∈ N such that (1/n)D ⊂ U(0). Then (all closures
taken in (E, T )),

x ∈ Kn ∩A ⊂ Kn ⊂ conv [(1/s) b + (1/n) D] =

= [(1/s) b + (1/n)D] ⊂ [(1/s) b + U(0)] = (1/s) b + U(0).

Therefore, x = (1/s) b, so b ∈ E. Analogously, c ∈ E. This implies, finally, that
a ∈ E.

If A is absolutely convex, we can be a little bit more precise, since we have D = A
if A is CK. In case that A is just RCK, we can only say that A ⊆ D ⊆ A.

Corollary 5 Let A be an absolutely convex, (R)CK subset of a locally convex
space. Then A is a Banach disc (A is contained in a Banach disc D such that
D ⊆ A).

Since convex RCK sets are contained in a Banach disc, we can use, for example,
[4, §20.11(3)] to conclude the following result.

Corollary 6 Every convex, RCK subset A of a locally convex space (E, T ) is
strongly bounded, i.e., supu∈B, x∈A |u(x)| < ∞, for each σ(E′, E)-bounded set
B ∈ E′.

Further criteria for weak compactness use, for example, the interchangeable
limit condition, as in [5] and [3]. Given a locally convex space (E, T ), we say
that two sets, A ⊂ E and B ⊂ E′, interchange limits (and we write A ∼
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B) if limn limm〈xn, x′m〉 = limm limn〈xn, x′m〉 whenever (xn) (resp. (x′m)) is a
sequence in A (resp. in B) such that both iterated limits exists. Let µ(E, E′) be
the Mackey topology on E, i.e., the topology on E of the uniform convergence
on the family of all absolutely convex and σ(E′, E) compact subsets of E′. A
central result in [3] is that a bounded subset of a µ(E,E′)-quasicomplete locally
convex space E is σ(E, E′)-RK if and only if it interchanges limits with every
absolutely convex σ(E′, E)-K subset of E′. If A is RCK then A ∼ B for every
absolutely convex and σ(E′, E)-K subset of E′. This can be easily deduced from
the following fact. Here, E′∗ denotes the algebraic dual of the topological dual
E′ of E.

Lemma 7 Every (R)CK set A in a locally convex space (E, T ) satisfies the
following property: for every sequence (fn) in E′ and for every element z ∈
A

(E′∗,σ(E′∗,E′))
, there exists a ∈ A

(
∈ A

(E,σ(E,E′))
)

such that 〈z − a, fn〉 = 0
for all n ∈ N.

This can be proved just by considering the decreasing sequence of closed convex
sets Kn := {x ∈ E : sup{|〈z − x, fi〉| : i = 1, 2, . . . , n} ≤ 1/n}.
With the following example we bound the class of sets in (E, T ) which are
included in a Banach disc.

Example 8 There exists a locally convex space (E, T ) and a bounded subset of
E interchanging limits with every absolutely convex σ(E′, E)-K subset of E′ and
yet not included in a Banach disc.

Proof. Let (E, T ) := (`1, σ(`1, ϕ)), where ϕ ⊂ `∞ is the linear space of all
eventually zero sequences (so σ(`1, ϕ) is the topology on `1 of the pointwise
convergence) and let A :=

∏∞
n=1[−n, n] ∩ `1, a convex and bounded subset of

E.
Observe that A is not β(`1, ϕ)-bounded, where β(`1, ϕ) denotes the strong topol-
ogy on `1 for the dual pair 〈`1, ϕ〉, i.e., the topology of the uniform convergence
on all the σ(ϕ, `1)-bounded subsets of ϕ. In order to see this, notice that the set
M := [−1, 1]N ∩ ϕ is σ(ϕ, `1)-bounded and yet sup{〈nen, en〉 : n ∈ N} = +∞,
where en is the n-th vector of the canonical basis of `1.
We shall prove that A ∼ U for every absolutely convex and σ(ϕ, `1)-compact
subset of ϕ. The set U is β(ϕ, `1)-bounded by the Banach-Mackey theorem (see,
for example, [4, §20.11(3)]) The topology β(ϕ, `1) is compatible with the dual
pair 〈RN, ϕ〉 (this can be seen as follows: given x := (xn) ∈ RN, the sequence
(
∑n

k=1 xkek)n is in `1 and σ(RN, ϕ)-converges to x, so x is in the σ(RN, ϕ)-
closure of a σ(`1, ϕ)-bounded subset of `1). It follows then that U lies in a
finite-dimensional subspace of ϕ, say span{wi : i = 1, 2, . . . , k}. Assume now
that for two sequences (am) in A and (un) in U the iterated limits

lim
n

lim
m
〈am, un〉, lim

m
lim
n
〈am, un〉

exists. Put un :=
∑k

i=1 λn
i wi, n ∈ N, where λn

i are real numbers. Let u0 :=∑k
i=1 λ0

i wi be a σ(ϕ, `1)-adherent point of the sequence (un) and a0 ∈ RN a
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σ(RN, ϕ)-adherent point of the sequence (an). It follows that

lim
n

lim
m
〈am, un〉 = lim

n
〈a0, un〉, lim

m
lim
n
〈am, un〉 = lim

m
〈am, u0〉 = 〈a0, u0〉.

The element u0 is also σ(ϕ,ϕ)-adherent to the sequence (un), so, in particular,
λ0

i is adherent to the sequence (λn
i )n for i = 1, 2, . . . , k. It follows that

〈a0, un〉 =
k∑

i=1

λn
i 〈a0, wi〉 n−→

k∑

i=1

λ0
i 〈a0, wi〉 = 〈a0, u0〉

and this proves the assertion. Again by the Banach-Mackey theorem, A is not
contained in a Banach disc as it is not β(`1, ϕ)-bounded.

3 Sometimes convex-compactness implies com-
pactness

In ([2, p.9]), an example of an absolutely convex sequentially compact subset A
in a locally convex space (E, T ) such that A is not countably compact is given.
We can prove that, in fact, A is not even convex-compact. This provides an
example of a relatively convex-compact set whose closure is not convex-compact.

Example 9 There exists a locally convex space with an absolutely convex, se-
quentially compact (and then countably compact and so convex-compact) subset
whose closure is not convex-compact.

To present the example, take a Xn be a disjoint sequence of uncountable sets
and define X :=

⋃∞
n=1 Xn. For f : X → R, the support of f is defined as

supp f := {x ∈ X | f(x) 6= 0}. Let the vector space

E :=

{
f : X → R | ∃n ∈ N : supp f ∩

∞⋃
m=n

Xm is countable

}

be endowed with the restriction of the topology Tp in RX of pointwise conver-
gence on X, denoted again Tp. Clearly, (E, Tp) turns out to be a locally convex
space. By using a diagonal procedure, it is easy to see that the set

A := {f ∈ E | supp f is countable, ‖f‖∞ ≤ 1}
is sequentially compact. However, the closure

A
(E,Tp)

(= {f ∈ E | ‖f‖∞ ≤ 1})
is not convex-compact. To see this, let fn be the characteristic function of⋃n

i=1 Xi, n ∈ N. The sequence (fn) is in A
(E,Tp)

and Tp-converges to f ∈ RX ,
the characteristic function of X, which is not in E. Consider now the sets

Kn = conv{fi}∞n , n ∈ N.

5



They form a decreasing sequence of closed convex sets in E such that Kn ∩
A

(E,Tp) 6= ∅. If g ∈ Kn then g(x) = 1 for all x ∈ ⋃n
k=1 Xk. Then the sequence

Kn ∩A
(E,Tp)

has no adherent point in E.

In Fréchet spaces or in locally convex spaces E with σ(E′, E)-separable dual
E′, several concepts of weak compactness coincide (theorems of Eberlein and
Eberlein-Šmulian, see for example [4, §24]). A criterium for weak compactness
in the spirit of the Eberlein-Šmulian theorem is given in [2, 3.10]:

Theorem 10 A locally convex space E which admits σ(E′, E)-relatively count-
ably compact sets Mn ⊂ E′, n ∈ N, such that

E′ =
∞⋃

n=1

Mn

σ(E′,E)

is σ(E, E′)-angelic (i.e., every σ(E, E′)-relatively countably compact subset of
E is σ(E, E′)-relatively compact, and its σ(E, E′)-closure coincides with its
σ(E, E′)-sequential closure). In particular, the following classes of subsets co-
incide:
(i) σ(E,E′)-RNK, σ(E, E′)-RSK, σ(E,E′)-RK,
(ii) σ(E, E′)-NK, σ(E, E′)-SK, σ(E, E′)-K.

We shall prove that there is a similar Eberlein-Šmulian theorem for the class of
σ(E, E′)-(R)CK sets. In fact, it can be stated for a more general class of sets
(see the following definition) including the σ(E,E′)-CK ones.

Definition 11 A subset A of a locally convex space (E, T ) is said to be σ(E,E′)-
(relatively) numerably compact (briefly, σ(E,E′)-(R)ΞK) if it is bounded and,
given a sequence (an) in A and a σ(E′∗, E′)-adherent point a′∗ ∈ E′∗ of (an),
then, for any sequence (x′n) in E′, there exists a point a ∈ A∩ span{an; n ∈ N}
(a ∈ span{an; n ∈ N}) such that 〈a′∗ − a, x′n〉 = 0 for all n ∈ N.

It is easy to see that σ(E, E′)-(R)CK sets are σ(E,E′)-(R)ΞK. Indeed, they are
bounded; the second condition can be proved just by considering the decreasing
sequence of closed convex sets Kn := {x ∈ span{an; n ∈ N}; sup{|〈a′∗ −
x, x′i〉|; i = 1, 2, . . . , n} ≤ 1/n}.

Theorem 12 Let (E, T ) be a locally convex space such that in E′ there is a
sequence (Mn) of σ(E′, E)-RNK subsets such that

⋃
n∈NMn is σ(E′, E)-dense

in E′ (in particular, this is the case if E(T ) has a locally convex topology coarser
than T and metrizable, or more particulary, if E′ is σ(E′, E)-separable). Then
every σ(E,E′)-(R)ΞK set is σ(E,E′)-(R)K.

Proof Let us assume first that (E′, σ(E′, E)) is separable. Let A be a σ(E, E′)-

(R)ΞK subset of E and a′∗ ∈ A
σ(E′∗,E′)

a σ(E′∗, E′)-adherent point of a se-
quence (an) in A. By definition, given a countable subset N ⊂ E′, there exists
aN ∈ A ∩ span{an; n ∈ N} (aN ∈ span{an; n ∈ N}), such that aN |N = a′∗|N .
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Let D be a countable and σ(E′, E)-dense subset of E′ and let x′ ∈ E′ be an
arbitrary point. Let us consider the points aD∪x′ and aD in E. They coincide
on D, so aD∪x′ = aD. Moreover, 〈a′∗, x′〉 = 〈aD∪x′ , x

′〉 (= 〈aD, x′〉). Therefore
a′∗|E′ = aD|E′ , and so a′∗ ∈ E and A is σ(E, E′)-(R)K since it is bounded.
Assume now that (E, T ) satisfies the requirement and let (an) be any sequence
in A. Let us consider the separable locally convex space F = span{an; n ∈ N}.
Its dual is F ′ = q(E′) = E′/F⊥, where q : E′ → E′/F⊥ is the canonical
mapping. It is easy to see that q(Mn) is σ(F ′, F )-RNK and that

⋃
n∈N q(Mn)

is dense in (F ′, σ(F ′, F )). Furthermore, the dual of (F ′, σ(F ′, F )) is F , which
is separable. Therefore we can apply Theorem 10 to conclude that q(Mn) is
σ(F ′, F )-RK, and so metrizable in (F ′, σ(F ′, F )). Thus, q(Mn) is separable,
and so it is (F ′, σ(F ′, F )), too.
We claim now that A ∩ F is σ(E, E′)-(R)ΞK. Indeed, let f ′∗ be a σ(F ′∗, F ′)-
adherent point of a given sequence (xn) in F , and let (f ′n) be a sequence in F ′.
The element f ′∗ ◦ q (∈ E′∗) is a σ(E′∗, E′)-adherent point to (xn) in E, and
there exists a sequence (e′n) in E′ such that q(e′n) = f ′n for all n ∈ N. By the
assumption, we can find a ∈ A ∩ span{xn; n ∈ N} ⊂ A ∩ F (a ∈ span{xn; n ∈
N} (⊂ F )) such that 〈e′∗ − a, e′n〉 = 0, i.e., 〈f ′∗ − a, f ′n〉 = 0, for all n ∈ N. This
proves the claim.
We can then apply the first part of the proof to the set A∩F to obtain that the
set {an : n ∈ N} is σ(F, F ′)-RNK (with an adherent point in A (in A

σ(F,F ′)
)).

This implies that A is σ(E, E′)-(R)NK. By Theorem 10, A is σ(E, E′)-(R)K.

We can extend now Theorem 10 to include the class of σ(E, E′)-(R)ΞK sets
(and so, in particular, the σ(E, E′)-(R)CK sets).

Theorem 13 Let (E, T ) be a locally convex space which admits σ(E′, E)-relatively
countably compact sets Mn ⊂ E′, n ∈ N, such that

E′ =
∞⋃

n=1

Mn

σ(E′,E)

.

Then, the following classes of sets coincide:
(i) σ(E,E′)-K, σ(E,E′)-SK, σ(E, E′)-NK, σ(E, E′)-CK, σ(E, E′)-ΞK.
(ii) σ(E, E′)-RK, σ(E, E′)-RSK, σ(E, E′)-RNK, σ(E, E′)-RCK, σ(E, E′)-RΞK.
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