Convex-compact sets and Banach discs

I. Monterde^{*} and V. Montesinos[†]

Abstract

Every relatively convex-compact convex subset of a locally convex space is contained in a Banach disc. Moreover, an upper bound for the class of sets which are contained in a Banach disc is presented. If the topological dual E' of a locally convex space E is the $\sigma(E', E)$ -closure of the union of countably many $\sigma(E', E)$ -relatively countably compacts sets, then every weakly (relatively) convex-compact set is weakly (relatively) compact.

1 Introduction

The possibility to include a certain bounded subset A of a locally convex space (E, \mathcal{T}) in a Banach disc (i.e., a bounded absolutely convex set in (E, \mathcal{T}) such that $E_A := \bigcup_n nA$, endowed with the norm $\|\cdot\|_A$ given by the Minkowski gauge of A, is a Banach space) has a big impact on its structure (in particular, the set A becomes strongly bounded, i.e., bounded on bounded subsets of the space $(E', \sigma(E', E))$ —the topological dual E' of (E, \mathcal{T}) endowed with the topology $\sigma(E', E)$ of the pointwise convergence on all points in E), and is the basic fact in the proof of the important Banach-Mackey theorem (see, for example, $[4, \S 20.11(3)]$). It is then convenient to be able to check if this happens with a minimum of requirements. This is so for sequentially complete absolutely convex bounded subsets of a locally convex space ($[4, \S 20.11(2)]$) and for convex relatively countably compact subsets ([2, p. 17]).

Let (E, \mathcal{T}) be a locally convex space. An adherent point of a filter $(F_i)_I$ in E is an element in $\bigcap_I \overline{F_i}$. An adherent point of a net (x_i) in E is an adherent point (in the former sense) of the filter $(F_i := \{x_j : j \ge i\})$.

We collect in the following definition several of the most useful concepts when dealing with compactness in a general locally convex space.

Definition 1 A subset A of a locally convex space (E, \mathcal{T}) is said to be

*Universidad Politécnica de Valencia, nachomonterde@gmail.com

[†]Instituto de Matemática Pura y Aplicada. Universidad Politécnica de Valencia.

vmontesinos@mat.upv.es. Research supported in part by Project MTM2005-08210 (Spain) and the Universidad Politécnica de Valencia.

Keywords: weakly compact sets, convex-compact sets, Banach discs.

- (relatively) countably compact ((R)NK) if every sequence of points in A has an adherent point in A (in A).
- (relatively) sequentially compact ((R)SK) if every sequence in A has a subsequence which converges to a point in A (in \overline{A}).
- (relatively) compact ((R)K) if every net in A has an adherent point in A (in A)
- (relatively) convex-compact ((R)CK) if the following holds: suppose that $K_1 \supset K_2 \supset \ldots$ is a decreasing sequence of closed convex subsets of E for which all the intersections $K_n \cap A$ are non-empty; then the sequence $(K_n \cap A)$ has an adherent point in A (in \overline{A}).

Obviously, (R)K sets are (R)NK and (R)SK sets are (R)NK, too. It is easy to prove (see, for example, $[4, \S24.3(3)]$) that every (R)NK set is (R)CK. The converse does not hold. A RCK set is always bounded ($[4, \S24.3(3)]$). The closure of a RCK set does not need to be CK (see Example 9 below). The concept of (R)CK is due to Šmulian (see references in [1, Ch. III, \S2]). As we mentioned before, the following result holds:

Theorem 2 ([2], p.17) Every convex RNK subset A of a locally convex space E is contained in a Banach disk $U \subset E$.

In this paper, we extend this result to the class of RCK sets. We provide also an upper bound for classes of sets which are contained in a Banach disc together with some other results about CK sets; in particular, we prove that $\sigma(E, E')$ -(R)CK implies $\sigma(E, E')$ -(R)K when there is a sequence of $\sigma(E', E)$ -RNK subsets of E' whose union is $\sigma(E', E)$ -dense in E' (in particular, if (E, \mathcal{T}) has a coarser metrizable locally convex topology).

2 Banach discs

The following result is well known, so its proof will be omitted.

Theorem 3 Let A be a bounded subset of a complete locally convex space E. Then, the map

$$T:\ell_1(A)\longrightarrow E$$

given by

$$(\alpha_a)_{a \in A} \xrightarrow{T} \sum_{a \in A} \alpha_a a$$

is well defined and continuous and $D := T(B_{\ell_1(A)})$ is a Banach disc.

The following result extends [4, §20.11(2)] and [2, p.17, Lemma] to the class of convex and CK subsets of an arbitrary locally convex space.

Theorem 4 Every convex, RCK subset A of a locally convex space (E, \mathcal{T}) is contained in a Banach disc $D \subset E$.

Proof Let \tilde{E} be the completion of E and D the Banach disc in \tilde{E} constructed in Theorem 3. We shall prove that, in fact, $D \subset E$. This will conclude the proof. To that end, let us denote by E_D the Banach space generated by D in E and let $\|\cdot\|_D$ be its norm. Given $a \in D$, it can be written as $a = \sum_{i=1}^{\infty} \alpha_i a_i$ (the sum converges in $\|\cdot\|_D$ and, in particular, also in \mathcal{T}), where $a_i \in A$, $\alpha_i \neq 0$ for every i and $\sum_{i=1}^{\infty} |\alpha_i| \leq 1$. We can split this sum as

$$a = \underbrace{\sum_{i=1}^{\infty} \beta_i b_i}_{b} - \underbrace{\sum_{i=1}^{\infty} \gamma_i c_i}_{c},$$

where $\beta_i > 0$, $\gamma_i > 0$, $b_i \in A$ and $c_i \in A$. Let $s_n = \sum_{1}^n \beta_i$, $s = \sum_{1}^\infty \beta_i$ and $x_n = (1/s_n) \sum_{1}^n \beta_i b_i$. Then $x_n \in A$ and (x_n) $\|\cdot\|_D$ -tends to $(1/s) b \in \widetilde{E}$.

Let K_n be the sequence of closed convex sets in (E, \mathcal{T}) defined as

$$K_n = \overline{\operatorname{conv}}\left[\{x_i : i \in \mathbb{N}\} \bigcap \left(\frac{1}{s} b + \frac{1}{n} D\right) \right]$$

Thus, $K_1 \supset K_2 \supset \cdots$ and $K_n \cap A \neq \emptyset$ (observe that D contains the open unit ball in the norm $\|\cdot\|_D$. Therefore, there exists $x \in E$ such that $x \in \bigcap_{1}^{\infty} (K_n \cap A)$. Let U(0) be any closed neighborhood of 0 in (E, \mathcal{T}) . By the fact that D is bounded, there exists $n \in \mathbb{N}$ such that $(1/n) D \subset U(0)$. Then (all closures taken in (E, \mathcal{T})),

$$x \in \overline{K_n \cap A} \subset K_n \subset \overline{\operatorname{conv}} \left[(1/s) \, b + (1/n) \, D \right] =$$
$$= \overline{\left[(1/s) \, b + (1/n) \, D \right]} \subset \overline{\left[(1/s) \, b + U(0) \right]} = (1/s) \, b + U(0).$$

Therefore, x = (1/s) b, so $b \in E$. Analogously, $c \in E$. This implies, finally, that $a \in E$.

If A is absolutely convex, we can be a little bit more precise, since we have D = Aif A is CK. In case that A is just RCK, we can only say that $A \subseteq D \subseteq \overline{A}$.

Corollary 5 Let A be an absolutely convex, (R)CK subset of a locally convex space. Then A is a Banach disc (A is contained in a Banach disc D such that $D \subseteq \overline{A}$).

Since convex RCK sets are contained in a Banach disc, we can use, for example, $[4, \S 20.11(3)]$ to conclude the following result.

Corollary 6 Every convex, RCK subset A of a locally convex space (E, \mathcal{T}) is strongly bounded, i.e., $\sup_{u \in B, x \in A} |u(x)| < \infty$, for each $\sigma(E', E)$ -bounded set $B \in E'$.

Further criteria for weak compactness use, for example, the interchangeable limit condition, as in [5] and [3]. Given a locally convex space (E, \mathcal{T}) , we say that two sets, $A \subset E$ and $B \subset E'$, interchange limits (and we write $A \sim$

B) if $\lim_n \lim_m \langle x_n, x'_m \rangle = \lim_m \lim_n \langle x_n, x'_m \rangle$ whenever (x_n) (resp. (x'_m)) is a sequence in A (resp. in B) such that both iterated limits exists. Let $\mu(E, E')$ be the Mackey topology on E, i.e., the topology on E of the uniform convergence on the family of all absolutely convex and $\sigma(E', E)$ compact subsets of E'. A central result in [3] is that a bounded subset of a $\mu(E, E')$ -quasicomplete locally convex space E is $\sigma(E, E')$ -RK if and only if it interchanges limits with every absolutely convex $\sigma(E', E)$ -K subset of E'. If A is RCK then $A \sim B$ for every absolutely convex and $\sigma(E', E)$ -K subset of E'. This can be easily deduced from the following fact. Here, E'^* denotes the algebraic dual of the topological dual E' of E.

Lemma 7 Every (R)CK set A in a locally convex space (E, T) satisfies the following property: for every sequence (f_n) in E' and for every element $z \in \overline{A}^{(E'^*,\sigma(E'^*,E'))}$, there exists $a \in A \left(\in \overline{A}^{(E,\sigma(E,E'))} \right)$ such that $\langle z - a, f_n \rangle = 0$ for all $n \in \mathbb{N}$.

This can be proved just by considering the decreasing sequence of closed convex sets $K_n := \{x \in E : \sup\{|\langle z - x, f_i \rangle| : i = 1, 2, ..., n\} \leq 1/n\}.$ With the following example we bound the class of sets in (E, \mathcal{T}) which are

included in a Banach disc.

Example 8 There exists a locally convex space (E, \mathcal{T}) and a bounded subset of E interchanging limits with every absolutely convex $\sigma(E', E)$ -K subset of E' and yet not included in a Banach disc.

Proof. Let $(E, \mathcal{T}) := (\ell_1, \sigma(\ell_1, \varphi))$, where $\varphi \subset \ell_\infty$ is the linear space of all eventually zero sequences (so $\sigma(\ell_1, \varphi)$ is the topology on ℓ_1 of the pointwise convergence) and let $A := \prod_{n=1}^{\infty} [-n, n] \cap \ell_1$, a convex and bounded subset of E.

Observe that A is not $\beta(\ell_1, \varphi)$ -bounded, where $\beta(\ell_1, \varphi)$ denotes the *strong* topology on ℓ_1 for the dual pair $\langle \ell_1, \varphi \rangle$, i.e., the topology of the uniform convergence on all the $\sigma(\varphi, \ell_1)$ -bounded subsets of φ . In order to see this, notice that the set $M := [-1, 1]^{\mathbb{N}} \cap \varphi$ is $\sigma(\varphi, \ell_1)$ -bounded and yet $\sup\{\langle ne_n, e_n \rangle : n \in \mathbb{N}\} = +\infty$, where e_n is the *n*-th vector of the canonical basis of ℓ_1 .

We shall prove that $A \sim U$ for every absolutely convex and $\sigma(\varphi, \ell_1)$ -compact subset of φ . The set U is $\beta(\varphi, \ell_1)$ -bounded by the Banach-Mackey theorem (see, for example, [4, §20.11(3)]) The topology $\beta(\varphi, \ell_1)$ is compatible with the dual pair $\langle \mathbb{R}^{\mathbb{N}}, \varphi \rangle$ (this can be seen as follows: given $x := (x_n) \in \mathbb{R}^{\mathbb{N}}$, the sequence $(\sum_{k=1}^n x_k e_k)_n$ is in ℓ_1 and $\sigma(\mathbb{R}^{\mathbb{N}}, \varphi)$ -converges to x, so x is in the $\sigma(\mathbb{R}^{\mathbb{N}}, \varphi)$ closure of a $\sigma(\ell_1, \varphi)$ -bounded subset of ℓ_1). It follows then that U lies in a finite-dimensional subspace of φ , say span $\{w_i : i = 1, 2, \ldots, k\}$. Assume now that for two sequences (a_m) in A and (u_n) in U the iterated limits

$$\lim_{n}\lim_{m}\langle a_{m}, u_{n}\rangle, \quad \lim_{m}\lim_{n}\langle a_{m}, u_{n}\rangle$$

exists. Put $u_n := \sum_{i=1}^k \lambda_i^n w_i$, $n \in \mathbb{N}$, where λ_i^n are real numbers. Let $u_0 := \sum_{i=1}^k \lambda_i^0 w_i$ be a $\sigma(\varphi, \ell_1)$ -adherent point of the sequence (u_n) and $a_0 \in \mathbb{R}^{\mathbb{N}}$ as

 $\sigma(\mathbb{R}^{\mathbb{N}}, \varphi)$ -adherent point of the sequence (a_n) . It follows that

 $\lim_n \lim_m \langle a_m, u_n \rangle = \lim_n \langle a_0, u_n \rangle, \quad \lim_m \lim_n \langle a_m, u_n \rangle = \lim_m \langle a_m, u_0 \rangle = \langle a_0, u_0 \rangle.$

The element u_0 is also $\sigma(\varphi, \varphi)$ -adherent to the sequence (u_n) , so, in particular, λ_i^0 is adherent to the sequence $(\lambda_i^n)_n$ for $i = 1, 2, \ldots, k$. It follows that

$$\langle a_0, u_n \rangle = \sum_{i=1}^k \lambda_i^n \langle a_0, w_i \rangle \xrightarrow{n} \sum_{i=1}^k \lambda_i^0 \langle a_0, w_i \rangle = \langle a_0, u_0 \rangle$$

and this proves the assertion. Again by the Banach-Mackey theorem, A is not contained in a Banach disc as it is not $\beta(\ell_1, \varphi)$ -bounded.

3 Sometimes convex-compactness implies compactness

In ([2, p.9]), an example of an absolutely convex sequentially compact subset A in a locally convex space (E, \mathcal{T}) such that \overline{A} is not countably compact is given. We can prove that, in fact, \overline{A} is not even convex-compact. This provides an example of a relatively convex-compact set whose closure is not convex-compact.

Example 9 There exists a locally convex space with an absolutely convex, sequentially compact (and then countably compact and so convex-compact) subset whose closure is not convex-compact.

To present the example, take a X_n be a disjoint sequence of uncountable sets and define $X := \bigcup_{n=1}^{\infty} X_n$. For $f : X \to \mathbb{R}$, the support of f is defined as supp $f := \{x \in X \mid f(x) \neq 0\}$. Let the vector space

$$E := \left\{ f : X \to \mathbb{R} \, | \, \exists \, n \in \mathbb{N} : \, \text{supp} \, f \cap \bigcup_{m=n}^{\infty} X_m \text{ is countable} \right\}$$

be endowed with the restriction of the topology \mathcal{T}_p in \mathbb{R}^X of pointwise convergence on X, denoted again \mathcal{T}_p . Clearly, (E, \mathcal{T}_p) turns out to be a locally convex space. By using a diagonal procedure, it is easy to see that the set

$$A := \{ f \in E \mid \text{supp } f \text{ is countable, } \|f\|_{\infty} \le 1 \}$$

is sequentially compact. However, the closure

$$\overline{A}^{(E,\mathcal{T}_p)} \quad (= \{ f \in E \mid ||f||_{\infty} \le 1 \})$$

is not convex-compact. To see this, let f_n be the characteristic function of $\bigcup_{i=1}^n X_i$, $n \in \mathbb{N}$. The sequence (f_n) is in $\overline{A}^{(E,\mathcal{T}_p)}$ and \mathcal{T}_p -converges to $f \in \mathbb{R}^X$, the characteristic function of X, which is not in E. Consider now the sets

$$K_n = \overline{\operatorname{conv}} \{f_i\}_n^\infty, \ n \in \mathbb{N}$$

They form a decreasing sequence of closed convex sets in E such that $K_n \cap \overline{A}^{(E,\mathcal{T}_p)} \neq \emptyset$. If $g \in K_n$ then g(x) = 1 for all $x \in \bigcup_{k=1}^n X_k$. Then the sequence $K_n \cap \overline{A}^{(E,\mathcal{T}_p)}$ has no adherent point in E.

In Fréchet spaces or in locally convex spaces E with $\sigma(E', E)$ -separable dual E', several concepts of weak compactness coincide (theorems of Eberlein and Eberlein-Šmulian, see for example [4, §24]). A criterium for weak compactness in the spirit of the Eberlein-Šmulian theorem is given in [2, 3.10]:

Theorem 10 A locally convex space E which admits $\sigma(E', E)$ -relatively countably compact sets $M_n \subset E'$, $n \in \mathbb{N}$, such that

$$E' = \overline{\bigcup_{n=1}^{\infty} M_n}^{\sigma(E',E)}$$

is $\sigma(E, E')$ -angelic (i.e., every $\sigma(E, E')$ -relatively countably compact subset of E is $\sigma(E, E')$ -relatively compact, and its $\sigma(E, E')$ -closure coincides with its $\sigma(E, E')$ -sequential closure). In particular, the following classes of subsets coincide:

(i) $\sigma(E, E')$ -RNK, $\sigma(E, E')$ -RSK, $\sigma(E, E')$ -RK, (ii) $\sigma(E, E')$ -NK, $\sigma(E, E')$ -SK, $\sigma(E, E')$ -K.

We shall prove that there is a similar Eberlein-Smulian theorem for the class of $\sigma(E, E')$ -(R)CK sets. In fact, it can be stated for a more general class of sets (see the following definition) including the $\sigma(E, E')$ -CK ones.

Definition 11 A subset A of a locally convex space (E, \mathcal{T}) is said to be $\sigma(E, E')$ -(relatively) numerably compact (briefly, $\sigma(E, E')$ -(R) Ξ K) if it is bounded and, given a sequence (a_n) in A and a $\sigma(E'^*, E')$ -adherent point $a'^* \in E'^*$ of (a_n) , then, for any sequence (x'_n) in E', there exists a point $a \in A \cap \overline{\operatorname{span}}\{a_n; n \in \mathbb{N}\}$ $(a \in \overline{\operatorname{span}}\{a_n; n \in \mathbb{N}\})$ such that $\langle a'^* - a, x'_n \rangle = 0$ for all $n \in \mathbb{N}$.

It is easy to see that $\sigma(E, E')$ -(R)CK sets are $\sigma(E, E')$ -(R)EK. Indeed, they are bounded; the second condition can be proved just by considering the decreasing sequence of closed convex sets $K_n := \{x \in \overline{\text{span}}\{a_n; n \in \mathbb{N}\}; \sup\{|\langle a'^* - x, x'_i \rangle|; i = 1, 2, ..., n\} \le 1/n\}.$

Theorem 12 Let (E, \mathcal{T}) be a locally convex space such that in E' there is a sequence (M_n) of $\sigma(E', E)$ -RNK subsets such that $\bigcup_{n \in \mathbb{N}} M_n$ is $\sigma(E', E)$ -dense in E' (in particular, this is the case if $E(\mathcal{T})$ has a locally convex topology coarser than \mathcal{T} and metrizable, or more particulary, if E' is $\sigma(E', E)$ -separable). Then every $\sigma(E, E')$ -(R) ΞK set is $\sigma(E, E')$ -(R)K.

Proof Let us assume first that $(E', \sigma(E', E))$ is separable. Let A be a $\sigma(E, E')$ -(R) Ξ K subset of E and $a'^* \in \overline{A}^{\sigma(E'^*, E')}$ a $\sigma(E'^*, E')$ -adherent point of a sequence (a_n) in A. By definition, given a countable subset $N \subset E'$, there exists $a_N \in A \cap \overline{\operatorname{span}}\{a_n; n \in \mathbb{N}\}$ $(a_N \in \overline{\operatorname{span}}\{a_n; n \in \mathbb{N}\})$, such that $a_N|_N = a'^*|_N$. Let *D* be a countable and $\sigma(E', E)$ -dense subset of *E'* and let $x' \in E'$ be an arbitrary point. Let us consider the points $a_{D\cup x'}$ and a_D in *E*. They coincide on *D*, so $a_{D\cup x'} = a_D$. Moreover, $\langle a'^*, x' \rangle = \langle a_{D\cup x'}, x' \rangle (= \langle a_D, x' \rangle)$. Therefore $a'^*|_{E'} = a_D|_{E'}$, and so $a'^* \in E$ and *A* is $\sigma(E, E')$ -(R)K since it is bounded.

Assume now that (E, \mathcal{T}) satisfies the requirement and let (a_n) be any sequence in A. Let us consider the separable locally convex space $F = \overline{\text{span}}\{a_n; n \in \mathbb{N}\}$. Its dual is $F' = q(E') = E'/F^{\perp}$, where $q : E' \to E'/F^{\perp}$ is the canonical mapping. It is easy to see that $q(M_n)$ is $\sigma(F', F)$ -RNK and that $\bigcup_{n \in \mathbb{N}} q(M_n)$ is dense in $(F', \sigma(F', F))$. Furthermore, the dual of $(F', \sigma(F', F))$ is F, which is separable. Therefore we can apply Theorem 10 to conclude that $q(M_n)$ is $\sigma(F', F)$ -RK, and so metrizable in $(F', \sigma(F', F))$. Thus, $q(M_n)$ is separable, and so it is $(F', \sigma(F', F))$, too.

We claim now that $A \cap F$ is $\sigma(E, E')$ -(R) $\exists K$. Indeed, let f'^* be a $\sigma(F'^*, F')$ adherent point of a given sequence (x_n) in F, and let (f'_n) be a sequence in F'. The element $f'^* \circ q$ ($\in E'^*$) is a $\sigma(E'^*, E')$ -adherent point to (x_n) in E, and there exists a sequence (e'_n) in E' such that $q(e'_n) = f'_n$ for all $n \in \mathbb{N}$. By the assumption, we can find $a \in A \cap \overline{\operatorname{span}}\{x_n; n \in \mathbb{N}\} \subset A \cap F$ ($a \in \overline{\operatorname{span}}\{x_n; n \in \mathbb{N}\}$ ($\subset F$)) such that $\langle e'^* - a, e'_n \rangle = 0$, i.e., $\langle f'^* - a, f'_n \rangle = 0$, for all $n \in \mathbb{N}$. This proves the claim.

We can then apply the first part of the proof to the set $A \cap F$ to obtain that the set $\{a_n : n \in \mathbb{N}\}$ is $\sigma(F, F')$ -RNK (with an adherent point in A (in $\overline{A}^{\sigma(F,F')}$)). This implies that A is $\sigma(E, E')$ -(R)NK. By Theorem 10, A is $\sigma(E, E')$ -(R)K.

We can extend now Theorem 10 to include the class of $\sigma(E, E')$ -(R) Ξ K sets (and so, in particular, the $\sigma(E, E')$ -(R)CK sets).

Theorem 13 Let (E, \mathcal{T}) be a locally convex space which admits $\sigma(E', E)$ -relatively countably compact sets $M_n \subset E'$, $n \in \mathbb{N}$, such that

$$E' = \bigcup_{n=1}^{\infty} M_n$$

Then, the following classes of sets coincide: (i) $\sigma(E, E')$ -K, $\sigma(E, E')$ -SK, $\sigma(E, E')$ -NK, $\sigma(E, E')$ -CK, $\sigma(E, E')$ - ΞK . (ii) $\sigma(E, E')$ -RK, $\sigma(E, E')$ -RSK, $\sigma(E, E')$ -RNK, $\sigma(E, E')$ -RCK, $\sigma(E, E')$ -R ΞK .

Acknowledgments. We thank an anonymous referee for his/her remarks that helped to improve the final version of this paper.

References

- [1] M. M. Day: Normed Linear Spaces. Spriger-Verlag, 1973. Zbl 0268.46013
- K. Floret: Weakly compact sets. Lecture Notes in Math., Springer-Verlag 801 (1980). Zbl 0437.46006

- [3] A. Grothendieck: Critères de compacité dans les espaces fonctionnels généraux. Amer. J. Math. 74 (1952), 168–186. Zbl 0046.11702
- [4] G. Köthe: *Topological Vector Spaces I*, Springer-Verlag, 1969. Zbl 0179.17001
- [5] V. Pták: A combinatorial lemma on the existence of convex means and its applications to weak compactness. Proc. Symp. Pure Math. VII, Convexity (1963), 437-450. Zbl 0144.16903