Convex-compact sets and Banach discs
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Abstract

Every relatively convex-compact convex subset of a locally convex
space is contained in a Banach disc. Moreover, an upper bound for the
class of sets which are contained in a Banach disc is presented. If the
topological dual E’ of a locally convex space E is the o(E’, E)-closure of
the union of countably many o(E’, E)-relatively countably compacts sets,
then every weakly (relatively) convex-compact set is weakly (relatively)
compact.

1 Introduction

The possibility to include a certain bounded subset A of a locally convex space
(E,T) in a Banach disc (i.e., a bounded absolutely convex set in (E,T) such
that £4 := (J,, nA, endowed with the norm || - || 4 given by the Minkowski gauge
of A, is a Banach space) has a big impact on its structure (in particular, the
set A becomes strongly bounded, i.e., bounded on bounded subsets of the space
(E',o(FE’, E)) —the topological dual E’ of (E,T) endowed with the topology
o(E',E) of the pointwise convergence on all points in E), and is the basic
fact in the proof of the important Banach-Mackey theorem (see, for example,
[4, §20.11(3)]). It is then convenient to be able to check if this happens with
a minimum of requirements. This is so for sequentially complete absolutely
convex bounded subsets of a locally convex space ([4, §20.11(2)]) and for convex
relatively countably compact subsets ([2, p. 17]).

Let (E,T) be a locally convex space. An adherent point of a filter (F;); in E is
an element in (; Fi. An adherent point of a net (x;) in E is an adherent point
(in the former sense) of the filter (F; := {z; : j > i}).

We collect in the following definition several of the most useful concepts when
dealing with compactness in a general locally convex space.

Definition 1 A subset A of a locally convex space (E,T) is said to be
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(relatively) countably compact ((R)NK) if every sequence of points in A
has an adherent point in A (in A).

(relatively) sequentially compact ((R)SK) if every sequence in A has a
subsequence which converges to a point in A (in A).

(relatively) compact ((R)K) if every net in A has an adherent point in A
(in A)

(relatively) convex-compact ((R)CK) if the following holds: suppose that
Ky D Ky D ... is a decreasing sequence of closed conver subsets of E
for which all the intersections K, N A are non-empty; then the sequence
(K,, N A) has an adherent point in A (in A).

Obviously, (R)K sets are (R)NK and (R)SK sets are (R)NK, too. It is easy
to prove (see, for example, [4, §24.3(3)]) that every (R)NK set is (R)CK. The
converse does not hold. A RCK set is always bounded ([4, §24.3(3)]). The
closure of a RCK set does not need to be CK (see Example 9 below). The
concept of (R)CK is due to Smulian (see references in [1, Ch. III, §2]).

As we mentioned before, the following result holds:

Theorem 2 ([2], p.17) Every conver RNK subset A of a locally convex space
E is contained in a Banach disk U C E.

In this paper, we extend this result to the class of RCK sets. We provide also an
upper bound for classes of sets which are contained in a Banach disc together
with some other results about CK sets; in particular, we prove that o(E, E')-
(R)CK implies o (F, E')-(R)K when there is a sequence of o(E’, E)-RNK subsets
of E' whose union is o(E’, F)-dense in E’ (in particular, if (F,7) has a coarser
metrizable locally convex topology).

2 Banach discs

The following result is well known, so its proof will be omitted.

Theorem 3 Let A be a bounded subset of a complete locally convexr space E.
Then, the map

T:0(A)—FE
given by

T
(Ca)aca — Y aa

a€A

is well defined and continuous and D := T (By, a)) is a Banach disc.

The following result extends [4, §20.11(2)] and [2, p.17, Lemma)] to the class of
convex and CK subsets of an arbitrary locally convex space.

Theorem 4 FEvery convex, RCK subset A of a locally convex space (E,T) is
contained in a Banach disc D C E.



Proof Let E be the completion of E and D the Banach disc in E constructed in
Theorem 3. We shall prove that, in fact, D C E. This will conclude the proof.
To that end, let us denote by Ep the Banach space generated by D in E and
let || - ||p be its norm. Given a € D, it can be written as a = > =, a; a; (the
sum converges in | - ||p and, in particular, also in 7'), where a; € A, o; # 0 for
every i and Y .o, ;| < 1. We can split this sum as

oo oo
a= Zﬁibi _Z%Cz‘,
i—1 i—1

—_—— —
b c
where 3; > 0,; >0,b, € Aand ¢; € A.
Let s, = Y7 Biy s = >0 Bi and @, = (1/s,) Y7 Bi bi. Then x, € A and ()
I - || p-tends to (1/s)b € E.
Let K, be the sequence of closed convex sets in (E,7T) defined as

anconv[{xi:ieN}ﬂCbJr;Dﬂ

Thus, K1 D Ko D ---and K,NA # () (observe that D contains the open unit ball
in the norm || - ||p). Therefore, there exists z € E such that z € (;° (K,, N A).
Let U(0) be any closed neighborhood of 0 in (E,7). By the fact that D is
bounded, there exists n € N such that (1/n)D C U(0). Then (all closures

taken in (E,T)),

reK,NACK, cconv|[(1/s)b+ (1/n) D] =

=[(1/s)b+ (1/n)D] C [(1/s)b+U(0)] = (1/s) b+ U(0).

Therefore, z = (1/5) b, so b € E. Analogously, ¢ € E. This implies, finally, that
ac k. |

If A is absolutely convex, we can be a little bit more precise, since we have D = A
if A is CK. In case that A is just RCK, we can only say that A C D C A.

Corollary 5 Let A be an absolutely convez, (R)CK subset of a locally convex
space. Then A is a Banach disc (A is contained in a Banach disc D such that
DCA).

Since convex RCK sets are contained in a Banach disc, we can use, for example,
[4, §20.11(3)] to conclude the following result.

Corollary 6 FEvery conver, RCK subset A of a locally convex space (E,T) is
strongly bounded, i.e., sup,cp yea lu(z)| < oo, for each o(E', E)-bounded set
BeFE.

Further criteria for weak compactness use, for example, the interchangeable
limit condition, as in [5] and [3]. Given a locally convex space (E,7), we say
that two sets, A C E and B C FE’, interchange limits (and we write A ~



B) if lim,, lim,, (%, z},,) = lim,, lim,, (x,,, z},,) whenever (x,) (resp. (z},)) is a
sequence in A (resp. in B) such that both iterated limits exists. Let u(E, E’) be
the Mackey topology on E, i.e., the topology on E of the uniform convergence
on the family of all absolutely convex and o(E’, E) compact subsets of E'. A
central result in [3] is that a bounded subset of a p(E, E')-quasicomplete locally
convex space E is o(E, E")-RK if and only if it interchanges limits with every
absolutely conver o(E’', E)-K subset of E'. If A is RCK then A ~ B for every
absolutely convex and o(E’, E)-K subset of E’. This can be easily deduced from
the following fact. Here, E’* denotes the algebraic dual of the topological dual

E' of E.

Lemma 7 Fvery (R)CK set A in a locally convex space (E,T) salisfies the
following property: for every sequence (f) in E' and for every element z €

Ao EnE )), there exists a € A (E AFoEr ))) such that (z — a, fn) = 0

for all n € N.

This can be proved just by considering the decreasing sequence of closed convex
sets Ky, i={z € E: sup{|[(z —z, fi)|: i=1,2,...,n} < 1/n}.

With the following example we bound the class of sets in (F,7) which are
included in a Banach disc.

Example 8 There exists a locally convex space (E,T) and a bounded subset of
E interchanging limits with every absolutely convex o(E', E)-K subset of E' and
yet not included in a Banach disc.

Proof. Let (E,7T) := ({1,0(¢1,¢)), where ¢ C £ is the linear space of all
eventually zero sequences (so o({1,¢) is the topology on ¢; of the pointwise
convergence) and let A := [[ 2 [-n,n] N {1, a convex and bounded subset of
E.
Observe that A is not 8(¢1, ¢)-bounded, where 5(¢1, ¢) denotes the strong topol-
ogy on ¢ for the dual pair (¢4, ), i.e., the topology of the uniform convergence
on all the o (¢, ¢1)-bounded subsets of ¢. In order to see this, notice that the set
M = [-1,1]N N ¢ is o(p,¢1)-bounded and yet sup{(nen,e,) : n € N} = +oo,
where e,, is the n-th vector of the canonical basis of /5.
We shall prove that A ~ U for every absolutely convex and o (¢, ¢1)-compact
subset of ¢. The set U is 8(p, £1)-bounded by the Banach-Mackey theorem (see,
for example, [4, §20.11(3)]) The topology B(p,¢1) is compatible with the dual
pair (RN, ) (this can be seen as follows: given x := (,,) € RY, the sequence
(Yr_, Tke)n is in £ and o(RY, p)-converges to z, so z is in the o(RY, p)-
closure of a o(¢1,p)-bounded subset of ¢1). It follows then that U lies in a
finite-dimensional subspace of ¢, say span{w; : i = 1,2,...,k}. Assume now
that for two sequences (a,,) in A and (uy,) in U the iterated limits

li7rln ligln(am, Up ), linrln liTILn(am, Up)
exists. Put u, := Zle Atw;, n € N, where A} are real numbers. Let ug :=
Zle Aw; be a o(p, f1)-adherent point of the sequence (u,) and ap € RY a



o (RN, p)-adherent point of the sequence (a,,). It follows that

lim lim (@, un) = lim{ag, uy), lmlim{a,,u,) = lim{am,, uo) = {ag, uo).
n m n m n m

The element ug is also o(y, p)-adherent to the sequence (u,,), so, in particular,
MY is adherent to the sequence (A7), for i = 1,2,... k. It follows that

k k

(ag, un) = Z)\ﬂao,wﬁ = ZA?(ao,wi> = (ag, uo)

=1 i=1

and this proves the assertion. Again by the Banach-Mackey theorem, A is not
contained in a Banach disc as it is not 3(¢1, ¢)-bounded. |

3 Sometimes convex-compactness implies com-
pactness

In (]2, p.9]), an example of an absolutely convex sequentially compact subset A
in a locally convex space (E,T) such that A is not countably compact is given.
We can prove that, in fact, A is not even convex-compact. This provides an
example of a relatively convex-compact set whose closure is not convex-compact.

Example 9 There exists a locally convexr space with an absolutely conver, se-
quentially compact (and then countably compact and so convex-compact) subset
whose closure is not convexr-compact.

To present the example, take a X,, be a disjoint sequence of uncountable sets
and define X := (J2, X,,. For f : X — R, the support of f is defined as
supp f:={z € X | f(z) # 0}. Let the vector space

(oo}
E = {f:X—>REIn€N: supp f N U X iscountable}

m=n

be endowed with the restriction of the topology 7, in R of pointwise conver-
gence on X, denoted again 7,. Clearly, (E,7,) turns out to be a locally convex
space. By using a diagonal procedure, it is easy to see that the set

A:={f € E|supp f is countable, ||f|| <1}
is sequentially compact. However, the closure
—(E.Tp)
A ={f e Elllflle <1})

is not convex-compact. To see this, let f,, be the characteristic function of

. . —(B,T,
U, X, n € N. The sequence (f,) is in AP™) and T,-converges to f € R¥,
the characteristic function of X, which is not in E. Consider now the sets

K, =conv{f;}:°, neN.



They form a decreasing sequence of closed convex sets in E such that K, N
A #0. If g € K, then g(z) =1 for all € |J;_; X). Then the sequence
K,n Z(E’Tp) has no adherent point in E. |

In Fréchet spaces or in locally convex spaces E with o(FE’, E)-separable dual
E’, several concepts of weak compactness coincide (theorems of Eberlein and
Eberlein-Smulian, see for example [4, §24]). A criterium for weak compactness
in the spirit of the Eberlein-Smulian theorem is given in [2, 3.10]:

Theorem 10 A locally convex space E which admits o(E', E)-relatively count-
ably compact sets M,, C E', n € N, such that

o(E’,E)
E =] M,

n=1

is o(E, E')-angelic (i.e., every o(E, E")-relatively countably compact subset of
E is o(E, E)-relatively compact, and its o(E, E")-closure coincides with its
o(E, E')-sequential closure). In particular, the following classes of subsets co-
incide:

(i) o(E, E")-RNK, o(E, E')-RSK, o(E, E')-RK,

(ii) o(E, E'")-NK, o(E, E')-SK, o(E, E')-K.

We shall prove that there is a similar Eberlein-Smulian theorem for the class of
o(E, E')-(R)CK sets. In fact, it can be stated for a more general class of sets
(see the following definition) including the o(FE, E')-CK ones.

Definition 11 A subset A of a locally convex space (E, T) is said to be o(E, E')-
(relatively) numerably compact (briefly, o(E, E')-(R)EK) if it is bounded and,
given a sequence (an) in A and a o(E™, E')-adherent point a’* € E'™ of (a,),
then, for any sequence (x})) in E’, there exists a point a € ANspan{a,; n € N}
(a € span{an,; n € N}) such that (a"* —a,2]) =0 for alln € N.

It is easy to see that o(E, E')-(R)CK sets are o(E, E’)-(R)EK. Indeed, they are
bounded; the second condition can be proved just by considering the decreasing
sequence of closed convex sets K, := {x € span{a,; n € N}; sup{|(a”* —
z,xh); i=1,2,...,n} <1/n}.

Theorem 12 Let (E,T) be a locally convex space such that in E' there is a
sequence (M) of o(E', E)-RNK subsets such that |J,,cy My is o(E', E)-dense
in E' (in particular, this is the case if E(T) has a locally convex topology coarser
than T and metrizable, or more particulary, if E' is o(E’, E)-separable). Then
every o(E,E")-(R)=ZK set is o(E, E')-(R)K.

Proof Let us assume first that (E’,o(E’, F)) is separable. Let A be a o(E, E')-

(R)ZK subset of E and o™ € A°EE) o(E"™, E')-adherent point of a se-
quence (a,) in A. By definition, given a countable subset N C E’, there exists
any € ANspai{a,; n € N} (ay € span{a,; n € N}), such that ay|y = a”*|n.



Let D be a countable and o(E’, E)-dense subset of E’ and let 2’ € E’ be an
arbitrary point. Let us consider the points apy,s and ap in E. They coincide
on D, s0 apyu,r = ap. Moreover, (a'*,z') = (apu.,x’) (= {ap,z’)). Therefore
a*|gr = ap|p, and so a’* € E and A is o(E, E')-(R)K since it is bounded.
Assume now that (F,7) satisfies the requirement and let (a,) be any sequence
in A. Let us consider the separable locally convex space F' = Span{a,; n € N}.
Its dual is F’ = ¢(E') = E'/F*, where q : E' — E'/F* is the canonical
mapping. It is easy to see that q(M,) is o(F', F')-RNK and that (J,cyq(Mn)
is dense in (F',o(F’, F)). Furthermore, the dual of (F’,o(F’, F)) is F', which
is separable. Therefore we can apply Theorem 10 to conclude that ¢(M,,) is
o(F', F)-RK, and so metrizable in (F',o(F’,F)). Thus, g(M,) is separable,
and so it is (F', o (F', F)), too.

We claim now that AN F is o(E, E')-(R)ZK. Indeed, let f™* be a o(F'™*, F')-
adherent point of a given sequence (z,) in F, and let (f]) be a sequence in F”.
The element f™* o q (€ E'™*) is a o(E"™, E')-adherent point to (z,) in E, and
there exists a sequence (e},) in E’ such that ¢(e],) = f, for all n € N. By the
assumption, we can find a« € ANspan{z,; n € N} C ANF (a € span{x,; n €
N} (C F)) such that (¢* —a,el,) =0, ie., (f*—a, f]) =0, for all n € N. This
proves the claim.

We can then apply the first part of the proof to the set AN F to obtain that the
set {a, : n € N} is o(F, F')-RNK (with an adherent point in A (in A )))

This implies that A is o(E, E')-(R)NK. By Theorem 10, A is o(E, E')-(R)K. 1

We can extend now Theorem 10 to include the class of o(E, E')-(R)EK sets
(and so, in particular, the o(E, E')-(R)CK sets).

Theorem 13 Let (E,7T) be a locally convex space which admits o(E’, E)-relatively
countably compact sets M, C E', n € N, such that

= o(E'E)
E = U M,,
n=1

Then, the following classes of sets coincide:
(i) o(E,E")-K, o(E,E")-SK, o(E,E')-NK, o(E,E’)-CK, o(E, E")-EK.
(i1) o(E,E')-RK, o(E,E')-RSK, o(E, E')-RNK, o(E, E')-RCK, o(E, E')-REK.
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