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Abstract

Using separable projectional resolutions of the identity, we provide a
different proof of a result of Argyros and Mercourakis on the behavior
of fundamental biorthogonal systems in weakly compactly generated (in
short, WCG) Banach spaces. This result is used to discuss the example
given by Argyros of a non-WCG subspace of a WCG space of the form
C(K).

1 Introduction

Our goal is to focus on a remarkable tool in the theory of WCG Banach space (see
Theorem 18 below). This slight extension of a result of Argyros and Mercourakis
[2] allows to check whether a certain Banach space X having a Markushevich
basis (in short, an M-basis) is WCG. It is based on a particular behavior of the
functional coefficients of the M-basis as soon as the space is WCG. This property
is actually shared by each of the existing M-bases on X. While Argyros and
Mercourakis used in their proof a combinatorial approach due to Argyros (see,
e.g., [4, Lemma 1.6.2]), our argument is functional-analytic. It is based on the
construction of a separable projectional resolution of the identity.
We show then, in detail, how to get from Theorem 18 a result of Argyros and
Farmaki [3] (Theorem 20), and hence that of Johnson (Corollary 21) about un-
conditional long Schauder bases in WCG Banach spaces, see [2]. We conclude
our paper with another application: We use Theorem 18 to give an alterna-
tive proof to the fact that the subspace of the WCG space of the form C(K),
constructed by Argyros, and described in [4, Section 1.6], is not itself WCG.
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2 Preliminaries

The notation used here is standard. If X is a Banach space, BX (SX) is the
closed unit ball (the unit sphere) and X∗ denotes its topological dual. Given a
non-empty subset S of X, spanS denotes its linear span, and spanS its closed
linear span. We denote by spanQS the set of all linear combinations of elements
from S, with rational coefficients. If S is a set, #S is the cardinal number of S.
The symbol ω stands for the first infinite ordinal. For non-defined concepts we
refer to [6].

Dealing with non-separable Banach spaces, it is customary to introduce a kind
of “reference system” that allows to replace vectors by their “coordinates”.
We have in mind projectional resolutions of the identity (and their embryo,
projectional generators), and/or Markushevich bases. We provide the definition
of those concepts below.

Definition 1 Let X be a Banach space. A Markushevich basis (in short, an M-
basis) for X is a biorthogonal system {xi; x∗i }i∈I in X×X∗ such that {xi; i ∈ I}
is fundamental (i.e., linearly dense in X) and {x∗i ; i ∈ I} is total (i.e., weak∗-
linearly dense in X∗).

Definition 2 We say that a set Γ ⊂ X countably supports X∗ if #{γ ∈
Γ; 〈γ, x∗〉 6= 0} ≤ ℵ0 for every x∗ ∈ X∗. Analogously, we say that a set
∆ ⊂ X∗ countably supports X if #{δ ∈ ∆; 〈x, δ〉 6= 0} ≤ ℵ0 for every x ∈ X.

Remark 3 It is simple to prove that, if {xi; x∗i }i∈I is a fundamental system in
X ×X∗, the set {x∗i ; i ∈ I} countably supports X. It is worth to recall (see,
e.g., [6, Theorem 12.50 and Proposition 12.51]) that a Banach space X is weakly
Lindelöf determined (WLD, in short) (i.e., (BX∗ , w∗) is a Corson compactum) if,
and only if, there exists an M-basis {xi; x∗i }i∈I such that {xi; i ∈ I} countably
supports X∗.

The following concept is useful for constructing a projectional resolution of the
identity in a Banach space (Definition 5). For a thorough exposition and for the
history of these see, e.g., [4, Chapter 6].

Definition 4 A projectional generator (in short, a PG) for a Banach space
(X, ‖ · ‖) is a countably-valued mapping Ψ from a 1-norming linear subset N ⊂
X∗ such that, for every ∅ 6= W ⊂ N with spanQW ⊂ W , we have Ψ(W )⊥ ∩
W

w∗
= {0}. If the set N can be replaced by X∗, we speak about a full projec-

tional generator on X.

Definition 5 A projectional resolution of the identity (in short, a PRI) on a
(non-separable) Banach space (X, ‖ · ‖) is a long sequence (Pα)ω≤α≤µ of linear
projections on X, where µ is the first ordinal with cardinality densX, such that
(i) Pω ≡ 0, Pµ is the identity mapping on X.
(ii) For every α, β ∈ [ω, µ], PαPβ = Pmin{α,β}.
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(iii) For every α ∈ (ω, µ], ‖Pα‖ = 1.
(iv) For every α ∈ [ω, µ], densPαX ≤ #α.
(v) For every x ∈ X, the mapping α 7→ Pαx, α ∈ [ω, µ], is continuous when
[ω, µ] carries the order topology and X the norm topology.

It was proved in [7] that a Banach space X has a full projectional generator if
and only if X is WLD. The existence of a projectional generator for a Banach
space (X, ‖ · ‖) implies the existence of a projectional resolution of the identity
on it (see, e.g., [4, Chapter 6]).

Definition 6 Let X be a Banach space, let (Ti)i∈I be a family of continuous
linear operators from X into X, and let Γ be a subset of X. We say that (Ti)i∈I

is subordinated to Γ, or that Γ is subordinated to (Ti)i∈I , if Ti(γ) ∈ {γ, 0} for
every i ∈ I and for every γ ∈ Γ.

The following concept can be found in [4, Definition 6.2.6].

Definition 7 Let X be a (nonseparable) Banach space X, and let µ be the first
ordinal with card µ = dens X. A separable projectional resolution of the identity
( SPRI, in short) on X is a “long sequence” (Pα)ω≤α≤µ of linear projections on
X such that:
(i) Pω ≡ 0, Pµ is the identity mapping on X.
(ii) For every α, β ∈ [ω, µ], PαPβ = Pmin{α,β}.
(iii) For every α ∈ [ω, µ] we have ‖Pα‖ < ∞.
(iv) For every α ∈ [ω, µ) the subspace (Pα+1 − Pα)X is separable.
(v) For every x ∈ X we have x ∈ span{(Pα+1 − Pα)x; ω ≤ α < µ}.

From now on, associated to a given PRI (Pα)ω≤α≤µ on a Banach space (X, ‖ ·‖)
we shall consider the long sequence (Qα)ω≤α<µ of projections, where Qα :=
Pα+1 − Pα for all α ∈ [ω, µ)].
We shall use the following simple lemma.

Lemma 8 Let (X, ‖ · ‖) be a Banach space and (Pα)ω≤α≤µ a PRI (a SPRI)
on X. Let Γ be a subset of X subordinated to (Pα)ω≤α≤µ, and let ∆ be a
subset of X∗ subordinated to (P ∗α)ω≤α≤µ. Then Γ ⊂ ⋃

ω≤α<µ QαX and ∆ ⊂⋃
ω≤α<µ Q∗αX∗.

Proof. Assume first that (Pα)ω≤α≤µ is a PRI. Fix any γ ∈ Γ. If γ = 0, we
are done. So, suppose that γ 6= 0. Then, by (v) in Definition 5, there exists
α ∈ [ω, µ) such that Pαγ 6= 0. Let α0 be the first ordinal α in [ω, µ) such that
Pαγ 6= 0. Then ω < α0 and, because of (v) in Definition 5, α0 is not a limit
ordinal. Let α0 − 1 be its predecessor. Since Pα0γ = γ we get γ ∈ Qα0−1X.
The statement about ∆ can be proved similarly. It is enough to observe that
given x∗ ∈ X∗, the net (P ∗αx∗)ω≤α<µ is weak∗-convergent to x∗.
If (Pα)ω≤α≤µ is a SPRI and γ 6= 0 then, by (v) in Definition 7, there exists
α ∈ [ω, µ) such that Qαγ 6= 0. This implies that Pα+1γ = γ and Pαγ = 0,
hence γ ∈ QαX. The argument for ∆ is similar; we shall need the fact that
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x∗ ∈ spanw∗{Q∗
αx∗; ω ≤ α < µ} for all x∗ ∈ X∗. This can be proved easily: if

for some x∗ ∈ X∗ this is not the case, we can find x ∈ X such that 〈x, x∗〉 = 1
and 〈x,Q∗

αx∗〉 = 0 for all ω ≤ α < µ. Then 〈Qαx, x∗〉 = 0 for all ω ≤ α < µ,
hence x 6∈ span{Qαx; ω ≤ α < µ}, a contradiction with (v) in Definition 7.

We shall need the following enhanced statement about the existence of a PRI
and a SPRI.

Proposition 9 Let (X, ‖ · ‖) be a nonseparable Banach space admitting a full
PG. Let Γ ⊂ BX be a set which countably supports X∗ and let ∆ ⊂ BX∗ be a
set which countably supports X. Then there exists a PRI (a SPRI) (Pα)ω≤α≤µ

on (X, ‖ · ‖) such that Γ is subordinated to (Pα)ω≤α≤µ and ∆ is subordinated to
(P ∗α)ω≤α≤µ.

Proof. We shall prove first the statement on the existence of a PRI. Let Φ0 :
X∗ → 2X be a projectional generator on X. Put

Φ(x∗) = Φ0(x∗) ∪ {γ ∈ Γ; 〈γ, x∗〉 6= 0
}
, x∗ ∈ X∗.

Clearly, Φ is also a projectional generator. We shall use a standard back-and-
forth argument, see, e.g., [4, Section 6.1]. For every x ∈ X we find a countable
set Ψ0(x) ⊂ X∗ such that

‖x‖ = sup
{〈x, x∗〉; x∗ ∈ Ψ0(x) and ‖x∗‖ ≤ 1

}
.

Put
Ψ(x) = Ψ0(x) ∪ {δ ∈ ∆; 〈x, δ〉 6= 0}, x ∈ X.

Thus we defined Ψ : X → 2X∗
. We still have

‖x‖ = sup
{〈x, x∗〉; x∗ ∈ Ψ(x) and ‖x∗‖ ≤ 1

}

for every x ∈ X.
For the construction of projections Pα : X → X we shall need the following
Claim. Let ℵ < densX be any infinite cardinal and consider two nonempty
sets A0 ⊂ X, B0 ⊂ X∗, with #A0 ≤ ℵ, #B0 ≤ ℵ. Then there exists sets
A0 ⊂ A ⊂ X, B0 ⊂ B ⊂ X∗ such that #A ≤ ℵ, #B ≤ ℵ, A, B are linear and
Φ(B) ⊂ A, Ψ(A) ⊂ B.
In order to prove this, put A =

⋃∞
n=1 An, B =

⋃∞
n=1 Bn, where the sets

An = spanQ
(
An−1 ∪ Φ(Bn−1)

)
, Bn = spanQ

(
Bn−1 ∪Ψ(An)

)
, n = 1, 2, . . . ,

are defined inductively. Then it is easy to verify that the sets A, B have all the
proclaimed properties.
Having the sets A,B constructed, we observe that A⊥∩B ∩BX∗

w∗ ⊂ Φ(B)⊥∩
B ∩BX∗

w∗
= {0}. Therefore [8, Lemmas 3.33, 3.34] yield a linear projection

P : X → X, with PX = A, P−1(0) = B⊥, P ∗X∗ = B
w∗

, and such that
‖P‖ = 1.
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Fix any γ ∈ Γ. We shall prove that Pγ ∈ {γ, 0}. If γ ∈ PX, then, trivially,
Pγ = γ. Second, assume that γ 6∈ PX (= A). Then γ 6∈ Φ(B), which implies
that 〈γ, b〉 = 0 for every b ∈ B, that is, that γ ∈ B⊥. But B⊥ = P−1(0). Hence
Pγ = 0.
Fix any δ ∈ ∆. If δ ∈ P ∗X∗, then, trivially, P ∗δ = δ. Further, assume that
δ 6∈ P ∗X∗ (= B

w∗
). Then, in particular, δ 6∈ Ψ(A). It follows that 〈a, δ〉 = 0

for every a ∈ A. Since A ⊂ PX we have 〈a, P ∗δ〉 = 〈Pa, δ〉 = 〈a, δ〉 (= 0) for
every a ∈ A. Hence P ∗δ ∈ A⊥ ∩ P ∗X∗ (= A⊥ ∩ B

w∗ ⊂ Φ(B)⊥ ∩ B
w∗

= {0}),
and so P ∗δ = 0.
Now, once knowing how to construct one projection P : X → X, the construc-
tion of the whole PRI is standard, see, e.g., [4, Section 6.1].
In order to prove the SPRI’s version, we proceed by induction on the density
character of X. If X is separable there is nothing to prove. Assume that
the statement holds for all Banach spaces satisfying the requirements and with
density character less than µ, for some uncountable ordinal µ. Let X be a
Banach space with density character µ, and sets Γ and ∆ as stated. Use the
first part to obtain a PRI (Pα)ω≤α≤µ on X. Since, for ω ≤ α < µ, QαX has
density character ≤ α (< µ), and the sets QαΓ and Q∗α∆ satisfy the required
properties as regards the Banach space QαX, there exits, by the inductive
hypothesis, a SPRI on QαX subordinated to QαΓ and such that the family of
adjoint projections is subordinated to Q∗α∆. Now, a standard technique (see,
e.g., [4, Proposition 6.2.7]) give a SPRI on X with the required properties.

Remark 10 If the set Γ in Proposition 9 is linearly dense, the assumption on
the existence of a full projectional generator can be dispensed because then the
multivalued mapping Φ0 : X∗ → 2X given by Φ0(x∗) = {γ ∈ Γ; 〈γ, x∗〉 6= ∅}
for x∗ ∈ X∗ is already a full projectional generator.

3 Core

In order to motivate (the main) Theorem 18, let us present some easy facts about
biorthogonal systems in Banach spaces. We did not see them described in the
literature, and we believe that they provide the right insight in the aforesaid
result. First, we isolate a property of sets that plays an important role in
the study of the structure of WCG Banach spaces; it was used by Amir and
Lindenstrauss in their seminal paper [1].

Definition 11 We say that a subset Γ of a Banach space X has the Amir-
Lindestrauss property (the (AL)-property, in short), if for every x∗ ∈ X∗ and
every c > 0, the set {γ ∈ Γ; |〈γ, x∗〉| > c} is finite.

Proposition 12 Let X be a Banach space and let Γ ⊂ X be a set with the
(AL)-property. Then Γ countably supports all of X∗ and the set Γ ∪ {0} is
weakly compact.
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Proof. Fix any x∗ ∈ X∗. We have {γ ∈ Γ; 〈γ, x∗〉 6= 0} =
⋃∞

n=1{γ ∈
Γ; |〈γ, x∗〉| > 1

n} where all the sets on the right side are, according to the
(AL) property, finite. Hence, Γ countably supports x∗.
Let γ∗∗ be any weak∗-accumulation point of Γ, considered as a subset of X∗∗. If
γ∗∗ ∈ X, we are done. Otherwise find x∗ ∈ X∗ and c > 0 such that 〈γ∗∗, x∗〉 >
c > 0. But then the set {γ ∈ Γ; 〈γ, x∗〉 > c} is infinite, a contradiction with the
(AL)-property.

Proposition 13 Let {xλ; fλ}λ∈Λ be a total biorthogonal system in X × X∗.
Then the following assertions are equivalent:

(i) The set {xλ; λ ∈ Λ} has the (AL) property.

(ii) The set {xλ; λ ∈ Λ} ∪ {0} is weakly compact.

(iii) The set {xλ; λ ∈ Λ} is weakly relatively compact.

Proof. (i)⇒(ii) is included in Proposition 12. (ii)⇒(iii) is trivial. (iii)⇒(i).
Assume that (iii) holds and (i) is false. Then there exist x∗ ∈ X∗, c > 0 and an
infinite one-to-one sequence λ1, λ2, . . . of elements of Λ such that 〈xλi , x

∗〉 > c
for every i = 1, 2, . . . Let x ∈ X be a weak-accumulation point of the sequence
(xλi)

∞
i=1. Then 〈x, x∗〉 ≥ c, and so x 6= 0. On the other hand, we can easily

check that 〈x, fλ〉 = 0 for every λ ∈ Λ. And since the set {fλ; λ ∈ Λ} is total,
we get that x = 0, a contradiction.

The following simple proposition is a consequence of the orthogonality.

Proposition 14 Let X be a Banach space and let {xi; fi}i∈N be a biorthogonal
system in X ×X∗. Assume that for some increasing sequence (np) in N the se-
quence (

∑np

i=1 fi)∞p=1 is bounded. Then all x1, x2, . . . lie in a hyperplane missing
0.

Proof. Let x∗ ∈ X∗ be a weak∗-cluster point of the sequence (
∑np

i=1 fi)∞p=1. If
j ∈ N and p ∈ N are such that np ≥ j, then

〈
xj , f1 + · · ·+ fnp

〉
= 1. Hence

〈xj , x
∗〉 = 1 for all j ∈ N.

Corollary 15 Let X be a Banach space and let {xi, fi}i∈N be a biorthogonal
system in X × X∗. Assume that {xi; i ∈ N} has the (AL)-property. Then
‖∑n

i=1 fi‖ → ∞ as n →∞.

Proof. Assume that the conclusion does not hold. Find then an increasing
sequence (np) in N such that (

∑np

i=1 fi)∞p=1 is a bounded sequence. It then
follows from Proposition 14 that {xi; i ∈ N} is in a hyperplane missing 0, and
this violates the (AL)-property.

We think that the origin of Theorem 18 below can be traced back to the following
theorem, due to V. Pták.
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Theorem 16 (Pták [10]) Let X be a Banach space. Then the following asser-
tions are equivalent:

(i) X is reflexive.

(ii) For every biorthogonal system {xn; x∗n}∞n=1 in X ×X∗ such that {x∗n; n ∈
N} is bounded, the sequence

( ∑n
k=1 xk

)∞
n=1

is unbounded.

(iii) For every biorthogonal system {xn; x∗n}∞n=1 in X ×X∗ such that {xn; n ∈
N} is bounded, the sequence

( ∑n
k=1 x∗k

)∞
n=1

is unbounded.

We provide below a new proof of this result, based on a well-known characteriza-
tion of reflexivity due to James that we quote here for the sake of completeness.

Theorem 17 (James [9]) Let X be a Banach space. Then the following asser-
tions are equivalent:

(i) X is not reflexive.

(ii) For every 0 < θ < 1 there are a sequence (xn) in SX and a sequence (x∗n)
in SX∗ such that

{ 〈xn, x∗m〉 = θ for all n ≥ m,
〈xn, x∗m〉 = 0 for all n < m.

(iii) For every 0 < θ < 1 there is a sequence (xn) in SX such that

inf
{‖u‖; u ∈ conv {x1, x2, . . .}

} ≥ θ

and

dist
(
conv

{
x1, . . . xn

}
, conv

{
xn+1, xn+2, . . .

}) ≥ θ for all n ∈ N.

Proof of Theorem 16. (i)⇒(ii). Assume that the space X is reflexive, and
let {xn; x∗n}n∈N be a biorthogonal system in X × X∗ such that {x∗n; n ∈ N}
is bounded. Let Y denote the closed linear span of {xn; n ∈ N}; this is a
reflexive space. Let q : X∗ → X∗/Y ⊥ the canonical quotient mapping. From
the reflexivity it follows that (X∗/Y ⊥)∗ = Y , and so the system {q(x∗n); xn}n∈N
is total and biorthogonal in (X∗/Y ⊥) × Y . Since {q(x∗n); n ∈ N} is a weakly
relatively compact set, it has, by Proposition 13, the (AL)-property. It follows
from Corollary 15 that ‖∑n

k=1 xk‖ →n ∞.

(i)⇒(iii). If X is reflexive, so is X∗. Given a biorthogonal system {xn; x∗n}n∈N in
X ×X∗, it can also be seen as a biorthogonal system {x∗n; xn}n∈N in X∗×X∗∗.
If {xn; n ∈ N} is bounded, it follows from the first part of this proof that
‖∑n

k=1 x∗k‖ →n ∞.

(ii)⇒(i). Assume that X is not reflexive. Theorem 17 says, in particular, that
there exist two sequences (xn) in SX and (x∗n) in SX∗ such that 〈xn, x∗m〉 = 1

2
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if n ≥ m, and 〈xn, x∗m〉 = 0 if n < m. Let d1 := 2x1, dn := 2(xn − xn−1), n =
2, 3, . . . Then, it is clear that the family

{
dn; x∗n

}
n∈N is a biorthogonal system in

X×X∗. Moreover, {x∗n; n ∈ N} is bounded. Observe, too, that
∑n

k=1 dk = 2xn

for all n ∈ N. We obtain thus a contradiction with (ii).

(iii)⇒(i). Starting from the assumption that X is not reflexive, we proceed as
in the proof of (iii)⇒(i). Once we have the two sequences (xn) and (x∗n), put
d∗n = 2(x∗n − x∗n+1) for n ∈ N. The system {xn; d∗n}n∈N is again a biorthogonal
system and the set {xn; n ∈ N} is bounded. Now

∑n
k=1 d∗n = 2(x∗1 − x∗n+1) for

all n ∈ N. We obtain again a contradiction, this time with (iii).

The next theorem (and its proof in particular) is the main objective of our
paper.

Theorem 18 Let X be a Banach space. Let K ⊂ X be a non-empty weakly
compact set, and let {xλ; fλ}λ∈Λ be a fundamental biorthogonal system in X ×
X∗. Put Λ0 = {λ ∈ Λ; 〈k, fλ〉 6= 0 for some k ∈ K}. Then there exists a
splitting Λ0 =

⋃∞
m=1 Λ0

m such that limn→∞
∥∥∑n

i=1 fλi

∥∥ = ∞ for every fixed
m ∈ N and for every one-to-one sequence λ1, λ2, . . . in Λ0

m.

Proof. Let Y denote the closed linear span of the set K; this will be a WCG
subspace of X. By a well-known result of Amir and Lindenstrauss [1], there is a
linearly dense set Γ ⊂ BY with the property (AL); see, for instance [5, Theorem
1]. For λ ∈ Λ let gλ be the restriction of fλ to Y and put ∆0 = {gλ; λ ∈ Λ0}.
Observe that gλ = 0 whenever λ ∈ Λ \ Λ0. The set ∆0 countably supports Y
by Remark 3. Also, the set Γ countably supports Y ∗ by Proposition 12. Let
(Pα)ω≤α≤µ be a SPRI on Y found for these Γ and ∆0 by Proposition 9. Fix
α ∈ [ω, µ).

Claim: The set ∆0
α := Q∗αY ∗ ∩∆0 is countable (observe that, due to Lemma 8,

∆0 =
⋃

ω≤α<µ ∆0
α).

This can be seen as follows. Put Γα = Γ ∩ QαY (notice again that, due to
Lemma 8, Γ =

⋃
ω≤α<µ Γα). Thanks to the fact that Γ is subordinated to

(Pα)ω≤α≤µ, we have QαΓ = Γα ∪ {0}, and then Γα is linearly dense in the
(separable) subspace QαY . Find a countable dense subset Γ0

α of Γα. For y ∈ Y ,
we define supp y =

{
gλ; λ ∈ Λ0, 〈y, fλ〉 6= 0

}
. If γ ∈ Γα, then supp γ is

a subset of ∆0
α. Indeed, for gλ ∈ supp γ we have 〈γ, Q∗

αgλ〉 = 〈Qαγ, gλ〉 =
〈γ, gλ〉 6= 0. Hence Q∗

αgλ = gλ, since ∆0 is subordinated to (Q∗α)ω≤α≤µ. The
set

⋃
γ∈Γ0

α
supp γ (⊂ ∆0

α) is countable. Let us check that ∆0
α =

⋃
γ∈Γ0

α
supp γ.

Given gλ ∈ ∆0
α, we have gλ 6= 0. So, there exists γ ∈ Γ0

α such that 〈γ, gλ〉 6= 0,
and thus gλ ∈ supp γ. This proves the Claim.
Let

{
δ1
α, δ2

α, . . .
}

be an enumeration of the set ∆0
α. The set QαΓ is linearly

dense in QαY . Then, for each m ∈ N we can find an element γm
α ∈ QαΓ such

that 〈γm
α , δm

α 〉 6= 0. Do all the above for every α ∈ [ω, µ).
Put

Λ0
m =

{
λ ∈ Λ0; fλ = δm

α for some α ∈ [ω, µ)
}
, m ∈ N.
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Clearly,
⋃∞

m=1 Λ0
m = Λ0. Further, for m, l ∈ N put

Λ0
m,l =

{
λ ∈ Λ0

m; fλ = δm
α and |〈γm

α , δm
α 〉| > 1

l for some α ∈ [ω, µ)
}
.

Clearly,
⋃∞

m,l=1 Λ0
m,l = Λ0.

Now fix any m, l ∈ N and consider a one-to-one sequence λ1, λ2, . . . in Λ0
m,l.

Find α1, α2, . . . in [ω, µ) so that fλi
= δm

αi
, i ∈ N. It remains to show that

limn→∞
∥∥∑n

i=1 fλi

∥∥ = ∞. Assume not. Then there is an increasing sequence

n1 < n2 < · · · of positive integers such that the sequence
( ∑nj

i=1 fλi

)∞
j=1

is

bounded. Let y∗ ∈ Y ∗ be a weak∗-cluster point of the latter sequence. For any
fixed k ∈ N, we then have

∣∣∣
〈
γm

αk
, y∗

〉∣∣∣ ≥ lim inf
j→∞

∣∣∣∣
〈

γm
αk

,

nj∑

i=1

fλi

〉∣∣∣∣

= lim inf
j→∞

∣∣∣∣
〈

γm
αk

,

nj∑

i=1

δm
αi

〉∣∣∣∣ =
∣∣〈γm

αk
, δm

αk

〉∣∣ >
1
l
.

The last equality in the previous formula follows from the fact that the “long
sequence” (QαY )ω≤α<µ is “orthogonal”. But the sequence γm

α1
, γm

α2
, . . . is one-

to-one. Thus we get a contradiction with the (AL)-property of the set Γ.

Corollary 19 Let X be a WCG Banach space, and let {xλ; fλ}λ∈Λ be a fun-
damental biorthogonal system in X × X∗. Then there exists a splitting Λ =⋃∞

m=1 Λm such that limn→∞
∥∥∑n

i=1 fλi

∥∥ = ∞ for every fixed m ∈ N and for
every one-to-one sequence λ1, λ2, . . . in Λm.

Proof. Since X is WCG it contains a linearly dense and weakly compact subset
K say, of X. The set Λ0 defined in Theorem 18 for this K coincides with Λ. It
is enough to apply Theorem 18.

It should be noted that the result of Argyros and Mercourakis, [2, Theorem 2.2]
was formulated for M-bases instead of just fundamental biorthogonal systems.

It was observed in [2], without going into details, that Corollary 19 has, as
an important consequence, a result of Johnson (Corollary 21). Here we give a
complete and different proof of this: From Theorem 18, we derive a result of
Argyros and Farmaki (Theorem 20), which contains Corollary 21. Johnson’s
result is, somehow, a converse to Corollary 15 under unconditionality, and it
has been used by Rosenthal [11] to prove that a WCG Banach space of the form
L1(µ), with a suitable finite measure µ, has a subspace that is not WCG.

Theorem 20 [3, Lemma B] Let X be a Banach space admitting an uncondi-
tional basis {xλ; fλ}λ∈Λ. Let K ⊂ X be a non-empty weakly compact set. Let
Λ0 := {λ ∈ Λ; 〈k, fλ〉 6= 0 for some k ∈ K}. Then there exists a splitting
Λ0 =

⋃∞
m=1 Λ0

m such that for every m ∈ N, the set {xλ; λ ∈ Λ0
m} ∪ {0} is

weakly compact.
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Proof. Let Λ0
m, m ∈ N, be the sets found in Theorem 18 for our basis and

for our set K. Fix one m ∈ N. We shall show that the only weak∗-cluster
point of the set {xλ; λ ∈ Λ0

m} in X∗∗, is 0. Assume this is not so. Find then
c > 0, ξ ∈ SX∗ and a one-to-one sequence λ1, λ2, . . . ∈ Λ0

m so that
∣∣〈xλi , ξ

〉∣∣ > c
for every i ∈ N. Then for every n ∈ N, every a1, . . . , an ∈ R, and for suitable
ε1, . . . , εn ∈ {−1, 1} we have

∥∥∥
n∑

i=1

aixλi

∥∥∥ ≥ C
∥∥∥

n∑

i=1

εiaixλi

∥∥∥ ≥ C
〈 n∑

i=1

εiaixλi , ξ
〉

= C

n∑

i=1

|ai|.
∣∣〈xλi , ξ

〉∣∣ ≥ C ·c
n∑

i=1

|ai|;

here C denotes the “unconditional basis constant” of our basis. (Therefore, X
contains an isomorphic copy of `1.) We have then, for every n ∈ N,

∥∥∥
n∑

i=1

fλi

∥∥∥ = sup
{〈

x,

n∑

i=1

fλi

〉
; x ∈ span

{
xλ; λ ∈ Λ0

m

}
, ‖x‖ ≤ 1

}

= sup
{〈 n∑

i=1

aixλi ,

n∑

i=1

fλi

〉
; p ∈ N, a1, . . . , an+p ∈ R,

∥∥∥
n+p∑

i=1

aixλi

∥∥∥ ≤ 1
}

≤ sup
{〈 n∑

i=1

aixλi ,

n∑

i=1

fλi

〉
; a1, . . . , an ∈ R, d

∥∥∥
n∑

i=1

aixλi

∥∥∥ ≤ 1
}

=
1
d

sup

{〈 n∑

i=1

aixλi ,

n∑

i=1

fλi

〉
; a1, . . . , an ∈ R,

∥∥∥
n∑

i=1

aixλi

∥∥∥ ≤ 1
}

=
1
d

sup

{
n∑

i=1

ai; a1, . . . , an ∈ R,
∥∥∥

n∑

i=1

aixλi

∥∥∥ ≤ 1
}

≤ 1
d

sup
{ n∑

i=1

ai; a1, . . . , an ∈ R, C ·c
n∑

i=1

|ai| ≤ 1
}

=
1

d·C ·c < ∞,

where d > 0 is a constant such that d
∥∥ ∑j

i=1 aixλi

∥∥ ≤ ∥∥ ∑j+p
i=1 aixλi

∥∥ whenever
j, p ∈ N and a1, . . . , aj+p ∈ R. But this contradicts the conclusion of Theorem
18.

Corollary 21 (Johnson, see [11, Proposition 1.3]) Let X be a WCG space
admitting an unconditional basis {xλ; fλ}λ∈Λ. Then there exists a splitting
Λ =

⋃∞
m=1 Λm such that for every m ∈ N, the set {xλ; Λm} ∪ {0} is weakly

compact.
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Remark 22 Theorem 18 cannot be extended to subspaces of WCG spaces. In-
deed, if so, then Corollary 21 would also be extendable. However, Theorem
21 does not work for unconditional basic sequences. Indeed, Argyros and Mer-
courakis proved, in [2], that there is a WCG space X with an unconditional basis
containing a non-WCG subspace Y with an unconditional basis. The uncondi-
tional basis of Y (an unconditional basic sequence in X) cannot be σ-relatively
weakly compact (i.e., a countable union of relatively weakly compacta), since
then Y would be WCG.

We end our note by another application of Theorem 18. Argyros constructed an
Eberlein compact space K such that the corresponding (WCG) space C(K) of
continuous functions on it contains a non-WCG subspace, see [4, Section 1.6].
Here we show that his combinatorial argument can be replaced by a simple rea-
soning profiting from Corollary 19 (which in turn was proved by the technology
of SPRI).

Example 23 We first recall the Argyros’ construction of the compact space
K. Given an element σ ∈ NN and n ∈ N, we put σ|n = (σ(1), σ(2), . . . , σ(n)).
According to Talagrand, for n ∈ N, let An be the family of all A ⊂ NN with
the property: whenever σ, τ are distinct elements of A, then σ|n = τ |n, and
σ(n + 1) 6= τ(n + 1). It is clear that each A ∈ An is at most countable. Define
then

K =
{

1
nχA; A ∈ An, n ∈ N}

.

Thus K is a subset of the compact space [0, 1]N
N

endowed with the product
topology. It is easy to check that K is closed. Therefore, K is a compact space.
Moreover, K can be continuously injected into c0(NN) endowed with the weak
topology. Therefore K is an Eberlein compact space, see [4, Section 1.6] for
details.
Next we shall construct a candidate for a non-WCG subspace of the Banach
space C(K). For λ ∈ NN we define the evaluation function

πλ(k) = k(λ), k ∈ K.

Clearly, πλ ∈ C(K). Define then the subspace Y of C(K) as the closed linear
hull of

{
πλ; λ ∈ NN}.

We claim that Y is not WCG. For λ ∈ NN we put

fλ(y) = y(χ{λ}), y ∈ Y ;

clearly fλ ∈ Y ∗. Then
{
πλ; fλ

}
λ∈NN is a fundamental biorthogonal system in

Y × Y ∗. Assume that Y is WCG. Let NN =
⋃∞

m=1 Λm be a partition found
in Corollary 19 for our system. [4, Lemma 1.6.1] (due to Talagrand) yields
m,n ∈ N and an infinite set A = {λ1, λ2, . . .} ⊂ Λm such that A ∈ An.
Now, consider any l ∈ N. We realize that 1

nχ{λ1,...,λl} belongs to the compact
space K. Hence, for any λ ∈ NN we have

〈
πλ,

l∑

i=1

fλi

〉
=

l∑

i=1

fλi(πλ) =
l∑

i=1

πλ

(
χ{λi}

)
=

l∑

i=1

χ{λi}(λ)
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= n · 1
nχ{λ1,...,λl}(λ) = n · πλ

(
1
nχ{λ1,...,λl}

)
,

Therefore,
〈
y,

l∑

i=1

fλi

〉
= n · y(

1
nχ{λ1,...,λl}

) ≤ n‖y‖

for every y from the linear span of {πλ; λ ∈ NN}, and so
∥∥∑l

i=1 fλi
‖ ≤ n for

every l ∈ N. But this contradicts the conclusion of Corollary 19.
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C/Vera, s/n. 46022 Valencia, Spain
e-mail: algoncor@doctor.upv.es (A. González)
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