Problemas propuestos

1. Estudie las siguientes cuádricas y clasifíquelas:

(a)
$$x^2 + 4y^2 + 9z^2 = 36$$

(b)
$$2x^2 + 4x + 2y^2 + 2z^2 - 4z = 0$$

(c)
$$4 - x^2 - y^2 - z = 7$$

(d)
$$3z^2 - y^2 = 9$$

(e)
$$x^2 + 4x + y^2 - z^2 + 4 = 0$$

2. Clasifique las siguientes cuádricas:

(a)
$$x^2 + y^2 + 3y - 2z = 0$$

(b)
$$2x^2 + y^2 - 2y = 0$$

(c)
$$3x^2 = 1$$

(d)
$$2x^2 - 2x - z^2 - y = 0$$

(e)
$$\sqrt{2}x^2 + x + \sqrt{3}y^2 + \sqrt{5}z^2 - 4z = 0$$

(f)
$$2x^2 + 4x + 2y^2 - 2z^2 - 4z = 0$$

(g)
$$x + y^2 + z^2 - \sqrt{3}z = 2$$

(h)
$$-x^2 - 2z^2 = -3$$

3. Dadas las siguientes cuádricas, deduzca su clasificación hallando los cortes con planos paralelos a los planos coordenados:

(a)
$$x^2 - 2y^2 = 3z$$

(b)
$$5x^2 - 2y^2 = \frac{1}{2}z^2$$

(c)
$$6x^2 + 2y^2 = 2$$

(d)
$$(x-1)^2 + (y+1)^2 - (z-2)^2 = 4$$

4. Dadas las siguientes cuádricas:

(a)
$$x^2 + 2y^2 + 3z^2 + 5z + 1 = 0$$

(b)
$$\frac{x^2}{4} + \frac{y^2}{4} + \frac{z^2}{9} - 4 = 0$$

obtenga las posibles intersecciones con los planos z = k, x = m, y = n.

5. Deduzca la clasificación de la siguiente cuádrica según los valores que pueda tomar el parámetro λ

$$x^2 + 3y^2 + 2z^2 = 5y - z + \lambda.$$

 ${\bf 6.}\,$ Determine la familia de rectas generatrices de las siguientes cuádricas regladas:

(a)
$$x^2 + 4y^2 - 9z^2 = 36$$

(b)
$$x^2 + 9z^2 = 9$$

(c)
$$x^2 + y^2 - 2y = z^2 - 1$$

En los siguientes problemas, obtenga la ecuación reducida y clasifique las correspondientes cuádricas:

7.
$$xy + xz + yz - 2x - y + 3z + 13 = 0$$

 $Soluci\'on: \quad -z_1^2 + \tfrac{1}{2}z_2^2 + \tfrac{1}{2}z_3^2 = 20, \quad \text{hiperboloide de una hoja}.$

8.
$$10x^2 + 10y^2 + 6z^2 - 14xy - 6xz - 6yz + 17x - 17y + 9 = 0$$

Solución: $3z_1^2 + 17z_2^2 = \frac{1}{2}$, cilindro elíptico.

9.
$$2x^2 + y^2 + z^2 + 2yz - 4x - 2y - 4z + 6 = 0$$

Solución: $z_1^2 + z_2^2 + \frac{\sqrt{2}}{2}z_3 = 0$, paraboloide elíptico de revolución.

10.
$$x^2 - y^2 + 6xy - 5 = 0$$

Solución: $3z_1^2 - 3z_2^2 = 5$, cilindro hiperbólico.

11.
$$x^2 + 2yz + 2x + 2\sqrt{2}y - 2\sqrt{2}z + 3 = 0$$

Solución: $-z_1^2 - z_2^2 + z_3^2 = 6$, hiperboloide de dos hojas.

12.
$$2x^2 + y^2 + z^2 + 2yz - \sqrt{2}y + \sqrt{2}z = 0$$

 $Soluci\'on: \quad z_3=z_1^2+z_2^2, \quad \text{paraboloide elíptico de revoluci\'on}.$

Problemas propuestos

13.
$$-z^2 + xy - 4x + 2z + 5 = 0$$

Solución: $-z_1^2 + z_2^2 + 2z_3^2 = 12$, hiperboloide de una hoja.

14.
$$xy + xz + yz - 1 = 0$$

Solución: $z_1^2 - \frac{1}{2}z_2^2 - \frac{1}{2}z_3^2 = 1$, hiperboloide de dos hojas.

15.
$$x^2 - y^2 - 2\sqrt{3}xy + x + \sqrt{3}y - 2z = 0$$

Solución: $z_1^2 - z_2^2 - z_3 = 0$, paraboloide hiperbólico.

16.
$$x_2^2 + x_3^2 + 4x_2x_3 + 2x_1 + 5x_2 - x_3 - 1 = 0$$

Solución: $z_2 = \frac{1}{2}z_3^2 - \frac{3}{2}z_1^2$, paraboloide hiperbólico.

17.
$$3x^2 - z^2 + 4xy + 2\sqrt{5}x + \sqrt{5}y + 2z = 0$$

Solución: $-16z_1^2 - 16z_2^2 + 64z_3^2 = 9$, hiperboloide de dos hojas.

18.
$$2x^2 + y^2 + z^2 + 2yz - y + z = 0$$

Solución: $z_3 = \sqrt{2}z_1^2 + \sqrt{2}z_2^2$, paraboloide elíptico de revolución.

19.
$$7x^2 + 5y^2 + 3z^2 - 2\sqrt{3}xy - 1 = 0$$

Solución: $4z_1^2 + 8z_2^2 + 3z_3^2 = 1$, elipsoide.

20.
$$(x \ y \ z) \begin{pmatrix} 4 & 1 & 0 \\ 1 & 4 & 0 \\ 0 & 0 & -9 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} + (0 \ 0 \ -6) \begin{pmatrix} x \\ y \\ z \end{pmatrix} - 1 = 0$$

Solución: $3z_1^2 + 5z_2^2 - 9z_3^2 = 0$, cono.

21.
$$(x \ y \ z)$$
 $\begin{pmatrix} 1 & 0 & -1/2 \\ 0 & 1 & 1/2 \\ -1/2 & 1/2 & 3/2 \end{pmatrix}$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $+ (2 \ 0 \ 1)$ $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $+ 1 = 0$

22. Clasifique en función del parámetro μ la cuádrica:

$$7x^2 + 5y^2 - 3z^2 - 2\sqrt{3}xy + 28x - 4\sqrt{3}y + 18z + 1 - \mu = 0$$

Justifique que la cuádrica es reglada si $\mu \geq 0$.

Solución:

Si
$$\mu > 0$$
: $\frac{8}{\mu}z_1^2 + \frac{4}{\mu}z_2^2 - \frac{3}{\mu}z_3^2 = 1$, hiperboloide de una hoja.
Si $\mu < 0$: $\frac{3}{-\mu}z_3^2 - \frac{8}{-\mu}z_1^2 - \frac{4}{-\mu}z_2^2 = 1$, hiperboloide de dos hojas.
Si $\mu = 0$: $3z_3^2 = 8z_1^2 + 4z_2^2$, cono.

23. Obtenga la ecuación reducida y clasifique la siguiente cuádrica en función de los valores del parámetro μ ,

$$4x^2 - 4xy + y^2 + \mu z + 1 = 0.$$

Solución:

Si
$$\mu \neq 0$$
: $5z_1^2 + \mu z_2 = 0$, cilindro parabólico.
Si $\mu = 0$: $5z_1^2 + 1 = 0$, no hay cuádrica.