Vibrational and elastic properties of As_4O_6 and $\text{As}_4\text{O}_6\cdot2\text{He}$ at high pressures: Study of dynamical and mechanical stability

V. P. Cuenca-Gotor, O. Gomis, J. A. Sans, F. J. Manjón, P. Rodríguez-Hernández, and A. Muñoz

1Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain
2Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain
3Departamento de Física, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, 38205 Tenerife, Spain

(Received 25 August 2016; accepted 4 October 2016; published online 18 October 2016)

The formation of a new compound with stoichiometry $\text{As}_4\text{O}_6\cdot2\text{He}$ at relatively low pressure (3 GPa) has been recently reported when arsenolite (As_4O_6) powder is compressed with helium as a pressure-transmitting medium. In this work, we study the lattice dynamics of As_4O_6 and $\text{As}_4\text{O}_6\cdot2\text{He}$ at high pressures from an experimental and theoretical perspective by means of Raman scattering measurements and ab initio calculations and report the theoretical elastic properties of both compounds at high pressure. Raman scattering measurements show a completely different behaviour of As_4O_6 and $\text{As}_4\text{O}_6\cdot2\text{He}$ at high pressures. Furthermore, the theoretical calculation of phonon dispersion curves and elastic stiffness coefficients at high pressure in both compounds allow us to discuss their dynamical and mechanical stability under hydrostatic compression. Both compounds are dynamically stable even above 35 GPa, but As_4O_6 becomes mechanically unstable at pressures beyond 19.7 GPa. These results allow explaining the pressure-induced amorphization of As_4O_6 found experimentally above 15–20 GPa and the lack of observation of any instability in $\text{As}_4\text{O}_6\cdot2\text{He}$ up to the highest studied pressure (30 GPa). Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4964875]
In order to further understand the different behaviors of As$_4$O$_6$ and As$_4$O$_6$·He, we study in this work the lattice dynamics of both compounds by means of Raman scattering (RS) measurements at room temperature and ab initio calculations, as well as the theoretical elastic properties of both compounds at HP. Some thermodynamic properties are also reported in the supplementary material. In this way, we have theoretically studied the dynamical and mechanical stability of As$_4$O$_6$ and As$_4$O$_6$·He at HP, which allows explaining prior experimental results. Note that partial results of the lattice dynamics and mechanical stability of both compounds were already reported in Refs. 8 and 10.

II. EXPERIMENTAL DETAILS

Highly pure arsenolite (As$_4$O$_6$) powder (99.999%) was commercially obtained from Sigma Aldrich Company. As$_4$O$_6$ powder was loaded inside a membrane-type diamond anvil cell (DAC) and was pressurized with different PTMs (4:1 methanol-ethanol mixture (MEM) and He) but also without any PTM. The ruby photoluminescence was used for pressure calibration in all measurements.

HP-RS measurements at room temperature were performed in a backscattering geometry using a Horiba Jobin-Yvon LabRam HR UV spectrometer in combination with a thermoelectrically cooled multichannel CCD detector (resolution below 2 cm$^{-1}$). RS spectra of arsenolite powder were excited either with 532.0 or 632.8 nm laser lines and laser power below 10 mW up to pressures between 12 and 22 GPa. RS measurements were analyzed by fitting Raman peaks with a Voigt profile fixing the Gaussian line width to the experimental setup resolution.

III. THEORETICAL CALCULATIONS DETAILS

Ab initio total-energy calculations were performed within the density functional theory (DFT) using the plane-wave method and the pseudopotential theory with the Vienna ab initio simulation package (VASP) as in a previous work. Convergence tests show that in order to have accurate results, the plane wave basis requires an energy cutoff of 520 eV. The integrations in the Brillouin zone were performed using a special k-point sampling, with dense (4 × 4 × 4) grid of k-points in order to have high accurate and converged results. Total energies were converged up to 0.001 eV/atom and forces acting on atoms were converged up to 0.003 eV/Å. The exchange and correlation term was computed through Perdew-Burke-Ernzerhof (PBE) for solids’ prescription. In this way, lattice dynamics ab initio calculations at the zone center (Γ point) of the Brillouin zone (BZ) were performed using the direct force constant approach. To obtain the phonon dispersion curves (PDCs) along high-symmetry directions of the BZ, we performed similar calculations using appropriate supercells, which allow the phonon dispersion at k-points to be obtained commensurate with the supercell size.

On the other hand, ab initio calculations allow the study of the mechanical properties of materials. In particular, the elastic constants describe the mechanical properties of materials in the region of small deformations where the stress-strain relations are still linear. The elastic constants can be obtained by computing the macroscopic stress for a small strain with the use of the stress theorem. In the present work, we perform the evaluation of the elastic constants of As$_4$O$_6$ and As$_4$O$_6$·He with the use of the DFT as implemented in VASP. The ground state and fully relaxed structures were strained in different directions according to their symmetry. The total-energy variations were evaluated according to a Taylor expansion for the total energy with respect to the applied strain. Due to this fact, it is important to check that the strain used in the calculations guarantees the harmonic behavior. This procedure allows us to obtain the C_{ij} elastic constants in the Voigt notation. The number of independent elastic constants is reduced by crystalline symmetry.

IV. RESULTS AND DISCUSSION

A. Lattice dynamics

Arsenolite has a primitive unit cell containing two As$_4$O$_6$ adamantanoid molecules situated on the T_d sites of the unit cell. According to the factor group analysis, arsenolite, as well as senarmontite, has 60 vibrational modes at zone center: $\Gamma = 2A_{1g} + 2A_{2u} + 2E_g + 2E_u + 3T_{1g} + 3T_{2u} + 5T_{2g} + 5T_{1u}$, where E and T modes are double and triple degenerated, respectively. In this way, there are nine Raman-
active modes: $2A_{1g} + 2E_g + 5T_{2g}$, four IR-active modes: $4T_{1u}$, ten inactive modes: $2A_{2u} + 2E_u + 3T_{1g} + 3T_{2u}$, and one acoustic mode: T_{1u}. Most of the above optical modes come from the internal modes of the isolated As_4O_6 molecule: $\Gamma_{\text{int}} = 2A_1 + 3E + 2T_1 + 4T_2$ due to crystal field (or Davydov) splitting. From now on, we will add to the optical vibrational modes of a given symmetry a superscript in order of increasing frequency for the sake of clarity.

To date, several studies have been published on arse

1. **As_4O_6 pressurized with MEM as a PTM**

MEM is a good quasi-hydrostatic PTM up to 20 GPa which is not expected to enter into the open framework structure of arsenolite. Figure 2(a) shows the RS spectra of As_4O_6 compressed with MEM up to 21 GPa. As observed, our RS spectra are similar to those already reported. In the first works, there was some disagreement on the assignment of T_{2g} and E_g modes, which has been finally clarified; however, there remains one E_g vibrational mode yet to be clearly observed and identified. In the following, we will report the pressure dependence of the different Raman-active modes with different PTMs and will show the identification of the lost E_g mode.

Apart from the first-order Raman-active modes, other modes are observed in the RS spectrum of arsenolite as noted by many authors. In particular, we have observed a very weak peak at about 80 cm$^{-1}$ (also seen in Ref. 11) close to the T_{2g} mode at 84 cm$^{-1}$. In our opinion, this extra mode can be tentatively assigned to one of the inactive librational modes, likely T_{1g}, of the As_4O_6 molecule due to the close similarity of the theoretical frequencies and pressure coefficients of this mode (see Fig. 2(b)), where the theoretical pressure dependence of the two lowest frequency inactive modes is also plotted. We think that this inactive mode could be observed due to local loss of translational periodic conditions in As_4O_6 as pressure increases. Furthermore, with increasing pressure, many Raman modes undergo a progressive asymmetric broadening resulting in split modes mainly above 10 GPa. These features, which were also noted in Ref. 11, are likely caused by the increase of intermolecular interactions, i.e., the increase of interactions among As_4O_6 cages, which finally results in the onset of PIA above 15–20 GPa depending on the PTM used. On the other hand, the reversibility of the changes in the RS spectra above 10 GPa shows little or no hysteresis. We must note that the increase of intermolecular interactions does not result in a reversible phase transition above 6 GPa as suggested by Grzechnik.
Previous XRD measurements confirmed that the cubic symmetry is maintained up to the onset of PIA.8–10 Table I summarizes the experimental and theoretical zero-pressure frequencies, pressure coefficients, and derivative of the pressure coefficients for the Raman-active modes of arsenolite.

As observed, our results for the Raman-active modes at zero pressure compare well with the previous results reported by Grzechnik11 and also with those of Gilliam \textit{et al.}30 at ambient pressure.

For completeness, we have compared the theoretical pressure dependence of the IR-active modes of As\textsubscript{4}O\textsubscript{6} with the experimental data taken from Ref.11 (see Fig. S1 in the supplementary material). As observed, there is a rather good agreement between the experimental and theoretical data, so our calculations confirm the four IR-active modes already reported for arsenolite.11,28

The experimental and theoretical zero-pressure frequencies, pressure coefficients, and derivative of the pressure coefficients for the IR-active modes of arsenolite are given in Table SI of the supplementary material.

2. As\textsubscript{4}O\textsubscript{6} pressurized without any PTM

For a better comparison of our HP-RS measurements on As\textsubscript{4}O\textsubscript{6} with those of Ref.11, which were performed with CsI as a PTM, and with those of Ref.12, which were performed without any PTM, we performed measurements without any PTM since arsenolite is a rather good quasi-hydrostatic PTM at low pressures (in fact slightly better than CsI).31 RS spectra of As\textsubscript{4}O\textsubscript{6} without PTM were measured up to 12 GPa (Fig. S2 in the supplementary material). A detail of the Raman spectra in the region between 400 and 500 cm-1, where the E_g mode is expected to be observed, is plotted in Fig. 3(a) and the

![Figure 3](https://example.com/figure3.png)

FIG. 3. (a) Detail of the Raman spectra of As\textsubscript{4}O\textsubscript{6} up to 12 GPa when pressurized without any pressure-transmitting medium. (b) Pressure dependence of the experimental (symbols) and theoretical (solid lines) Raman-mode frequencies. The theoretical T_2g1 inactive mode is shown with a dashed line. Pink symbols represent the extra Raman modes observed or used to fit the profile of asymmetric peaks.

Table I. Experimental and theoretical frequencies and pressure coefficients of Raman-active (R) modes in As\textsubscript{4}O\textsubscript{6} at 0 GPa. The inactive modes T_2u1 and T_1g1 are also included.

<table>
<thead>
<tr>
<th>Mode (Sym)</th>
<th>ω_0 (cm-1)</th>
<th>$\frac{\partial\omega}{\partial P}$ (cm-1 GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_2u1</td>
<td>70.7</td>
<td>11.9</td>
</tr>
<tr>
<td>T_1g1</td>
<td>81.8</td>
<td>7.8</td>
</tr>
<tr>
<td>T_2g1 (R)</td>
<td>82.1</td>
<td>15.2</td>
</tr>
<tr>
<td>E_g (R)</td>
<td>168.0</td>
<td>-2.5</td>
</tr>
<tr>
<td>T_2g2 (R)</td>
<td>249.4</td>
<td>6.4</td>
</tr>
<tr>
<td>A_{1g}1 (R)</td>
<td>353.4</td>
<td>-5.7</td>
</tr>
<tr>
<td>T_2g (R)</td>
<td>385.4</td>
<td>16.0</td>
</tr>
<tr>
<td>E_g (R)</td>
<td>418.9</td>
<td>-10.4</td>
</tr>
<tr>
<td>T_2g4 (R)</td>
<td>448.5</td>
<td>-8.7</td>
</tr>
<tr>
<td>A_{1g}1 (R)</td>
<td>524.6</td>
<td>-0.5</td>
</tr>
<tr>
<td>T_2g5 (R)</td>
<td>747.9</td>
<td>-3.7</td>
</tr>
</tbody>
</table>

ω_0: Experiment with MEM.
ω_0: Experiment without any PTM.
ω_0: Experiment with CsI (data from Ref.11).
pressure dependence of the frequencies of its Raman-active modes is reported (Fig. 3(b)). The frequencies and pressure coefficients of the Raman-active modes in As₄O₆ pressurized without any PTM are also shown in Table I.

Raman-active modes of As₄O₆ pressurized without any PTM show a similar behaviour with increasing pressure as in the case of As₄O₆ pressurized with MEM. However, the width of the Raman-active modes increases with pressure at a much faster rate, i.e., at smaller pressures, than using MEM. Curiously, we have found a weak mode near 448 cm⁻¹ at room pressure whose pressure dependence is consistent with the theoretical evolution of the E₅₂⁺ mode (see Figs. 3(a) and 3(b) and Table I). Therefore, we have tentatively attributed this weak mode to the lost E₅₂⁺ mode. We have to note that this means that there are three Raman-active modes in the RS of arsenolite in the region from 400 to 500 cm⁻¹. In this respect, previous RS measurements of arsenolite compressed without any PTM already reported three Raman active modes in this region in the RS spectrum at 11 GPa. However, this work does not report any analysis of the experimental Raman-active mode frequencies of arsenolite as a function of pressure. We have also to note that the frequency we have found is slightly larger than the one reported by Gilliam et al., but in very good agreement with Hartree-Fock calculations of Jensen et al. At present, we do not know why it has been easier to find this mode under quasi-hydrostatic conditions than under truly hydrostatic conditions (this mode was also not observed when pressurizing with He). We can speculate that the small RS cross section already known for this mode can be enhanced by altering selection rules under non-hydrostatic conditions.

3. As₄O₆ pressurized with helium as a PTM

Helium provides the most hydrostatic conditions for HP experiments, but He is so a small atom that it can enter into the cavities of open framework structures present in porous and molecular materials. We have performed a study of As₄O₆ pressurized with He in order to study the effect of He into the compression of this molecular solid. In this regard, we showed in a previous work that He enters into the 16d sites of As₄O₆ and reacts with this molecular solid forming a new compound with stoichiometry As₄O₆·2He above 3 GPa.

As₄O₆·2He has the same cubic structure as As₄O₆ with two formula units per primitive cell. Therefore, according to group theory, As₄O₆·2He has 62 vibrational modes at zone center: 24 T = 2A₁g + 2A₂g + 2Eₙ + 2T₁g + 3T₂g + 5T₂u + 7T₁u. In this way, there are nine Raman-active modes: 2A₁g + 2Eₙ + 5T₂u, six IR-active modes: 6T₁u, ten inactive modes: 2A₂u + 2Eₙ + 3T₁g + 3T₂u, and one (triply degenerated) acoustic mode: T₁u. In summary, there are only two additional IR-active modes in As₄O₆·2He than in As₄O₆.

Figure 4(a) shows the pressure dependence of the RS spectra of As₄O₆ compressed with He up to 3 GPa and of As₄O₆·2He from 3 GPa up to 12 GPa. The experimental and theoretical pressure dependence of the different Raman-active modes is presented in Fig. 4(b). The frequencies and pressure coefficients of the Raman-active modes in As₄O₆·2He are shown in Table II. As observed, the pressure dependence of Raman-active modes up to 2 GPa follows the same behaviour as As₂O₆ modes studied in Sections IV A 1 and IV A 2. However, between 2 and 3 GPa, many Raman modes undergo a sudden change in frequency. No further sudden change in frequencies is observed above 3 GPa and RS modes from 3 GPa on behave in a different way to Raman-active modes of As₄O₆. Noteworthy, the anticrossing between the two T₂g modes, which occurs in As₄O₆ around 4.5 GPa, is retarded up to 11 GPa in As₂O₆·2He. The good agreement of our experimental and theoretical data in this regard is a clear confirmation of the entrance of He into 16d sites of the arsenolite structure. Since we have not performed IR measurements in As₂O₆·2He, the pressure dependence of the theoretically IR-active modes of As₂O₆·2He is

FIG. 4. (a) Raman spectra of As₄O₆ up to 3 GPa and of As₂O₆·2He from 3 GPa up to 14 GPa. (b) Pressure dependence of the experimental (full symbols) and theoretical (dashed-dotted lines) Raman-mode frequencies of As₂O₆·2He. Experimental Raman-mode frequencies for As₂O₆ up to 3 GPa are shown with empty symbols. Theoretical data for As₂O₆ (solid lines) are also shown for comparison with those of As₂O₆·2He to note the effect of He entrance in 16d sites of As₂O₆. The theoretical T₁u inactive mode is shown in pink with a dashed line for As₂O₆ and with a dotted line for As₂O₆·2He. Pink symbols represent the extra Raman modes observed or used to fit the profile of asymmetric peaks.
TABLE II. Experimental and theoretical frequencies and pressure coefficients of Raman-active (R) modes in As$_4$O$_6$:2He at 3 GPa. The inactive mode T_{1g}^1 is also included.

<table>
<thead>
<tr>
<th>Mode (Sym)</th>
<th>ω_0 (cm$^{-1}$)</th>
<th>$\partial\omega/\partial P$ (cm$^{-1}$/GPa)</th>
<th>ω_0 (cm$^{-1}$)</th>
<th>$\partial\omega/\partial P$ (cm$^{-1}$/GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{1g}^1</td>
<td>98.9</td>
<td>2.3</td>
<td>102.0</td>
<td>3.6</td>
</tr>
<tr>
<td>T_{2g}^1 (R)</td>
<td>108.2</td>
<td>6.6</td>
<td>108.8</td>
<td>6.7</td>
</tr>
<tr>
<td>E_g^1 (R)</td>
<td>168.7</td>
<td>-0.3</td>
<td>183.1</td>
<td>0.4</td>
</tr>
<tr>
<td>T_{2g}^2 (R)</td>
<td>244.3</td>
<td>10.0</td>
<td>276.4</td>
<td>3.3</td>
</tr>
<tr>
<td>A_{1g}^1 (R)</td>
<td>349.7</td>
<td>-4.9</td>
<td>369.8</td>
<td>-0.3</td>
</tr>
<tr>
<td>T_{2g}^3 (R)</td>
<td>412.3</td>
<td>-0.7</td>
<td>435.0</td>
<td>-1.3</td>
</tr>
<tr>
<td>E_g^2 (R)</td>
<td>409.2</td>
<td>-5.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T_{2g}^4 (R)</td>
<td>448.7</td>
<td>-2.4</td>
<td>469.7</td>
<td>3.7</td>
</tr>
<tr>
<td>A_{1g}^2 (R)</td>
<td>528.8</td>
<td>1.8</td>
<td>565.7</td>
<td>2.2</td>
</tr>
<tr>
<td>T_{2g}^5 (R)</td>
<td>754.7</td>
<td>2.2</td>
<td>788.6</td>
<td>2.0</td>
</tr>
</tbody>
</table>

B. Dynamical stability

To finish the study of the lattice dynamics of As$_4$O$_6$ and As$_4$O$_6$:2He at HP, we report the calculation of PDCs for both compounds at selected pressures which allows the discussion of their dynamical stability under hydrostatic compression.32 Figure 5 shows the PDCs of As$_4$O$_6$ at 0 GPa and 34.7 GPa, while Fig. 6 shows the PDCs of As$_4$O$_6$:2He at 5.2 GPa and 35.5 GPa. It can be observed that there is no phonon dispersion relation that undergoes softening to zero frequency on increasing pressure neither in As$_4$O$_6$ up to 34.7 GPa nor in As$_4$O$_6$:2He up to 35.5 GPa. Therefore, we safely conclude that the cubic structure of both compounds is dynamically stable at least up to those pressures.

C. Elastic properties

Since the cubic structures of As$_4$O$_6$ and As$_4$O$_6$:2He belong to the Fd-3m space group, they have point group 4/m–3 2/m, also known as m-3m (or Oh), and belong to the cubic Laue group m-3m (or C I)33 which has three independent second order elastic constants: C_{11}, C_{12}, and C_{44}. When a non-zero uniform stress is applied to the crystal, the elastic properties are described by the elastic stiffness (or stress-strain) coefficients, which are defined as
the elastic stiffness coefficients in the Voigt notation with\(\sigma_{ij} \) being the elastic constants evaluated at the current stressed state, \(\sigma_{ij} \) correspond to the external stresses, and \(\delta_{ij} \) is the Kronecker delta. In the special case of hydrostatic pressure \(\sigma_{11} = \sigma_{22} = \sigma_{33} = -P \) applied to a cubic crystal, the elastic stiffness coefficients in the Voigt notation \(B_{ij} \) are: \(B_{11} = C_{11} - P, \quad B_{12} = C_{12} + P, \quad B_{33} = C_{44} - P, \) where \(P \) is the hydrostatic pressure. Note that the \(B_{ij} \) and \(C_{ij} \) are equal at 0 GPa. When the elastic stiffness coefficients \(B_{ij} \) are used, all relationships of the elasticity theory can be applied for the crystal under any loading, including Born’s stability conditions which are identical in both loaded and unloaded states. \[^{35-39} \]

Table III summarizes the values of the three elastic constants \(C_{ij} \) in \(\text{As}_4\text{O}_6 \) and \(\text{As}_4\text{O}_6\text{-}2\text{He} \) at 0 GPa as obtained from our \textit{ab initio} calculations. As observed, \(C_{11} \) is larger in \(\text{As}_4\text{O}_6\text{-}2\text{He} \) than in \(\text{As}_4\text{O}_6 \), while \(C_{12} \) and \(C_{44} \) are smaller in \(\text{As}_4\text{O}_6\text{-}2\text{He} \) than in \(\text{As}_4\text{O}_6 \).

Figure 7 shows the pressure dependence of the elastic constants, \(C_{ij} \), and elastic stiffness coefficients, \(B_{ij} \), in \(\text{As}_4\text{O}_6 \) and \(\text{As}_4\text{O}_6\text{-}2\text{He} \). Despite only \(B_{ij} \) are meaningful at any pressure, we report also the pressure dependence of \(C_{ij} \) because they are the original magnitudes computed from which \(B_{ij} \) are obtained. As observed, \(C_{11} \) (and \(B_{11} \)) has a larger pressure coefficient in \(\text{As}_4\text{O}_6\text{-}2\text{He} \) than in \(\text{As}_4\text{O}_6 \), while \(C_{12} \) (and \(B_{12} \)) and \(C_{44} \) (and \(B_{44} \)) have smaller pressure coefficients in \(\text{As}_4\text{O}_6\text{-}2\text{He} \) than in \(\text{As}_4\text{O}_6 \). Besides, \(C_{11} \) (and \(B_{11} \)) and \(C_{12} \) (and \(B_{12} \)) increase with increasing pressure both in \(\text{As}_4\text{O}_6 \) and \(\text{As}_4\text{O}_6\text{-}2\text{He} \), while \(C_{44} \) (and \(B_{44} \)) tends to saturate with increasing pressure in \(\text{As}_4\text{O}_6 \) but not in \(\text{As}_4\text{O}_6\text{-}2\text{He} \). These results will be discussed later in relation with the mechanical stability of both compounds.

Standard analytical formulas for the bulk \((B) \) and shear \((G) \) moduli in the Voigt,\(^{40} \) Reuss,\(^{41} \) and Hill\(^{42} \) approximations, labeled with subscripts \(V, R, \) and \(H, \) respectively, can be obtained from the set of \(B_{ij} \) for any loading in \(\text{As}_4\text{O}_6 \) and \(\text{As}_4\text{O}_6\text{-}2\text{He}. \)

\[
B_{ij} = C_{ijkl} + 1/2[\delta_{ik}\sigma_{kl} + \delta_{jk}\sigma_{il} + \delta_{il}\sigma_{jk} + \delta_{jl}\sigma_{ik} - 2\delta_{kl}\sigma_{ij}],
\]

(1)

with \(C_{ijkl} \) being the elastic constants in the current stressed state, \(\sigma_{ij} \) correspond to the external stresses, and \(\delta_{ij} \) is the Kronecker delta.\(^{34-36} \) In the special case of hydrostatic pressure \(\sigma_{11} = \sigma_{22} = \sigma_{33} = -P \) applied to a cubic crystal, the elastic stiffness coefficients in the Voigt notation \(B_{ij} \) are: \(B_{11} = C_{11} - P, \quad B_{12} = C_{12} + P, \quad B_{33} = C_{44} - P, \) where \(P \) is the hydrostatic pressure. Note that the \(B_{ij} \) and \(C_{ij} \) are equal at 0 GPa. When the elastic stiffness coefficients \(B_{ij} \) are used, all relationships of the elasticity theory can be applied for the crystal under any loading, including Born’s stability conditions which are identical in both loaded and unloaded states. \[^{35-39} \]
\[G_{H} = \frac{G_{V} + G_{R}}{2}, \quad (6) \]

In the Voigt (Reuss) approximation, uniform strain (stress) is assumed throughout the polycrystal.\(^{40,41}\) Hill has shown that the Voigt and Reuss averages are limits and suggested that the actual effective \(B \) and \(G \) elastic moduli can be approximated by the arithmetic mean of the two bounds.\(^{42}\) The Young (\(E \)) modulus and the Poisson’s ratio (\(\nu \)) are calculated with the expressions\(^{44,45}\)

\[E_X = \frac{9B_XG_X}{G_X + 3B_X} \quad (7) \]
\[\nu_X = \frac{G_X - 2G_X}{3B_X + G_X} \quad (8) \]

where the subscript \(X \) refers to the symbols \(V, R, \) and \(H \). In this work, we report the elastic moduli in the Hill approximation. We summarize in Table III all the values obtained for \(B_H, G_H, \) and \(E_H \) in As\(_4\)O\(_6\) and As\(_4\)O\(_6\)-2He at 0 GPa. Note that our calculated value for the bulk modulus in the Hill approximation is 9.8 (9.2) GPa for As\(_4\)O\(_6\) (As\(_4\)O\(_6\)-2He), which is in rather good agreement with the value of \(B_0 = 7.6 \) (6.4) GPa obtained from our PBEsol structural calculations via a fit to a third-order Birch Murnaghan equation of state\(^{8,10}\) and with those of Birch-Murnaghan EoS fit to \(p(V) \) data computed within the PAW-PBE-D2 approach in Ref. 9. Furthermore, both values are comparable to experimental values of \(B_0 = 7(2) \) GPa and 4(2) GPa obtained via a fit to a third-order Birch Murnaghan equation of state for As\(_4\)O\(_6\) and As\(_4\)O\(_6\)-2He, respectively.\(^{8,10}\) Note that the bulk modulus of As\(_4\)O\(_6\)-2He at zero pressure was extrapolated from the data above 3 GPa since this compound is not stable below this pressure.

The above results give us confidence about the correctness of our elastic constants calculations. With this subject in mind, we have compared the bulk modulus and shear modulus in both compounds, which is indicative of the difference between the elastic behavior of both compounds. In As\(_4\)O\(_6\), the bulk modulus is larger than the shear modulus, while in As\(_4\)O\(_6\)-2He the contrary is observed. This means that As\(_4\)O\(_6\) is more resistive to compression than to shear stresses, while the contrary is observed in As\(_4\)O\(_6\)-2He.

Table III also includes the values of the Poisson’s ratio, \(\nu_{H} \), the ratio between the bulk and shear modulus, \(B_{H}/G_{H} \), and the Zener elastic anisotropy factor, \(A \), at 0 GPa for both compounds. The Poisson’s ratio provides information about the characteristics of the bonding forces and chemical bonding. The value of the Poisson’s ratio in the Hill approximation is \(\nu = 0.14 \) (0.08) in As\(_4\)O\(_6\) (As\(_4\)O\(_6\)-2He). This value indicates that the interatomic bonding forces are predominantly noncentrally (\(\nu < 0.25 \)) and that directional intramolecular and intermolecular bonding is predominant at 0 GPa.\(^{5,46,47}\)

The \(B_{H}/G_{H} \) ratio is a simple relationship given by Pugh,\(^{48}\) empirically linking the plastic properties of a material with its elastic moduli. According to the Pugh criterion, a high \(B_{H}/G_{H} \) ratio is associated with ductility, whereas a low ratio corresponds to brittleness. The critical value for the \(B_{H}/G_{H} \) ratio is around 1.75, which separates ductile and brittle materials. In our study, we have found values of \(B/G \) at 0 GPa below 1.75 for As\(_4\)O\(_6\) and As\(_4\)O\(_6\)-2He. Therefore, both compounds are fragile at zero pressure, being As\(_4\)O\(_6\)-2He more fragile than As\(_4\)O\(_6\).

One of the elastic properties of crystals with more importance for both engineering science and crystal physics is the elastic anisotropy, because it is highly correlated with the possibility of inducing microcracks in materials.\(^{49}\) This anisotropy can be quantified with the Zener anisotropy factor which is defined as \(A = 2B_{dd}/(B_{11} - B_{12}) \). If \(A \) is equal to 1, no anisotropy exists. On the other hand, the more this parameter differs from 1 the more elastically anisotropic is the crystal-line structure. The value of \(A \) for As\(_4\)O\(_6\) is closer to 1 than for the case of As\(_4\)O\(_6\)-2He. Therefore, the latter is more elastically anisotropic than the former at 0 GPa.

Figures 8 and 9 show the pressure dependence of \(B, G, \) and \(E \) elastic moduli, \(\nu, B/G \) ratio, and \(A \), in As\(_4\)O\(_6\) and As\(_4\)O\(_6\)-2He. It can be noted that \(B_{H} \) increases with pressure reaching a maximum value close to 115 GPa in both compounds at 20 GPa. Contrarily, \(G_{H} \) and \(E_{H} \) increase with pressure up to 9 GPa in As\(_4\)O\(_6\) and decrease for larger pressures. This behavior is different to that of As\(_4\)O\(_6\)-2He where both \(G_{H} \) and \(E_{H} \) increase with pressure up to the maximum calculated pressure (35.5 GPa).

On the other hand, the Poisson’s ratio shows a curious pressure dependence in both compounds. It strongly increases with pressure up to 2 GPa and then tends to saturate above this pressure. It reaches a value of 0.46 (0.32) at 20 GPa for As\(_4\)O\(_6\) (As\(_4\)O\(_6\)-2He). These values indicate an increment of the ductility and of the metallic behavior, i.e., the progressive loss of interatomic bond directionality, with increasing pressure in both compounds. It must be stressed that the approximation of the Poisson’s ratio in As\(_4\)O\(_6\) to 0.5 (superior limit of the Poisson’s ratio) near 20 GPa is likely due to the tendency of As\(_4\)O\(_6\) towards a mechanical instability.\(^{47}\) Note that the \(B/G \) ratio, which is related to the Poisson’s ratio,\(^{47}\) also increases with pressure in the two compounds; however, the increase is

![FIG. 8. Pressure dependence of the elastic moduli \(B_{H}, G_{H}, \) and \(E_{H} \) in As\(_4\)O\(_6\) and As\(_4\)O\(_6\)-2He.](image-url)
moderate in As$_4$O$_6$·2He and abrupt in As$_4$O$_6$ above 10 GPa, thus suggesting the presence of a mechanical instability in this later compound. Finally, the Zener anisotropy factor also shows a quite different behavior in both compounds. It increases considerably in As$_4$O$_6$ especially above 10 GPa, while it stays nearly constant (around 0.6) in As$_4$O$_6$·2He. Again, these results indicate that the elastic anisotropy strongly increases in As$_4$O$_6$ with pressure, but it remains constant in As$_4$O$_6$·2He. Therefore, the strong increase of the elastic anisotropy in As$_4$O$_6$ with pressure could be also understood as a signal of a mechanical instability in arsenolite at high pressure.

One of the most common elastic properties and less easy to handle is hardness, which is a property generally related to both the elastic and plastic properties of a material. Hardness is an unusual physical property because it is not an intrinsic materials property, but the result of a defined measurement procedure susceptible to precise definitions in terms of fundamental units of mass, length, and time. In practice, hardness is measured by the size of the indentation made on a specimen by a load of a specified shape when a force is applied during a certain time. In this way, there are three principal standard methods for expressing the relationship between the hardness and the size of the indentation, these being Brinell, Rockwell, and Vickers. The Vickers hardness, H_v, can be calculated by the formula proposed by Tian et al.50

$$H_v = 0.92(G/B)^{1.137}G^{0.708}. \quad (9)$$

We used this formula as it eliminates the possibility of unrealistic negative hardness. The values of H_v for As$_4$O$_6$ and As$_4$O$_6$·2He at 0 GPa are included in Table III. As observed, As$_4$O$_6$·2He is harder than As$_4$O$_6$ and both have values of H_v that are approximately between 4 and 6 GPa at 0 GPa when using elastic moduli in the Hill approximation. Since H_v at 0 GPa is smaller than 10 GPa, both compounds can be classified as relatively soft materials.

Figure 10 shows the pressure evolution of the Vickers hardness with pressure. It is observed that H_v decreases as pressure increases for both oxides. This is related to the fact that the B/G ratio increases with pressure. In this way, both compounds become softer as pressure increases in good agreement with the increase of their ductility (B/G ratio) as stated above. We note that H_v for As$_4$O$_6$ decreases notably with pressure approaching 0 GPa at 20 GPa.

Finally, one elastic property which is fundamental for Earth Sciences in order to interpret seismic waves is the average sound velocity, v_m. In polycrystalline materials, v_m is given by52

$$v_m = \left[\frac{1}{3} \left(\frac{2}{v_{\text{trans}}} + \frac{1}{v_{\text{lon}}} \right) \right]^{-1/3}, \quad (10)$$

where v_{trans} and v_{lon} are the transverse and longitudinal elastic wave velocities of the polycrystalline material which are given by

$$v_{\text{lon}} = \left(\frac{B + \frac{4}{3}G}{\rho} \right)^{1/2}, \quad (11)$$

$$v_{\text{trans}} = \left(\frac{G}{\rho} \right)^{1/2}, \quad (12)$$

where B and G are the elastic moduli and ρ is the density. Values of the density and wave velocities v_m, v_{lon}, and v_{trans} at 0 GPa are given for both oxides in Table III. Wave...
velocities are greater for As$_4$O$_6$-2He than for As$_4$O$_6$ because of the higher value of the shear modulus G in the former than in the later and the slightly smaller density of the former than in the later.

Figure 11 reports the evolution with pressure of the elastic wave velocities for both oxides. Using elastic moduli in the Hill approximation, the calculated $v$$_{lon}$ increases with pressure reaching a value larger than 4725 m/s (5580 m/s) at 20 GPa in As$_4$O$_6$ (As$_4$O$_6$-2He). A similar behavior is observed for velocities $v$$_{trans}$ and $v$$_{m}$ in As$_4$O$_6$-2He. However, the corresponding velocities $v$$_{trans}$ and $v$$_{m}$ increase in As$_4$O$_6$ reaching a maximum value around 6 GPa and decrease above this pressure.

In order to finish this section, where different magnitudes derived from the elastic constants have been obtained and analysed, we refer the reader to the supplementary material in order to get information on a few thermodynamic properties (Debye temperature and minimum thermal conductivity) obtained for As$_4$O$_6$ and As$_4$O$_6$-2He.

D. Mechanical stability

To finish this work, we study the mechanical stability of the cubic structure in As$_4$O$_6$ and As$_4$O$_6$-2He at HP. For that purpose, we make use of the elastic stiffness coefficients reported in Section IV C. The mechanical stability of a crystal at zero pressure can be studied with the Born stability criteria. However, the study of the mechanical stability of a crystal at HP requires the generalization of the Born stability criteria to the case when an external load is applied. These generalized stability criteria for cubic crystals with three independent elastic constants are given by the following conditions:

\[
M_1 = B_{11} + 2B_{12} > 0, \quad (13)
\]

\[
M_2 = B_{11} - B_{12} > 0, \quad (14)
\]

\[
M_3 = B_{44} > 0, \quad (15)
\]

where B_{11}, B_{12}, and B_{44} are the elastic stiffness coefficients at the considered pressure. These generalized stability criteria are plotted in Fig. 12 up to 35 GPa. It is found that Eq. (14), called the Born instability, is violated at 19.7 GPa in As$_4$O$_6$; however, none of the three generalized stability criteria is violated in As$_4$O$_6$-2He up to 35.5 GPa. Therefore, our theoretical study of the mechanical stability suggests that the cubic structure of As$_4$O$_6$ becomes mechanically unstable beyond 19.7 GPa, in good agreement with the observation of PIA in the pressure range between 15 and 20 GPa depending on the PTM used. On the other hand, our calculations show that there is no mechanical instability of As$_4$O$_6$-2He up to 35.5 GPa, in good agreement with the observation of the cubic phase of this new compound up to 30 GPa. Finally, it must be noted that our theoretical results on the mechanical instability of As$_4$O$_6$ above 19.7 GPa do not agree with the results on single crystals of As$_4$O$_6$ pressurized with He, where He partially entered into the pores of As$_4$O$_6$.

V. CONCLUSIONS

We have experimentally and theoretically studied the lattice dynamics of As$_4$O$_6$ and As$_4$O$_6$-2He at HP and found a different HP behavior in the Raman-active modes of both compounds which support the inclusion of He into 16d sites of the arsenolite structure above 2–3 GPa. On the other hand, we have studied the dynamical stability of the cubic structure of both compounds and it has been found that As$_4$O$_6$ and As$_4$O$_6$-2He are dynamically stable at least up to 35 GPa.

Additionally, we have theoretically studied the elastic and thermodynamic behavior of both compounds at HP. It has been found that most of the properties of both compounds are similar at low pressures. The elastic constants and the elastic stiffness coefficients increase with increasing pressure in all the pressure range; however, the pressure coefficients of the elastic stiffness coefficients B_{11} and B_{12} are quite different in both compounds, thus resulting in a completely different HP behavior of shear and Young moduli, B/G ratio, Poisson’s ratio, Vickers hardness, and Zener anisotropy in both compounds. In this context, both compounds are more resistive to volume compression than to shear deformation ($B > G$) almost at all pressures. The average elastic wave velocity, Debye temperature, and minimum

FIG. 11. Pressure dependence of the longitudinal ($v$$_{lon}$), transverse ($v$$_{trans}$), and average ($v$$_{m}$) elastic wave velocity in As$_4$O$_6$ and As$_4$O$_6$-2He.

FIG. 12. General stability criteria in As$_4$O$_6$ and As$_4$O$_6$-2He. The pressure at which As$_4$O$_6$ becomes mechanically unstable is indicated.
thermal conductivity of both compounds are also similar at low pressures but show a different behavior at HP. From the behavior of the elastic stiffness coefficients at HP, we have studied the mechanical stability of the cubic structure at HP in both compounds and have found that the cubic structure becomes mechanically unstable at 19.7 GPa in As$_4$O$_6$, while there is no mechanical instability in As$_8$O$_6$2He at least up to 35.5 GPa. These results are in good agreement with the experiments which show PIA in As$_4$O$_6$ above 15–20 GPa (depending on the PTM used) and with the experimental observation of the cubic structure of As$_8$O$_6$2He up to 30 GPa without signs of PIA.

SUPPLEMENTARY MATERIAL

See supplementary material for IR-active modes and thermodynamic properties in As$_4$O$_6$ and As$_8$O$_6$2He along with the Raman scattering spectra of arsenolite at selected pressures without any PTM.

ACKNOWLEDGMENTS

This study was supported by the Spanish Ministerio de Economía y Competitividad under Projects MAT2013-46649-C4-2-P/3-P, MAT2015-71070-REDI and MAT2016-75586-C4-2-P/4-P. A.M. and P.R.-H. acknowledge experiments which show PIA in As$_4$O$_6$ above 15–20 GPa (depending on the PTM used) and with the experimental observation of the cubic structure of As$_8$O$_6$2He up to 30 GPa without signs of PIA.