Supplementary material of

Vibrational and elastic properties of As₄O₆ and As₄O₆·2He at high pressures: study of dynamical and mechanical stability

V.P. Cuenca-Gotor, O. Gomis, J.A. Sans, F. J. Manjón, P. Rodríguez-Hernández, and A. Muñoz

¹ Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain

² Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica, MALTA Consolider Team, Universitat Politècnica de València, 46022 València, Spain

³ Departamento de Física, Instituto de Materiales y Nanotecnología, MALTA Consolider Team, Universidad de La Laguna, 38205 Tenerife, Spain

a) Author to whom correspondence should be addressed. Electronic mail: osgohi@fis.upv.es

A. Lattice dynamics

Figure S1. Experimental and theoretical pressure dependence of the IR-active modes in As_4O_6 . Experimental data measured using CsI as a PTM are taken from Ref. S1.

Table SI. Theoretical and experimental zero-pressure frequencies and pressure coefficients of IR-active modes in As_4O_6 at 0 GPa. Experimental data are taken from Ref. S1.

	Ab initio calculations		Experimental	
Mode (Sym)	$\omega_0 \ (cm^{-1})$	$ \frac{\frac{\partial \omega}{\partial P}}{\left(\frac{cm^{-1}}{GPa}\right)} $	(cm^{-1})	$\frac{\frac{\partial \omega}{\partial P}}{\left(\frac{cm^{-1}}{GPa}\right)}$
T _{1u} (IR)	236.0	2.7	254.5	0.8
T _{1u} (IR)	306.7	-5.7	339.8	-1.5
T _{1u} (IR)	453.1	-3.8	480.4	0.1
T _{1u} (IR)	763.5	-6.6	793.4	-0.2

Figure S2. Raman scattering spectra of arsenolite at selected pressures without any PTM. Raman spectra are vertically shifted for the sake of clarity.

A progressive shift of the Raman-active mode frequencies of all peaks of the cubic structure with increasing pressure is observed in As_4O_6 compressed without any PTM. Absence of new peaks at high pressure clearly indicates that no phase transition occurs along the pressure range studied. Many Raman modes undergo a progressive asymmetric broadening with increasing pressure. This broadening is likely caused by the increase of intermolecular interactions; i.e., the increase of interactions among As_4O_6 cages, which finally results in the onset of PIA above 15 GPa.

Figure S3. Theoretical pressure dependence of the IR-active modes in $As_4O_6 \cdot 2He$.

There are two additional IR-active modes in As_4O_6 ·2He than in As_4O_6 . The two extra modes are located between the two lowermost IR-active modes of As_4O_6 and have a much larger pressure coefficient than IR-active modes of As_4O_6 thus leading to anticrossings with the mode above 300 cm^{-1} .

Table SII. Theoretical frequencies and pressure coefficients of IR-active modes in As_4O_6 ·2He at 3 GPa.

	Ab initio calculations		
Mode (Sym)	$\omega_0 \ (cm^{-1})$	$ \frac{\frac{\partial \omega}{\partial P}}{\left(\frac{cm^{-1}}{GPa}\right)} $	
T _{1u} ¹	230.0	3.3	
T _{1u} ²	247.5	11.2	
T _{1u} ³	271.6	12.5	
T _{1u} ⁴	300.3	0.3	
T _{1u} ⁵	455.1	-0.7	
T _{1u} ⁶	763.8	-1.1	

B. Thermodynamic properties

The Debye temperature is a fundamental parameter that correlates with many physical properties of solids, such as specific heat, elastic constants, and melting temperature. One of the standard methods to calculate the Debye temperature, θ_D , is from elastic constant data using the semi-empirical formula [S2]:

$$\theta_D = \frac{h}{k_R} \left[\frac{3n}{4\pi} \left(\frac{N_A \rho}{M} \right) \right]^{1/3} v_m$$

where h is the Planck's constant, $k_{\rm B}$ is the Boltzmann's constant, n is the number of atoms in the molecule, $N_{\rm A}$ is the Avogadro's number, ρ is the density, M is the molecular weight, and $v_{\rm m}$ is the averaged sound velocity. As reported in **Table SIII**, the values of $\theta_{\rm D}$ at 0 GPa using the Hill approximation are 196.2 K (222.7 K) in As₄O₆ (As₄O₆·2He). We note that the Debye temperature in As₄O₆·2He is slightly greater than that of As₄O₆. **Figure S4(a)** reports the evolution with pressure of the Debye temperature, $\theta_{\rm D}$, for both oxides. It is observed that $\theta_{\rm D}$ follows a similar dependence than $v_{\rm m}$ with increasing pressure; i.e., increases at low pressures in both oxides and decreases above 8 GPa in As₄O₆ while it increases in As₄O₆·2He at least up to 35 GPa.

The thermal conductivity is the property of a material that indicates its ability to conduct heat. In order to estimate the theoretical minimum of the thermal conductivity, we have used the following expression [S3]:

$$\kappa_{\min} = k_B v_m \left(\frac{M}{n \rho N_A} \right)^{-2/3}$$

The values of κ_{\min} in As₄O₆ (As₄O₆·2He) at 0 GPa using the Hill approximation are 0.36 (0.42) W m⁻¹ K⁻¹ (see **Table SIII**). Therefore, both oxides are low κ materials [**S4**]. **Figure S4(b)** reports the evolution with pressure of the minimum thermal conductivity, κ_{\min} , for both oxides. As in the case of θ_D , κ_{\min} first increases with pressure and latter it decreases with pressure because of the decreasing of ν_m with pressure for As₄O₆, while κ_{\min} increases with pressure up to 35 GPa in As₄O₆·2He. On the other hand, if we use the simplified formula for κ_{\min} that considers $\nu_m = 0.87 \sqrt{E/\rho}$ [**S3**], the decreasing of κ_{\min} with pressure in As₄O₆ can be explained by the decreasing of the tensile stiffness of As₄O₆ as pressure increases above 9 GPa.

Figure S4. Evolution with pressure of the theoretical Debye temperature (a) and theoretical minimum thermal conductivity, κ_{min} , (b) in As₄O₆ and As₄O₆·2He.

Table SIII. Debye temperature (θ_D in K), and minimum thermal conductivity (κ_{min} in W m⁻¹ K⁻¹) in As₄O₆ and As₄O₆·2He at 0 GPa. Data are given in the Hill approximation.

	As_4O_6	As ₄ O ₆ ·2He
$\theta_{\!D}$	196.2	222.7
K _{min}	0.36	0.42

References

- [S1] A. Grzechnik, J. Solid State Chem. 144, 416 (1999).
- [S2] O. L. Anderson, J. Phys. Chem. Solids 24, 909-917 (1963).
- [S3] D. R. Clarke, Surf. Coat. Technol. 163, 67-74 (2003).
- [S4] C. G. Levi, Curr. Opin. Solid State Matter. Sci. 8, 77-91 (2004).