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Abstract. We study a multiserver finite buffer queue in which customers have a stochas-
tic deadline of phase-type until the beginning of their service. The following service disci-
plines are considered: FCFS (First-Come First-Served), LCFS (Last-Come First-Served)
and SIRO (Service In Random Order) along with a parameterizable probabilistic push-
out mechanism. The analysis of the system is performed using a matrix analytic approach
and we obtain performance measures such as probabilities of blocking, expulsion and
abandonment as well as the sojourn time distribution in different system conditions.
Keywords: impatient customers, service discipline, phase-type, matrix-analytic.

1 Introduction

Queuing models in which customers abandon the system if their service has not started
by a given deadline have many applications in telecommunications as well as in other
disciplines (some examples can be found in [1]).

While this topic has attracted the interest of queuing theorists for a few decades, the
existing literature is rather limited (see [2] and references therein). To the best of our
knowledge, infinite buffer size is assumed in all queuing models considering the impa-
tience phenomenon, except [3] and [4]. Moreover, in [3] only the relatively simple case of
exponentially distributed patience time is contemplated.

Intuition seems to indicate that the service order may have an influence on the number
of customers that leave the system without being served. Indeed, in [5] the authors give
a characterization of the optimal scheduling discipline that minimizes the number of
customers that abandon the system before receiving service, and there are some instances
where the optimal policy is not the conventional FCFS. Zhao and Alfa [6] consider a
system in which impatient customers are served on an LCFS basis. The analysis in [6] is
approximate and the patience time is assumed to be deterministic. Doshi and Heffes [7]
study a model quite related to ours, where customers may “turn bad” after some time
although they do not abandon the system, i.e. bad customers are served even though
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they do not count as system goodput. The study in [7] considers FCFS and LCFS service
disciplines as well as various customer rejection schemes including blocking and push-out.
Notwithstanding the affinities between the model in [7] and the one of this paper, there
are significant differences between them, and the analytical solution of the model in [7]
cannot be applied to our model.

In this paper we analyze a queuing model that has the following characteristics: the
waiting room is finite; the customers’ impatience is modeled by a phase-type (PH) distri-
bution; the service discipline can be FCFS (First Come First Served), LCFS (Last Come
First Served) or SIRO (Service In Random Order); when a customer arrives and the buffer
is full, the buffer management policy can block the newly arrived customer or push-out
the head-of-line (HOL) customer in order to allocate the newly arrived one.

The contribution of our work is twofold. First, we solve the M/M/C/K/FCFS +PH
model using an alternative approach to that of [4] by deploying a matrix analytic solution.
The model studied in [4] is, in a sense, more general than ours since it considers a general
distribution for the patience time. Nevertheless, the family of PH-distributions is highly
versatile and can be fitted to a wide range of experimental data and, from a theoretical
point of view, the set of PH-distributions is dense in the set of all probability distributions
on [0,∞) [8]. Secondly, and more importantly, we carry out the analysis for several non-
FCFS disciplines in the context of customer impatience and a rather general distribution
for the patience time, which have not been done before.

The remaining of the paper is structured as follows. In Section 2 the mathematical
model of the system is described and its analysis is carried out in Section 3. A numerical
example is presented in Section 4. Finally, Section 5 summarizes the paper and draws
some conclusions.

2 Model Description

We first describe the analytical aspects that are common to all service disciplines and
customer rejection schemes, and their specific features are subsequently addressed.

The system has a total of C identical servers and a waiting line limited to N posi-
tions. Customers arrive according to a Poisson process of rate λ and their service time is
exponentially distributed with rate µ. Each customer has a stochastic deadline —starting
on arrival— until the beginning of service, if service has not begun by his deadline the
customer abandons the system and is lost. Deadlines are considered to be independent
and identically distributed (iid) phase type (PH) random variables (rv) with representa-
tion (β,T ); we denote by m the number of phases in the PH distribution (see [9] for more
details on PH distributions).

Throughout this paper the following notation is used: xi denotes the i-th entry of a
vector x; Mij denotes the entry on the i-th row and the j-th column of a matrix M ; ⊗
denotes the Kronecker product of two matrices (example: A⊗B), see [9, p. 17] for futher
details; diag{·} is an operator over a vector that yields a diagonal matrix whose diagonal
entries are the elements of the vector; e is a column vector of ones; 0 is a column vector
of zeros and I is the identity matrix.

Under the above assumptions the system model fits within the category of non-
homogeneous finite Quasi-Birth-and-Death (QBD) processes. Let {X(t) : t > 0} be



the stochastic process for the system with the following two-dimensional state space
S =

{
(l, k) : 0 ≤ l ≤ N ; 0 ≤ k ≤ ml − 1

} ⋃ {(−1, k) : 0 ≤ k ≤ C − 1} that can be parti-

tioned into levels as S =
⋃N

l=−1 L(l), where L(l0) = {(l, k) : l = l0; (l0, k) ∈ S}. The first
coordinate of a state is also referred to as level and the second coordinate as phase. Level
(−1) groups the states in which not all servers are busy, for this level the state phase
indicates the number of customers in the system, i.e. being served. Level l ≥ 0 groups
the states in which all servers are busy and there are l customers in the waiting room,
In levels l ≥ 0 the state phase encodes the current phase of the patience time distribu-
tion for each of the l waiting customers. The mapping between the state phase (k) and
waiting customers phases is as follows. Let the l-tuple (k1, . . . , kl), 1 ≤ ki ≤ m, 1 ≤ i ≤ l
denote the phases of the Markov process associated to the PH distribution of the waiting
customers patience time, being ki the phase of the customer at the i-th position in the
waiting room. Then, k =

∑
1≤i≤l kim

l−i; in other words, the l-tuples are numbered in
lexicographical order from (1, . . . , 1) to (m, . . . ,m).

Let us denote by π the stationary probability vector of the process. In the same way
as with states, we partition π by levels into subvectors π(l), −1 ≤ l ≤ N , where π(−1)

has C components and π(l) (l ≥ 0) has ml components. State transitions are restricted
to states in the same level or in two adjacent levels and consequently, the infinitesimal
generator Q of the process has a block tridiagonal structure,

Q =




A
(−1)
1 A

(−1)
0 0 · · ·

A
(0)
2

0 Qp
...


 , where Qp =




A
(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

. . .

A
(N)
2 A

(N)
1




.

Block matrices which are not in Qp involve the boundary level (−1) and thus they do
not conform to the general construction that will be given for the rest of matrices. Matrix
entries for these particular cases, which are independent of the service discipline, are as
follows:

A
(−1)
1 =




∗ λ
µ ∗ λ

2µ ∗ λ

. . .

(C − 1)µ ∗




,

A
(−1)
0 =

[
0 · · · 0 λ

]t

A
(0)
2 =

[
0 · · · 0 Cµ

]

The diagonal entries of A
(−1)
1 , which are represented by asterisks for the ease of display,

are such that the corresponding rows of Q sum to zero, i.e. A
(−1)
1 e + A

(−1)
0 e = 0.



2.1 FCFS Discipline

The matrices A
(l)
0 correspond to transitions from L(l) to L(l + 1), 0 ≤ l < N . These

transitions represent the arrival of a customer that will occupy the (l + 1)-th position of
the waiting room. The PH distribution for the patience time of the arriving customer will
begin at its i-th phase with probability βi. It can be easily seen that A

(l)
0 = Iml ⊗ λβ.

The matrices A
(l)
2 correspond to transitions from L(l) to L(l − 1), 0 < l ≤ N . These

transitions represent the departure of a customer from the system which may be due to
either a customer abandoning the waiting line (because his deadline has expired) or to a

service completion. The former type of transition will be represented by matrix U
(l)
1 and

the latter by matrix U
(l)
2 . Then, A

(l)
2 = U

(l)
1 + U

(l)
2 where

U
(l)
1 =

{
τ , l = 1

τ ⊗ Iml−1 + Im ⊗U
(l−1)
1 , 1 < l ≤ N

; U
(l)
2 = Cµem ⊗ Iml−1

being τ = −Te.

The matrices A
(l)
1 correspond to transitions between states within L(l). These transi-

tions represent phase changes in the PH processes associated to waiting customers. The
expression for this matrix is first given ignoring elements on its main diagonal and next
they will be computed using the fact that the rows of Q must sum to zero. For the sake
of clarity we introduce the set of matrices D(l) whose entries are equal to the entries of
A

(l)
1 , except those on their main diagonal. Now it can be written that

D(l) =

{
T , l = 1

T ⊗ Iml−1 + Im ⊗D(l−1), 1 < l ≤ N
(1)

Note that in the expression of D(N) it is assumed that customers arriving while the system
is at level N , i.e. when the buffer is full, are blocked. Then A

(l)
1 is given by

A
(l)
1 = D(l) − diag

{
A

(l)
2 e + D(l)e + A

(l)
0 e

}

which can be further simplified to

A
(l)
1 =

{
D(l) − (Cµ + λ)Iml , l < N

D(N) − CµImN , l = N
(2)

by virtue of Proposition 1, that will be proved after the following lemma.

Lemma 1 (A⊗B) e = (Ae)⊗ (Be)

Proposition 1 The following equalities hold for 1 ≤ l ≤ N

diag
{

A
(l)
0 e

}
= λIml ; diag

{
A

(l)
2 e + D(l)e

}
= CµIml



Proof. The first equality follows immediately by applying the Lemma to A
(l)
0 = Iml ⊗λβ

and noting that βe = 1 and diag{e} = I.

To prove the second equality we first observe that A
(l)
2 e+D(l)e = U

(l)
1 e+U

(l)
2 e+D(l)e

and by applying the Lemma to U
(l)
2 = Cµem ⊗ Iml−1 it is easily seen that

U
(l)
2 e = Cµeml . (3)

On the other hand

U
(l)
1 eml−1 + D(l)eml = (τ ⊗ Iml−1 + Im ⊗U

(l−1)
1 )e + (T ⊗ Iml−1 + Im ⊗D(l−1))e

= (τ ⊗ eml−1 + em ⊗ (U
(l−1)
1 eml−2)) + (Tem ⊗ eml−1 + em ⊗ (D(l−1)eml−1))

= em ⊗ (U
(l−1)
1 eml−2 + D(l−1)eml−1)

(4)

and by recursive application of (4) we obtain

U
(l)
1 eml−1 + D(l)eml = em ⊗ (U

(l−1)
1 eml−2 + D(l−1)eml−1)

...

= eml−1 ⊗ (τ + Tem) = eml−1 ⊗ 0 = 0

(5)

Hence, from (3) and (5) it follows that A
(l)
2 e+D(l)e = Cµeml , and taking the diag{·}

operator on both sides of this equality yields the desired result.

2.2 LCFS Discipline

Using the LCFS discipline only affects the selection of the queued customer that will start
service, and therefore will be removed from the queue, after a service completion. Thus
the expression for U

(l)
2 must be modified in the following manner: U

(l)
2 = Iml−1 ⊗ Cµem.

The rest remains unchanged since under the new expression for U
(l)
2 it can be proved, in

much the same way as before, that (3) holds .

2.3 SIRO Discipline

By the same reasoning as in LCFS discipline, only U
(l)
2 changes and it can be readily

shown to be given by

U
(1)
2 = Cµem and U

(l)
2 =

Cµ

l
em ⊗ Iml−1 + Im ⊗ (l − 1)

l
U

(l−1)
2 1 < l < N

In this case Eq. (3) can be easily proved by induction on l.

2.4 Buffer management scheme

So far we have assumed that arriving customers to a full buffer are blocked. Here we
consider a more general buffer management scheme in which a customer arriving when



the buffer is full either is blocked or it pushes-out the HOL waiting customer. The choice
between these two options is done randomly and independently for each customer. The
random component of the algorithm is tuned by parameter q which represents the proba-
bility that a customer that finds a full queue upon arrival will push-out the HOL customer;
therefore, a customer finding a full queue will be blocked with probability (1− q).

The arrival of a customer that finds a full buffer and pushes-out the HOL customer is
modeled as a transition within level L(N) and thus only the values entries of matrix D(N)

are modified as follows: D(N) ←− D(N) + em ⊗ ImN−1 ⊗ λβ. Hence, if the push-out and
blocking schemes are probabilistically combined together with probabilities q and (1− q),
respectively, we have that

D(l) =





T , l = 1

T ⊗ Iml−1 + Im ⊗D(l−1), 1 < l < N

T ⊗ ImN−1 + Im ⊗D(N−1) + q (em ⊗ ImN−1 ⊗ λβ), l = N

(6)

Finally, by the same method we have used to obtain (2) it follows that

A
(l)
1 =

{
D(l) − (Cµ + λ)Iml , l < N

D(N) − (Cµ + qλ)ImN , l = N
(7)

Note that when q = 0, (7) reduces to (2).

3 Model Analysis

In this section we describe the method to calculate the stationary state probabilities (π)
of the model. From these, performance evaluation measures are derived.

The stationary probabilities (π) are obtained as the solution to the set of simultaneous
linear equations πQ = 0, πe = 1. Being Q a finite dimension matrix the above system
could be solved by standard linear algebra methods. However, as the size of Q may be very
large, it is advisable to use more specific algorithms that take advantage of the structure
(Q is block-tridiagonal) and the nature of the problem (Q is an infinitesimal generator).
We used the Linear Level Reduction algorithm [9, 10], which can solve level-dependent
finite QBDs.

1: U ← A
(N)
1

2: R(N) ← A
(N−1)
0 (−U)−1

3: for l = N − 1, N − 2, . . . , 0,−1 do
4: U ← A

(l)
1 + R(l+1)A

(l+1)
2

5: R(l) ← A
(l−1)
0 (−U)−1

6: end for
7: solve π(−1) from {π(−1)U = 0;

π(−1)e = 1}
8: for l = 0, 1, . . . , N do
9: π(l) = π(l−1)R(l)

10: end for

3.1 Distribution of the Number of Customers

Let pk(0 ≤ k ≤ N + C) denote the probability that k customers are in the system, then
we have that

pk =

{
π−1

k , k = 0, . . . , C − 1

π(k−C)e, k = C, . . . , C + N



3.2 Probabilities of Blocking, Expulsion and Reneging

Since arrivals are Poisson, by PASTA property [11] we have that the probability that
an arriving customer sees the buffer full is pC+N . Therefore, the blocking probability
is given by Pb = (1 − q)pC+N = (1 − q)π(N)e and the expulsion probability is given by
Pe = qpC+N = qπ(N)e. The probability of reneging (Pr) is measured by taking the average
number of customers who renege divided by the average number of customers that arrived
over a sufficiently long period, say t0, (

∑N
l=1 π(l)U

(l)
1 t0e + o(t0))/(λt0 + o(t0)) and letting

t0 →∞ we obtain that Pr =
∑N

l=1 π(l)U
(l)
1 e/λ.

3.3 Sojourn Time in Congestion Condition and Blocking Condition

We say that the system is congested if an arriving customer has to wait, i.e. the system
is in one of the states in

⋃N
l=0 L(l). Let Tc denote the sojourn time in the congestion

condition rv . Similarly, let us define the blocking condition as the state in which the
number of costumers in the system is at its maximum (C +N), so that if a new customer
arrives it will be blocked or a waiting customer will be pushed-out. Let Tb be the sojourn
time in the blocking condition rv. Next we obtain the distribution of these rv and derive
their mean values.

A congestion condition period starts when the system enters level L(0) and lasts until
its first visit to level L(−1). During this period the system will visit states in

⋃N
l=0 L(l)

whose residence times are all exponential. Thus it may be concluded that the distribution
of Tc is phase-type and it is easy to check that its representation is PH(β(c),T (c)) where
β(c) =

[
1 0 0 . . . 0

]
and T (c) = Qp.

In order to obtain the mean value of Tc we will use a probabilistic argument instead
of using its distribution which would entail inverting matrix T (c). This reasoning is based
on the observation that for an infinitely large time period, say t0, it holds that, the mean
sojourn time per visit to a set of states equals the total sojourn time in that set of states
divided by the number of visits. Hence, we can write

T c = lim
t0→∞

(∑C+N
k=C pk

)
t0 + o(t0)

λpC−1t0 + o(t0)
=

1

λpC−1

C+N∑

k=C

pk.

In the same manner we can see that Tb is phase-type and its representation is PH(β(b),T (b))

where β(b) = π(N−1)A
(N−1)
0 /(π(N−1)A

(N−1)
0 e) and T (b) = A

(N)
1 . Hence [9, Eq. (2.13)] T b =

β(b)
(
−T (b)

)−1

e, which noting that A
(N−1)
0 e = λe and π(N−1)A

(N−1)
0 +π(N)A

(N)
1 = 0 we

can rewrite as T b = π(N)e/(λπ(N−1)e).

4 Numerical Example

In this section we present a numerical example to illustrate the analysis carried out in
the previous sections. In this example the system parameters are: C = 10, N = 5. Four
combinations of service discipline and buffer management schemes are considered: FCFS
(FCFS and q = 0), FCFSpo (FCFS and q = 1), SIRO (SIRO and q = 0.5) and LCFS
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Fig. 1. Blocking probability plus expulsion probability.

(LCFS and q = 0). Arrival rate (λ) and transition rates of the PH distribution (T ) are
normalized with respect to µ. Two different instances of the patience time are examined,
one whose hazard rate function1 is increasing (e.g. Erlang) and the other decreasing (e.g.
Hyper exponential). Their PH representations are, respectively,

β =
[
1 0 0

]
, T =



−3 3 0

0 −3 3
0 0 −3




and β = 1/3
[
1 1 1

]
, T = −56/150 diag

{[
50 10 1

]}
.

Figure 1 represents the sum of the probabilities of blocking and expulsion as a function
of the offered traffic, and Fig. 2 does the same for the probability of reneging.

The total computational cost incurred in order to find the state probabilities is domi-
nated by the cost of inverting the matrix A

(N)
1 , which is of size mN . Obviously, increasing

the buffer size N and the number of phases m can make the numerical solution simply
unfeasible, which of course is a limitation of our model. Nevertheless, in such situation
our model can still provide a better approximation than the simple first order exponential
approximation. An example comparing these approximations is shown in figures 3 and 4.
In these two examples we consider a 5-phase PH distribution for which the exact perfor-
mance measures are computed: in Fig. 3 we used a hyper exponential distribution and in
Fig. 4 an Erlang distribution . Then, the original PH distribution is approximated (using
moment matching) by a 1-phase PH (exponential) and a 2-phase PH. As expected, the
2-phase approximation offers better accuracy than the exponential one.

5 Conclusion

In this paper, we developed a stochastic model for a multiserver finite buffer queue with
impatient customers where the patience time is modeled by a rv of phase-type. Further-

1 The hazard rate function is also known as the failure rate function. Let f(x) and F (x) be the pdf and the CDF
of a rv X, the hazard rate function h(x) of X is defined as h(x) = f(x)/ (1− F (x)).
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Fig. 2. Reneging probability.
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Fig. 3. Approximation of a hyper exponential distribution. LIFO discipline.

more, the model considers different service disciplines (FCFS, LCFS and SIRO) along
with a probabilistically weighted buffer management scheme that combines two modes
of operation: customers who arrive when system is full are blocked or push-out the HOL
customer. The most significant achievent of this paper is to develop a model for the perfor-
mance analysis of a queue with impatient customers under non-FCFS service disciplines.
Secondly, our model considers the finite buffer case and a fairly general distribution of
the customer patience.

The analytical model is constructed and analyzed using matrix analytic methods and
we obtain expressions for the performance evaluation of the system. The complexity of
the computations in the analysis of our model is mainly dependent on buffer size and
the number of phases of the customer patience distribution. While this complexity can
make the numerical analysis unfeasible in some cases, in these cases our model can still
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Fig. 4. Approximation of an Erlang distribution. FIFOpo discipline.

provide a better approximation than the one obtained using an exponentially distributed
customer patience.
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