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Abstract

One important issue that needs to be addressed in order to provide effective

massive deployments of IoT devices is access control. In 5G cellular networks,

the Access Class Barring (ACB) method aims at increasing the total successful

access probability by delaying randomly access requests. This mechanism can

be controlled through the barring rate, which can be easily adapted in networks

where Human-to-Human (H2H) communications are prevalent. However, in

scenarios with massive deployments such as those found in IoT applications, it

is not evident how this parameter should be set, and how it should adapt to

dynamic traffic conditions. We propose a double deep reinforcement learning

mechanism to adapt the barring rate of ACB under dynamic conditions. The

algorithm is trained with simultaneous H2H and Machine-to-Machine (M2M)

traffic, but we perform a separate performance evaluation for each type of traffic.

The results show that our proposed mechanism is able to reach a successful

access rate of 100 % for both H2H and M2M UEs and reduce the mean number

of preamble transmissions while slightly affecting the mean access delay, even

for scenarios with very high load. Also, its performance remains stable under
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Tecnoloǵıas para la inclusión social y la competitividad económica. O.E.6.
∗Corresponding author
Email address: diego.pacheco@usa.edu.co (Diego Pacheco-Paramo)

Preprint submitted to Ad Hoc Networks June 30, 2019



the variation of different parameters.

Keywords: access control, deep reinforcement learning, massive machine type

communications, 5G, cellular networks.

1. Introduction

The Internet of Things (IoT) is an ubiquitous network of interconnected

objects that harvest information from diverse environments, interact with the

physical world, and use existing Internet infrastructure to provide services for

information transfer, analytics, and applications. IoT devices come with vastly

different computing capabilities, energy constraints, and radio access technolo-

gies. Therefore, IoT architectures need to efficiently handle a massive number of

devices with reliability, and real-time capabilities. One of the leading facilitators

of the IoT environment is machine-type communication (MTC) [1, 2]. Unlike

H2H communications, MTC introduces new traffic patterns: typically, they

produce small reports, either periodical or triggered by specific events. Distinct

peculiarities of MTC traffic require specialized and inter-operable communica-

tion technologies [3, 4]. Cellular networks are the natural choice to satisfy these

requirements and handle a significant part of this emerging traffic [5]. Features

such as an already existing infrastructure, extensive area coverage, and high-

performance capabilities have allowed cellular-based MTC growing at a break-

neck pace enabling an entirely new class of ubiquitous applications and services,

such as smart metering, e-healthcare, intelligent transportation, environmental

monitoring, among others [6].

The unique characteristics of massive MTC (mMTC) pose significant chal-

lenges from the networking point of view, even for state-of-the-art technologies,

such as those found in 5G and beyond [4]. Most applications and scenarios

based on mMTC usually involve a vast number of devices. There, a fundamen-

tal issue is the efficient management of network resources in overload situations

caused by signaling congestion in the random access channel. Indeed, while the

number of connected objects is increasing, current cellular networks may not be

2



prepared to support this new trend, because they are originally designed for a

different traffic type.

The 3GPP suggests access class barring (ACB) [7, 8] as one mechanism to

address the congestion in cellular networks. ACB enables barring UEs prob-

abilistically, according to a barring rate and a barring time; the base station

broadcasts these parameters. Given the complexity to find the optimal con-

figuration for those parameters in scenarios with variable traffic, we developed

a real-time configuration selection scheme based on a reinforcement learning

(RL) approach to dynamically tune the barring rate. The proposed scheme can

rapidly react to traffic changes using local information available at the base sta-

tion. Our experiments are based on realistic traffic behavior by making use of

traces from cellular network operators to enhance the access control of simulta-

neous H2H and M2M traffic in cellular networks.

We closely follow the 3GPP directives so that our proposed solution con-

forms the specifications of the random access procedure in current network de-

ployments, and therefore can be successfully integrated into the system. The

main contributions of this paper are summarized as follows

• We contrive a deep reinforcement learning algorithm for dynamic access

control by tuning the ACB barring rate to reduce the congestion on the

Random Access Channel (RACH). We rely on the generalization ability

of deep neural networks to enhance the adaptation of the barring rate to

new traffic conditions.

• We evaluate the performance of our solution in terms of network key per-

formance indicators under a wide range of MTC access request intensities

following the traffic model suggested by the 3GPP for this kind of studies,

while considering realistic H2H traffic by using real traces from cellular

network operators. We determine the optimal parameters for the deep

reinforcement learning solution.

• We compare the deep reinforcement learning algorithm with a Q-Learning

based solution and the well-known D-ACB dynamic solution under differ-
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ent traffic conditions [9]. We show how our new proposal is able to reduce

the energy consumption of M2M devices while allowing that all UEs access

the system successfully.

The remainder of this paper is organized as follows. In Section 2, we con-

duct a literature review of different studies that evaluate the performance of

ACB and the proposed algorithms for its dynamic operation. Then, in Sec-

tion 3 we describe the LTE-A random access procedure detailing the resources

available for the UEs in the initial access to the network, the four-way message

handshake, and the backoff procedure. In Section 3.1, we present the ACB

mechanism suggested by the 3GPP, and detail how it works and how UEs get

the barring parameters. In Section 4, we introduce two different ACB schemes

based on reinforcement learning to tackle the dynamic tuning of the barring

rate according to the ever-changing network traffic. Next, in Section 5, we first

describe scenarios where we evaluate the proposed reinforcement learning based

ACB schemes; then, we test and analyze their sensibility to different parame-

ters and network conditions, showing the most relevant results in terms of key

performance indicators (KPIs). Also, we compare the reinforcement learning

based solutions with a well-known dynamic solution named D-ACB [9]. Finally,

in Section 6 we draw the conclusions.

2. Related Work

The use of data-analysis tools to enhance the performance of cellular net-

works is a trend that has received a lot of attention in recent years. This ap-

proach seems intuitive considering the large amounts of data that Telcos need to

collect in order to provide services. These databases are composed of call detail

records (CDRs) that provide different types of information about the usage of

the network, and they have been used to provide different applications. For

example, in [10] the authors propose a location management mechanism that

aims to reduce the signaling associated to location updates by predicting the

future locations of UEs. In [11], an energy-reduction mechanism is proposed
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based on the usage patterns of base stations in India. This solution exploits

temporal changes in the occupation of the base stations, by adapting the power

consumption of antennas during the day. In other works such as [12, 13], the re-

lation between network performance and QoE is analyzed through the analysis

of data obtained from Telcos.

Regarding the optimization of access control mechanisms in LTE/LTE-A, it

is a well studied problem that has gained interest due to the imminent arrival of

mMTC, in particular those that support IoT applications. In LTE-A, the most

studied access control mechanisms is ACB, and different solutions have been

proposed based on it [9, 14, 15, 16, 17, 18]. Some of these schemes can achieve

near-optimal performance (i.e., maximize the resources utilization and guaran-

tee the access of the vast majority of the UEs to the base station). However,

such a high performance has been obtained by assuming an idealized ACB oper-

ation and by setting exact barring parameters, for which complex processes and

questionable assumptions are often needed. Consequently, these ACB schemes

cannot be implemented in current cellular systems.

In [9], a mechanism to set ACB in real-time without any a priori knowledge

of the contending UEs in the network is proposed, and its performance resembles

the optimal. However, in this solution the delay is reduced by assuming that

UEs retry on the following random access opportunity (RAO) after a collision,

which is not the procedure specified in the standards. In [15] an access scheme

with priorities is proposed and evaluated against ACB and Extended Access

Barring (EAB). However, it is assumed that the access control parameters, such

as PACB, are updated in every access opportunity, without any constraints. On

the contrary, our solution considers these restrictions. In [19], a mechanism that

dynamically adapts ACB based on an estimation of the number of contending

UEs is proposed. Furthermore, the authors improve the estimation using a

Kalman Filter. However, in this work only M2M UEs are considered, which

does not allow an understanding of how the mechanism affects H2H UEs.

It is also possible to find in the literature reinforcement learning solutions

that aim to optimize the access control for wireless networks, and in particu-

5



lar for cellular networks such as LTE-A and NB-IoT. In our work in [20], we

proposed a Q-Learning solution that was able to adapt to dynamic traffic con-

ditions and it was compared against static solutions. In this work we present a

scheme that improves all the relevant KPIs, with respect to our previous pro-

posal. In [21], the authors propose a Q-Learning mechanism that aims to assign

preambles to H2H or M2M UEs according to the traffic intensity. However,

their scheme requires that the system knows how much traffic per UE type is

offered in order assign access priorities, in a similar fashion as Extended Access

Barring. In [22], a Q-Learning approach is proposed, where each M2M UE has

to learn when to transmit. This mechanism does not make use of ACB and it is

completely decentralized. Note that decentralized access schemes do not adhere

to current LTE-A recommendations. Likewise, in [23] the authors propose a

decentralized mechanism to optimize the access control. In this case, the UEs

are able to learn the characteristics of different coexisting medium access con-

trol mechanisms, and adapt their transmissions using cognitive radio. Although

this scenario is very promising, it heavily relies on the processing capacities of

the terminals, which is not feasible in scenarios with low-power, low-processing

devices such as those frequently found in IoT applications. In [24] a deep rein-

forcement learning mechanism for controlling ACB is proposed and evaluated

with both M2M and H2H traffic. The results show that their mechanism is

able to effectively improve the probability of successful access and the delay.

However, they assume that the base station has a complete knowledge of the

number of UEs contending for resources in the network. The same assumption

is done in [25], where a reinforcement learning approach is proposed to control

ACB in real-time. This assumption is not realistic. However, in our work we

consider that the base station only knows the number of UEs whose preambles

were successfully decoded.

Learning Automata [26] is another approach that has been used to enhance the

access of massive M2M communications in wireless networks. In [27], the au-

thors propose a mechanism that allows efficient multi-hop communications in

wireless sensor networks. In this solution, the objective is to reduce data losses
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associated to congestion, which also reduces energy consumption. In [28], the

authors propose a learning automata solution to adapt the ACB mechanism

in LTE-A networks. This solution relies exclusively on the information that is

available at the base station, and is able to adapt the barring probability so the

number of successfully decoded preambles on each access opportunity is maxi-

mized. Therefore, it aims at maximizing the throughput of access requests on

the system, reducing the total delay. However, this behavior can also increase

the number of collisions, and as a consequence, the total number of retries and

the energy consumption. This problem is more intense as the number of users

grow, for example in scenarios with mMTC. In [29], a learning automata based

solution is proposed to enhance the access control in LTE-A with mMTC. In

this case, the learning automata is used to estimate the number of users that

should contend for resources on the system after applying the ACB mechanism

in order to maximize the system throughput. Then, the system adapts the

barring probability according to the information that is available at the base

station, adhering in this way to the LTE-A specifications. Although this so-

lution is also able to enhance the rate of accepted preambles, it also increases

the mean number of retries which is undesirable for energy-constrained devices.

Also, this will have a negative impact on scenarios with a maximum number of

retries, as it can diminish the successful access probability. In our approach, we

aim at minimizing the number of collisions, so the mean number of retries is

minimized while increasing the successful access probability.

3. Random Access Procedure and Access Control Scheme

In LTE-A, when a UE wants to access the cellular network, it performs a

random access procedure. The random access channel (RACH) is used to sig-

nal the connection request; it is allowed in predefined time/frequency resources,

hereafter random access opportunities (RAOs) [30, 31]. The base station has a

number of preambles available for initial access to the network. These pream-

bles are generated by Zadoff-Chu sequences due to their good correlation prop-
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erties [31, 32] and are transmitted by the UEs when attempting to access the

network.

There are two different forms of the random access procedure in LTE-A:

contention-free and contention-based. The former is used for critical situations

such as handover, downlink data arrival or positioning, in which the access

procedures can be initiated by the base station. The latter, which is the concern

of this paper, is the standard mode for network access; it is employed by UEs to

change the radio resource control state from idle to connected, to recover from

a radio link failure, to perform uplink synchronization or to send scheduling

requests [30].

A four-message handshake is performed in the contention-based random ac-

cess. In Msg1, a UE transmits a randomly chosen preamble from the preamble

pool during one of the available RAOs. A preamble will be detected at the base

station if it has not been chosen by more than one UE in the same RAO. Other-

wise, a collision occurs. Then, the base station sends a random access response

message, Msg2, which includes one uplink grant for each detected preamble.

Msg2 is used to assign time-frequency resources to the UEs for the transmission

of Msg3. UEs wait for a predefined time window to receive the uplink grant.

If no uplink grant is received by the end of this window and the maximum

number of access attempts has not been reached, the UEs wait for a random

time and then perform a new access attempt. That is, they select a new pream-

ble and transmit it at the next RAO. The UEs that receive an uplink grant

send their connection request message, Msg3, using the resources specified by

the base station. Finally, the base station responds to each Msg3 transmission200

with a contention resolution message, Msg4. The interested reader is referred

to [33, 34, 30, 7, 35] for further details.

In the following, we present access class barring [7, 8] as one mechanism

suggested by the 3GPP to address the congestion in cellular networks.

8



3.1. Access Class Barring

Access Class Barring (ACB) is a congestion control scheme designed to limit

the maximum number of UEs that simultaneously access the network. The

main purpose of ACB is to randomly delay the number of access requests and

in this way help to cope with massive temporary surges. Note that massive-

synchronized accesses demands to the PRACH might jeopardize the accom-

plishment of QoS objectives. If ACB is not implemented, all ACs are allowed

to access the PRACH. When ACB is implemented, the base station broadcasts

(through SIB2) a barring rate PACB and a mean barring time TACB that are ap-

plied to all ACs 0-9. Note that ACB is applied only to the UEs that have not yet

initiated its random access procedure as explained in Section 3. UEs subject to

the ACB scheme must perform a barring check as described in Algorithm 1 [7, 8]

before initiating the random access procedure.

Algorithm 1: ACB Scheme

1 repeat

2 Set the mean barring time TACB(n) and the barring rate PACB(n)

broadcast by the base station in the nth SIB2;

3 Generate U [0, 1) = a random number with uniform distribution

between 0 and 1;

4 if U [0, 1) ≤ PACB(n) then

5 initiate the random access procedure;

6 else

7 Generate a new U [0, 1);

8 Set the barring time as

Tbarring = [0.7 + 0.6U [0, 1)] TACB(n); (1)

9 wait for Tbarring;

10 end

11 until the random access procedure is initiated ;
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TSIB2 = 16 RAOs

t = n− 1 t = n

SIB2(n) SIB2(n + 1)

PACB(n) PACB(n + 1)sn

Figure 1: State definition and SIB2.

4. Implementation of Reinforcement Learning Mechanisms

In this section, we describe the implementation of two different ACB mecha-

nisms. The first one is based on classical Q-Learning [36], an off-policy algorithm

that uses estimates in order to calculate the actions that optimize the long term

rewards of the system. The second one is based on Double Deep Q-Learning [37],

which uses a deep neural network in order to generate a function that assigns

Q values to states.

The classical Q-Learning mechanism implemented in this paper was origi-

nally presented in [20], although some of its characteristics were not evaluated

due to lack of space. The Double Deep Q-Learning mechanism implemented is

a new contribution of this paper, and it shares with the former implementation

the state space and the reward function. This allows a fair comparison of both

solutions. In the following, we explain how the Markov Decision Process is de-

fined, with its corresponding actions, rewards, and state space. Then, we will

explain how the learning mechanisms were implemented.

4.1. System Model

One of the most important characteristics of many centralized access con-

trol problems is that the access controller does not know how many users are

contending for its resources, nor their access times. In LTE-A, the base sta-

tion is able to identify the number of successfully received preambles Npsu in

a specific RAO. However, due to collisions, interference, decoding problems

or other impairments, the value of Npsu normally differs from the total num-

ber of preambles sent, especially in [heavily] congested scenarios. Consider-
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ing that the base station uses ACB as its access control mechanism, the se-

lection of PACB will be the action used by the learning scheme to optimize

the performance of the network. Since there are 16 possible values of PACB,

{0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}, we define

the set of actions as A = {1, 2, .., 16}.

In LTE-A, the base station informs the UEs about changes on PACB through

SIB2 messages, sent with a periodicity given by TSIB2. Following the specifi-

cations [7], in this work we define TSIB2 = 80 ms. Therefore, TSIB2 represents

the duration of a decision epoch of our system, where each epoch is composed

of one or more RAOs. The number of RAOs that compose a decision epoch

is defined according to prach-ConfigIndex [31] [7]. In this work, a RAO is gen-

erated every 5 ms, and therefore a single decision on PACB affects 16 RAOs

as it can be seen in Fig. 1. Hence, a state has to summarize the situation of

the network across all RAOs in an epoch. Thus, we use three variables that

properly summarize the traffic on a decision epoch: the mean number of suc-

cessfully received preambles per RAO (Npsu), the coefficient of variation of the

successfully received preambles per RAO (CVNpsu), and the difference between

the mean number of successfully received preambles in the current period and

the previous one (∆Npsu). Due to the effect that PACB has on traffic, we use

this value and the three previously mentioned to define the state s. Hence, a

state s is defined as s =
(
Npsu, CVNpsu ,∆Npsu, PACB

)
. In Fig. 1, it can be seen

that at time n, the computation of the state value is performed considering

the previous 16 RAOs. The number of successfully decoded preambles on each

of these RAOs depends, among other factors, on PACB(n), which is the action

taken on the previous state sn−1.

Bear in mind that the maximum number of UEs that can successfully access

the medium in a single RAO is 54, as 54 is the number of available preambles

at the base station for contention-based random access [38, 30]. However, due

to connectivity issues and the possible selection of the same preamble by dif-

ferent UEs, the effective number of decoded preambles by the base station is

much lower. In Fig. 2, the probability mass function (PMF) of successfully
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received preambles as a function of the number of sent preambles is shown. It

can be seen that when the number of sent preambles is below 10, the base sta-

tion will successfully receive all sent preambles with high probability. However,

as the number of sent preambles increases, the number of successfully received

preambles at the base station will considerably decrease with high probability.

This reduction of successfully received preambles at the base station is due to

preamble collisions. Note that this reduction is more acute when channel im-

pairments are taken into account. As observed in Fig. 2, the probability of

receiving more than 29 successful preambles in a single RAO is very low for any

number of contending UEs. Therefore, in our system, states where Npsu > 29

are aggregated into the state Npsu = 29. For CVNpsu
, the values were discretized

as, CVNpsu
∈ {0, 0.2, 0.4, 0.6, 0.8}. For example, if 0 ≤ CVNpsu

≤ 0.19 when mea-

sured over the 16 RAOs, the value that will appear on the state is CVNpsu = 0.

In the case of ∆Npsu, the results are also modified so it take only 3 possible

values. That is, when the observed traffic grows, ∆Npsu = 1, when it decreases,

∆Npsu = −1, and when it remains constant, ∆Npsu = 0.

Finally, the rewards associated to the action taken on a given state st, and

its resulting state st+1, are defined by R. In our design, the main objective is to

avoid congestion, that is, to control the number of contending UEs through the

proper adjustment of PACB. This allows to reduce the number of transmissions

for each UE, an important aspect considering that the maximum number of

preamble transmissions according to the standards is 10 [7]. This is a critical

constraint for IoT devices that is not considered in other works [9],[29]. There-

fore, we have defined a set of general guidelines in order to assign rewards to a

group of states:

• A hard limit that allows to minimize the uncertainty about the number of

contending UEs due to collisions in the system is 10, according to Fig. 2.

Therefore, PACB should adapt so Npsu does not surpass this value.

• The specific values of PACB should be proportional to Npsu with the ob-
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Figure 2: PMF of successfully received preambles as a function of the number of sent pream-

bles.

jective of staying beyond the limit mentioned earlier (i.e., 10).

• If Npsu is less than 10, a reward or a penalty will be assigned as a function

of the traffic changes characterized by CVNpsu
and ∆Npsa. For example, a

high CVNpsu
value can be acceptable if Npsu is low, but not if it is close to

10. Also, a Npsu close to 10 can be acceptable if ∆Npsa = −1, but not if

∆Npsa = 1.

• The reward/penalty values are set in the range between -100 and 100

with step sizes of 20 to facilitate its evaluation. The magnitude of the

reward/penalty is associated to how the action helps to avoid/reach the

hard limit mentioned earlier.

The reward function defined following these guidelines is shown in [39].
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4.2. Classical Q-Learning Mechanism

The implementation of Q-Learning [36] was already shown in [20]. In this

case, the update of the reward value associated to the state s given the action

a, Q(s, a) is done according to:

Q(s, a)← Q(s, a) + α

[
R+ γ max

a′∈A
[Q(s′, a′)]−Q(s, a)

]
, (2)

where α is the constant learning rate, s′ is the following state, a′ is the action

taken in state s′, and R + γ maxa′∈A [Q(s′, a′)] is the target. The parameter

R is the reward associated to taking the action a in state s and its values are

shown in [39]. The parameter γ is the discount factor which controls the im-

pact of future rewards. Two important results are obtained due to the factor

maxa′∈A[Q(s′, a′)] in Q-learning. First, that the future rewards are based on

an estimate that might suffer a positive bias, leading to sub-optimal perfor-

mance [40]. Second, that the future rewards are independent of the current

policy, hence its off-policy definition. This allows a real-time implementation.

The policy used by the system follows an ε-greedy approach. The parameter

ε is the exploration probability, and it affects which action is followed on each

state. With probability ε the algorithm will choose a random action, that is, it

will explore the state space. With probability 1 − ε the algorithm will choose

the action with the highest Q(s, a) value, that is, it will exploit the maximum

reward. Although it has been shown that Q-learning converges [36], its perfor-

mance might suffer as the state space grows, due in part to the overestimation

mentioned earlier [39], but also because of its limited ability to generalize for

previously unvisited states. We solved this problem in part in [20] by aggre-

gating states as it was seen in the previous section. However, this does not

guarantee that the system performs correctly under previously unseen traffic

conditions.

The implementation of Q-learning is shown in Algorithm 2.
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Algorithm 2: QL-Based ACB Scheme

Controller: Q-learning(S,A, α,R, γ, ε)

Input : S is the set of states, A is the set of actions, α is the

learning rate, R is the reward, γ is the discount factor, ε is

the exploration probability

Local : real array Q[s, a], state s, action a

1 repeat

2 if RAO(i) mod TSIB2 = 0 then

3 select action a′ from A using the ε−greedy approach;

4 observe reward R(s, a′, s′) and state s′;

5 update Q(s, a) by (2);

6 end

7 s = s′

8 until i = max RAO ;

4.3. Double Deep Q-Learning Mechanism

Deep Q-Learning [41] can be classified as an approximation method that has

been successfully used to solve different problems where a deep neural network

is used to represent complex relations of the input data. The neural network

is used to approximate Q values using three parameters: s,a and θ, where s is

the state, a is the action, and θ represents the weights of the neural network.

Just like in the classical Q-learning method, we want to find the Q values that

maximize the expected total reward. However, in this case the expected value

of the rewards depend not only on s and a, but also on θ. Therefore, every time

the system interacts with the environment, the target will be

Y = R+ γ max
a′∈A

[Q(s′, a′, θ)] . (3)

According to the Bellman equation, by reaching the target, the system is able

to maximize the expected reward. Therefore, after each interaction with the

environment, θ should be adapted in such a way that the loss function L is
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minimized, where

L =
1

2

(
R+ γ max

a′∈A

[
Q(s′, a′, θ−)

]
−Q(s, a, θ)

)2
. (4)

Note that in (4), the target depends on θ−, that is, the weights of the refer-

ence neural network. On the other hand θ represents the weights of the neural

network that is currently interacting with the environment. This method has

an important advantage over classical Q-Learning, because its neural network

allows generalization, which means that the system does not need to interact

with every state-action combination to adapt to the environment, and should

perform better to previously unseen traffic conditions. However, there are no

guarantees on its convergence. In [41], two techniques are proposed to deal with

this issue. First, they propose the use of a target network. This network is rep-

resented in (4) by θ−, but in this case, it is updated every τ iterations. Second,

they use experience replay [42]. This method allows to break the dependency

of consecutive interactions with the environment by recording them on a buffer,

and then training the neural network by sampling randomly these experiences.

The size of the buffer is defined by ER.

In this work, we have implemented a variation called Double Deep Q-Learning

[37]. This algorithm aims to mitigate the overestimation of the Q-values that

results from the max operator in (3), that is used both for evaluating and se-

lecting actions. In Double Deep Q-Learning, a second neural network is trained

in such a way that the system uses one of them to evaluate the policy, and the

other one to choose the action. This is represented in [37] by the Double Deep

Q-Learning target

Y DDQL = R+ γ Q(s′,max
a′∈A

[Q(s′, a, θ)] , θ
′
), (5)

where θ refers to the weights of the neural network currently being used online,

and θ
′

refers to the neural network that will remain unchanged during τ itera-

tions. The implementation of Double Deep Q-Learning is shown in Algorithm

3. We name the two neural networks QA and QB for clarification purposes. The

parameter NL defines the number of hidden layers of the multi-layer perceptron
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implemented. The neural network has four inputs (one for each variable of the

state) and 16 outputs (one for each action).

Algorithm 3: Double Deep QL-Based ACB Scheme

Controller: Double Deep Q-learning(S,A,R, γ, ε, τ, ER,NL)

Input : S is the set of states, A is the set of actions, R is the reward, γ is the

discount factor, ε is the exploration probability, ER is the size of the

experience replay, τ is the size of the target update and NL is the

number of layers of the neural network

Local : Neural Network QA[s, a, θ], state s, action a, weights θ

Local : Neural Network QB [s, a, θ′], state s, action a, weights θ′

1 repeat

2 repeat

3 if RAO(i) mod TSIB2 = 0 then

4 select action a′ from A using the ε−greedy approach and QA[s, a, θ];

5 observe reward R(s, a′, s′) and state s′;

6 WRITE a,s,r,s′ in buffer

7 end

8 s = s′

9 until j = ER;

10 Randomize buffer order

11 k=0;

12 repeat

13 m=kτ+1;

14 repeat

15 target= r+γ QB [s′,maxa∈A{QA[s′, a, θ]}, θ′];

16 WRITE target in buffer;

17 until m = (k+1)τ ;

18 QB [s, a, θ′]=QA[s, a, θ];

19 Read buffer and train QA[s, a, θ] to reach target;

20 until k = ER/τ ;

21 until i = max RAO ;

5. Performance Evaluation

In this section, we first describe the conditions of the scenarios where we

train and evaluate the proposed ACB adaptation mechanisms; then, we test
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and analyze their sensitivity to different parameters and network conditions.

Finally, we compare the two proposed mechanisms with a well-known dynamic

solution.

Our training and experiments are done on a single cell where both M2M and

H2H UEs coexist. The H2H traffic is obtained from Call Detail Records (CDRs)

of the Italian Telco Telecom Italia, that provided this information as part of its

“big data challenge” in 2014 [43], for the cities of Milan and Trento. This data

is aggregated every 10 minutes, and its intensity is provided according to a

numerical value whose units are not specified. Therefore, it is necessary to pre-

process this data so it can be used in our system. In [44], it is stated that an

base station can support 55 EPS Radio Access Bearer setups per second when

there is high load. Hence, we use this value as a reference to normalize the data

obtained from [43]. Since we want to base our scenario on real data as much as

possible, we do not perform any interpolations, although traffic is only obtained

every 10 minutes. Therefore, we assume that the traffic value obtained after

the processing will remain constant during periods of 10 minutes. This means

that in the period with the highest traffic, the arrival rate of H2H UEs will be

55 per second during 10 minutes. For M2M traffic, we use the model proposed

in [38], where they represent a heavy load scenario as 30 000 UEs following a

Beta(3,4) distribution over 10 seconds. This is a bursty traffic limit scenario

that might arise when many M2M devices are synchronized, for example when

an alarm is set due to the same event, or a power outage has occurred [38].

Bear in mind that training will be defined by periods of 10 minutes. Every

10 minutes, H2H traffic will change as it was explained earlier. Also, every 10

minutes a new M2M burst of traffic will be injected into the system. However,

the characteristics of each burst will be identical. Therefore, when the system

is trained with one day of data, 144 cycles of 10 minutes will occur. In order to

explore the state space, when the systems are trained the first simulation run

starts with an exploration probability of ε = 0.9, and then this value decreases

linearly until the last simulation run, in which ε = 0.01 is used.

For the evaluation of the different mechanisms, we focus on the mean access
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delay E[D], the successful access probability Psa, and the mean number of

preamble transmissions E[K]. These are the typical KPIs evaluated in this

type of studies, which will allow us to compare the performance of the proposed

adaptive scheme to the performance of other schemes proposed in the literature.

Just like for the training phase, a single cell environment is assumed to evaluate

the network performance. The system conveys traffic from both H2H and M2M

UEs. The access requests of H2H UEs are distributed uniformly over time

with a mean arrival rate of λH = 55 arrivals/s. That is, the evaluation is

done for the highest H2H traffic possible. Unless otherwise stated, the M2M400

traffic will follow a Beta(3, 4) distribution over a period of 10 s with 30 000 UEs

according to the traffic model 2 specified by the 3GPP in [38]. We consider the

typical PRACH configuration for these kind of studies, prach-ConfigIndex 6,

in conformance to the LTE-A specification [30, 38], with the parameter values

listed in Table 1. Note that a preamble detection probability (Pd = 1 − 1
ek

for

the kth preamble transmission [38]) is assumed to take into account the effects

of radio channels, for example path-loss, fading, inter-cell interference, among

others. Unless otherwise stated, the results shown are the mean values of 200

simulation runs using the above-mentioned parameters. Each simulation run

uses a different random seed and ends when all the M2M UEs have completed

their random access procedure. For the evaluation of the different schemes, the

exploration probability is set to ε = 0.

5.1. Evaluation of QL-ACB Mechanism

In Fig. 3 and Table 2, we can see the performance of the classical QL-ACB

algorithm when it is trained with 1 day of data with the learning rate α taking

the values 0.05, 0.15, and 0.25. As it can be observed, using higher values of α

can increase the delay, which in the case of α =0.25 is about 0.5 s higher than for

α =0.05. Furthermore, as α grows beyond 0.25, the performance of the system

keeps on declining, and therefore the intermediate value of 0.15 seems adequate.

However, for both α =0.25 and α =0.05, all the H2H UEs access successfully

the system, which is not the case when α =0.15. A similar thing could be said
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Table 1: Default System Configuration for Evaluation Purposes

Parameter Setting

PRACH Configuration Index prach-ConfigIndex = 6

Periodicity of RAOs 5 ms

Subframe length 1 ms

Available preambles for

contention-based random access
R = 54

Maximum number of preamble

transmissions
preambleTransMax = 10

RAR window size WRAR = 5 subframes

Maximum number of uplink

grants per subframe
NRAR = 3

Maximum number of uplink

grants per RAR window
NUL = WRAR ×NRAR = 15

Preamble detection probability
Pd = 1− 1

ek
[38]

for the kth preamble transmission

Backoff Indicator BI = 20 ms

Re-transmission probability for
0.1

Msg3 and Msg4

Maximum number of Msg3 and

Msg4 transmissions
5

Preamble processing delay 2 subframes

Uplink grant processing delay 5 subframes

Connection request processing

delay
4 subframes

Round-trip time (RTT) of Msg3 8 subframes

RTT of Msg4 5 subframes

Discount factor γ = 0.7

Learning rate α = 0.15

Num. hidden layers (feedforward

neural network)
NL = 10

Update period (events) of the

second neural network
τ = 100

Buffer size for experience replay ER = 500

for M2M UEs, since for α =0.25 and α =0.05, 99.98 % of UEs can access the

system, more than for the original value of α. In terms of mean number of

preamble transmissions there are no important differences to be noticed, and

the values are consistent with the behaviour explained earlier.

Similar results are obtained when we change the value of γ from 0.3 to 0.9,
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Figure 3: Congestion and Successful Accesses for QL-ACB as α varies.

Table 2: Mean Access Delay and Mean Number of Pream. Tx for QL-ACB as α varies.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

α=0.05 α=0.15 α=0.25 α=0.05 α=0.15 α=0.25 α=0.05 α=0.15 α=0.25

M2M 8.37 8.24 8.87 1.78 1.80 1.76 99.98 99.97 99.98

H2H 3.65 3.61 3.77 1.58 1.60 1.58 100 99.99 100

All UE 8.17 8.05 8.65 1.77 1.79 1.75 99.99 99.97 99.99

as it can be seen in Fig. 4 and Table 3. For very low values of γ, the delay of

the system grows due to the tendency of the design to reduce the congestion by

limiting the amount of UEs that can access the system. In fact, when γ = 0.7,

the mean access delay for all UE is almost 1 s less than when we use γ = 0.3.

This value of γ is also desirable because it allows all H2H UEs to access the

system. However if we increase γ beyond 0.7, the congestion of the system

grows and some access attempts are discarded after the maximum number of

preamble transmissions is reached. This might be due to the fact that increasing

γ adds weight to the estimation of Q-values, which intensifies the tendency of the

Q-Learning algorithm to overestimate them due to the difficulty on predicting
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Figure 4: Congestion and Success Probability for QL-ACB as γ varies.

future rewards in the transient regime.

Table 3: Mean Access Delay and Mean Number of Pream. Tx for QL-ACB as γ varies.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

γ=0.30 γ=0.70 γ=0.90 γ=0.30 γ=0.70 γ=0.90 γ=0.30 γ=0.70 γ=0.90

M2M 8.81 8.05 8.15 1.77 1.80 1.91 99.97 99.97 99.95

H2H 4.04 3.61 3.70 1.58 1.60 1.62 100 99.99 99.99

All UE 8.81 8.05 8.15 1.76 1.79 1.90 99.97 99.97 99.95

In Fig. 5 and Table 4 the performance of the QL-ACB mechanism is shown

after being trained with data from 1, 2, 3, and 4 days and with 30 000 M2M

UEs. It can be seen that after training with 4 days of data, the system is able

to reduce the mean access delay in more than 0.6 s for M2M UEs, and 0.3 s for

H2H UEs. Also, there is a slight reduction of the mean number of preamble

transmissions. However, what is more important is that in the case of training

with four days of data, the success probability reaches 100 % for H2H UEs, and

99.99 % for M2M UE. It is also interesting to notice that when the algorithm is
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Figure 5: Congestion and Success Probability for QL-ACB as training evolves.

trained with data from 2 or 3 days, the success probability is reduced for M2M

UEs. This can be explained because in these cases the number of collisions

grows. It is also worth noticing that the training time was 803 s for the first

case, 1 692 s for the second case, 2 429 s for the third case, and 3 146 s for the last

case, that is, the training time was less than an hour in the worst case. This

means that it takes around 800 s to train the system with one day of data.

Table 4: Mean Access Delay and Mean Number of Pream. Tx for QL-ACB as training evolves

and 30 000 M2M UEs.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 8.24 7.99 7.85 7.57 1.80 1.86 1.89 1.76 99.97 99.87 99.89 99.99

H2H 3.61 3.41 3.56 3.35 1.60 1.60 1.64 1.59 99.99 99.98 99.98 100

All UE 8.05 7.80 7.68 7.41 1.79 1.85 1.88 1.76 99.97 99.88 99.89 99.99

In Table 5 and Fig. 6, we evaluate the performance of the QL-ACB algorithm

when it is trained during 1, 2, 3, and 4 days, and there are 10 000 M2M UEs.

We consider that H2H traffic is the same as in the previous experiments. It can

23



Figure 6: Congestion and Success Probability for QL-ACB as training evolves with 10000

M2M UEs.

be seen that the system adapts correctly although the traffic is much lower, and

the system is able to accept all UEs. As expected, the mean access delay and

the mean number of preamble transmissions are reduced, which is consistent

with the low traffic offered to the system. It is also interesting to notice that

in this case the minimum value of PACB is 0.4, that is higher than the one

achieved for the scenario with 30 000 M2M UEs. This shows the effectiveness

of the proposed adaptive scheme.

Table 5: Mean Access Delay and Mean Number of Pream. Tx for QL-ACB as training evolves

and 10000 M2M UEs.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 2.63 2.72 2.68 2.24 1.58 1.58 1.60 1.59 100 100 100 100

H2H 1.09 1.08 1.11 0.91 1.50 1.50 1.51 1.50 100 100 100 100

All UE 2.52 2.59 2.58 2.15 1.58 1.57 1.59 1.58 100 100 100 100

In Table 6 and Fig. 7, the performance of the system after being trained
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Figure 7: Congestion and Success Probability for QL-ACB as training evolves with 40000

M2M UEs.

with data from 1, 2, 3, and 4 days, when the system receives 40 000 M2M UEs

is shown. This scenario has 33 % more traffic than the scenario of maximum

congestion proposed in [38], and as expected the performance of the system

suffers. In fact, the best value of the successful access probability for M2M UEs

is below 98 %, and for H2H UEs the 100 % could not be achieved, as it occurred

in the scenario with 30000 M2M UEs. The system that is trained with 3 days

of data is able to reduce the congestion considerably by reducing PACB for a

longer time, but this is not enough to accept more UEs in the system.

Table 6: Mean Access Delay and Mean Number of Pream. Tx for QL-ACB as training evolves

and 40000 M2M UEs.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 8.99 9.09 9.68 8.78 2.12 2.09 1.95 1.93 92.03 95.17 97.66 95.15

H2H 4.02 3.96 4.50 3.94 1.67 1.67 1.68 1.64 97.36 98.57 99.15 98.16

All UE 8.81 8.91 9.50 8.62 2.11 2.07 1.94 1.92 92.16 95.26 97.69 95.22
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5.2. Evaluation of Double Deep QL-ACB Mechanism

In the case of the Double Deep QL-ACB (DDQL) mechanism, we used the

Levenberg-Marquardt implementation used in the MATLAB Optimization Tool-

box with its default parameters to train the feedforward neural network. In

Fig. 8 and Table 7, we evaluate the impact of γ on the Double Deep QL al-

gorithm when NL = 10 and it is trained with 1 day of data. In the top-left

graph of Fig. 8, it can be seen that the policy when γ = 0.9 changes drastically

from the other two between the 3 600th and 10 000th RAOs. This policy takes

a longer time to increase PACB back to one after the traffic peak has finished,

and it also imposes the highest restriction on UEs when the traffic is peaking,

by reducing PACB more than the other two systems. As a result of this, that

policy increases the mean access delay for M2M, which are the majority of UEs.

However, although the policies might seem very different, their performance do

not substantially differ. The mean number of preamble transmissions does not

suffer too much, and in fact, all the three policies allow 100 % of the UE to

access successfully the network. This is an important achievement considering

that this is the main objective of ACB.

Table 7: Mean Access Delay and Mean Number of Pream. Tx for Double Deep QL-ACB

NL =10 as γ varies.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

γ=0.30 γ=0.70 γ=0.90 γ=0.30 γ=0.70 γ=0.90 γ=0.30 γ=0.70 γ=0.90

M2M 6.28 5.96 6.62 1.72 1.77 1.77 100 100 100

H2H 2.60 2.98 2.66 1.57 1.63 1.55 100 100 100

All UE 6.13 5.87 6.42 1.71 1.77 1.75 100 100 100

In Fig. 9 and Table 8, the performance of the Double Deep QL-ACB mech-

anism is shown when NL = 5 and γ varies from 0.3 to 0.9. It is evident that

when γ =0.9, the system does not perform correctly, showing that increasing

the weight on the estimates of future values of Q to update its value according

to Eq. (2) is detrimental to the performance of the system. This is a result of
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Figure 8: Congestion and Success Probability for Double Deep QL-ACB NL =10 as γ varies.

a wrong estimation of Q, which in this cases is done by a feedforward neural

network with only 5 hidden layers. In fact, it is only in this configuration that

the system does not reach a 100 % of successful access for both types of UEs. On

the other hand, when γ = 0.3, the mean access delay is reduced for both types

of UEs while maintaining a 100 % of successful access probability. Therefore,

one might consider that a lower value might be convenient when there is not too

much data available for training. Also, it should be noted that this behaviour

was not seen when NL = 10, and therefore having more hidden layers provides

stability.

Table 8: Mean Access Delay and Mean Number of Pream. Tx for Double Deep QL-ACB

NL =5 layers as γ varies.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

γ=0.30 γ=0.70 γ=0.90 γ=0.30 γ=0.70 γ=0.90 γ=0.30 γ=0.70 γ=0.90

M2M 5.77 6.24 6.37 1.76 1.73 1.89 100.00 100.00 99.52

H2H 2.40 3.13 2.59 1.56 1.61 1.74 100.00 100.00 99.81

All UE 5.63 6.14 6.25 1.75 1.73 1.88 100.00 100.00 99.52
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Figure 9: Congestion and Success Probability for Double Deep QL-ACB NL =5 as γ varies.

In Fig. 10 and Table 9, the performance of the Double Deep QL-ACB mech-

anism is shown when NL = 10, and the algorithm is trained with data from

1, 2, 3, and 4 days. It can be seen that the system aims to reduce congestion,

which is reflected in a reduction on the mean number of preamble transmissions

and an increase in the mean access delay, which is clearly a trade-off. However,

every configuration maintains a 100 % successful probability for both types of

UEs. In fact, in this scenario the number of collisions never surpasses 8, a very

low value when compared with the Classical Q-Learning solution. This means

that our design reflected on the reward function is consistent with the behaviour

of the system. This performance is superior to that achieved through classical

Q-learning which implies that the generalization achieved by Double Deep Q-

learning is appropriate to this problem. The training time was 2 459 s for 1 day

of trining data, 4 953 s for 2 days, 7 042 s for the 3 days, and 8 632 s for 4 days.

These times are about 3 times higher than those obtained with the classical

Q-learning algorithm, and therefore another trade-off has to be considered.

In Fig. 11 and Table 10, the performance of the Double Deep QL-ACB mech-
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Figure 10: Congestion and Success Probability for Double Deep QL-ACB NL =10 as training

evolves.

Table 9: Mean Access Delay and Mean Number of Pream. Tx for Double Deep QL-ACB

NL =10 as training evolves.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 5.96 6.79 7.38 7.62 1.77 1.71 1.68 1.67 100.00 100.00 100.00 100.00

H2H 2.98 3.39 3.58 3.87 1.63 1.59 1.57 1.56 100.00 100.00 100.00 100.00

All UE 5.87 6.68 7.25 7.48 1.77 1.70 1.68 1.66 100.00 100.00 100.00 100.00

anism is shown when NL = 5, and the algorithm is trained with data from 1, 2,

3, and 4 days. It can be seen that as the training increases, the algorithm is able

to reduce the congestion successfully, bounding the mean number of collisions

below 5 when the algorithm is trained with data from 4 days. However, while

the congestion is reduced, and with it the mean number of preamble transmis-

sions, the mean access delay is also increased, which can be seen from the shift

that the PACB curve has to the right as training increases. This is a result of the

design solution that we have made, which rewards important congestion reduc-
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Figure 11: Congestion and Success Probability for Double Deep QL-ACB NL =5 as training

evolves.

tions. One might argue that this is not the best solution due to the increase on

delay, but we have to keep in mind that the ACB mechanism aims to maximize

the acceptance rate, not to minimize the delay. Also, this allows to reduce the

mean number of preamble transmissions which is important in scenarios where

a large number of low-powered devices are deployed. Moreover, this algorithm

is able to accept all M2M and H2H UEs, which makes it very efficient in all four

cases. The training time was 2 420 s for 1 day, 4 704 s for 2 days, 6 782 s for 3

days, and 8 526 s for 4 days. In all four cases, we see a reduction in relation to

the system where NL = 10, which makes this system more efficient. However,

we should remember that this system is not as insensitive to γ variations as the

system with NL = 10 is.

In Fig. 12 and Table 11, the performance of the Double Deep QL-ACB

mechanism with NL = 10 is illustrated when it is trained with data from 1, 2,

3, and 4 days of data, and the number of M2M UEs is 10 000. As it can be seen,

all UEs can successfully access the system in every scenario, although the mean

access delay grows when more data is used for training. This happens because
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Table 10: Mean Access Delay and Mean Number of Pream. Tx for Double Deep QL-ACB

NL =5 as training evolves.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 6.24 7.17 7.34 8.10 1.73 1.68 1.68 1.66 100.00 100.00 100.00 100.00

H2H 3.13 3.50 3.65 4.29 1.61 1.59 1.57 1.57 100.00 100.00 100.00 100.00

All UE 6.14 7.05 7.21 7.96 1.73 1.68 1.67 1.66 100.00 100.00 100.00 100.00

Figure 12: Congestion and Success Probability for Double Deep QL-ACB NL =10, M2M

UEs=10000, as training evolves.

the algorithm aims to reduce the collisions, and in fact after being trained with

4 days of data, the number of collisions is reduced below 1.5. Also, the mean

number of preamble transmissions is reduced. It can be seen that the algorithm

adapts to the traffic, as PACB tends to be higher than 0.5.

In Fig. 13 and Table 12, the performance of the Double Deep QL-ACB

mechanism with NL = 10 and 40000 M2M UEs is shown, when the algorithm

is trained with 1, 2, 3, and 4 days of data. The most important characteristic

that can be seen is that after training with 3 and 4 days of data, all UEs can
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Table 11: Mean Access Delay and Mean Number of Pream. Tx for Double Deep QL-ACB

NL =10, M2M UEs=10 000, as training evolves.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 1.82 2.43 2.36 2.90 1.60 1.56 1.57 1.55 100.00 100.00 100.00 100.00

H2H 0.82 1.16 1.06 1.42 1.54 1.52 1.50 1.50 100.00 100.00 100.00 100.00

All UE 1.77 2.36 2.28 2.81 1.60 1.56 1.57 1.55 100.00 100.00 100.00 100.00

Figure 13: Congestion and Success Probability for Double Deep QL-ACB NL =10, M2M

UEs=40 000 as training evolves.

access the system. This shows that the Double Deep QL-ACB mechanism is

able to adapt to higher loads, unlike the previous mechanism. This is very

positive if we consider that there is about a 30 % increase in the load of the

system, showing that the algorithm outperforms other solutions even in critical

scenarios. However, this performance is achieved at the expense of increasing

the mean access delay, that is, there is a trade-off. In fact, the mean access

delay grows over 8 s for M2M UEs and over 4 s for H2H UEs.
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Table 12: Mean Access Delay and Mean Number of Pream. Tx for Double Deep QL-ACB

NL =10, M2M UEs=40 000 as training evolves.

Mean Access Delay (s) Mean N. Pream. Tx Success. Access Prob. (%)

1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days 1 day 2 days 3 days 4 days

M2M 7.58 7.85 8.57 8.84 1.91 1.84 1.77 1.75 99.99 99.97 100.00 100.00

H2H 3.80 4.05 4.25 4.54 1.68 1.63 1.60 1.59 100.00 99.99 100.00 100.00

All UE 7.48 7.75 8.43 8.71 1.90 1.84 1.76 1.74 99.99 99.97 100.00 100.00

5.3. Comparison of dynamic ACB mechanisms

In this subsection, we compare the two reinforcement learning dynamic so-

lutions, with a well-known dynamic solution proposed in [9]. This solution,

named D-ACB, dynamically adapts PACB to maximize the number of pream-

bles that access the system. However, this solution cannot been implemented

directly because it ignores the constraint on the maximum number of preamble

transmissions that a UE can perform before considering that its connection has

failed. Therefore, we have implemented a modified version, called D-ACB mod-

ified, which extends the maximum number of preamble transmissions to 150, in

order to avoid that UEs are blocked due to their number of preamble transmis-

sions. Also, for both D-ACB solutions, we increased the backoff indicator to

960 ms to allow a fair comparison. In the case of the QL-ACB solution, we use

the results after training with 1 day of data with α=0.15 and γ=0.7. For the

Double Deep QL-ACB solution we use the results after training with 1 day of

data the neural network with NL=10 and when γ=0.7.

We have evaluated our two reinforcement learning solutions, the D-ACB so-

lution without modification, and the D-ACB solution with the previously men-

tioned modification when 55 H2H UEs arrive per second, and when there are

10000, 30000 and 40000 M2M UEs that arrive following a Beta(3,4) distribu-

tion during 10 s. In Fig. 14, it can be seen that the successful access probability

remains unchanged as the number of M2M UEs grows for the D-ACB modified

and Double Deep QL-ACB solutions. On the other hand, the QL-ACB solution

is not able to accept all UEs, and when there are 40000 M2M UEs, Ps is re-
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duced to 92 %. This is the result of the inability of the classical QL mechanism

to generalize, which harms the performance of the system when it is presented

to new traffic patterns. In the case of the D-ACB solution, Ps is 79 % when there

are 30000 M2M UEs and 46 % when there are 40000 M2M UEs. This happens

because this solution tries to maximize the number of preambles that are ac-

cepted in the system per second, causing more collisions. Since the maximum

number of preamble transmissions is 10, a high percentage of UEs are blocked

when they reach this value. The modified version of D-ACB does not suffer

this problem since the maximum number of preamble transmissions has been

increased to 150. This behaviour can be easily seen in Fig. 15, where the mean

number of preamble transmissions is higher for the D-ACB modified scheme.

Although this solution is able to accept all the UEs even for very high traffic

loads, it does that by increasing the mean number of preamble transmissions,

which is detrimental to the performance of energy-constrained devices, such as

those that use M2M communications. In fact, when there are 40000 M2M UEs,

the maximum number of preamble transmissions is around 100. Although not

as much as in the previous case, the D-ACB solution also increases the mean

number of preamble transmissions. In the case of 30000 M2M UEs, the mean

number of preamble transmissions for the D-ACB solution is around 4.6, while

it reaches 1.79 and 1.77 for the QL-ACB and Double Deep QL-ACB solutions,600

respectively. Hence, in this scenario the UEs will use around three times more

energy when they use the D-ACB mechanism instead of the reinforcement learn-

ing solutions. This is more critical if we consider that the D-ACB solution can

only accept around 80 % of the UEs as it was mentioned earlier. However, since

the D-ACB solutions aim to increase the throughput, they are able to reduce

the mean delay considerably. As illustrated in Fig. 16, the D-ACB solution

has the lowest mean delay in all the scenarios, though this is done by reducing

Ps. The modified D-ACB solution also reduces the mean delay, although it is

considerably increased when there are 40000 M2M UEs. This happens because

as more UEs retry, more congestion occurs, and therefore the delay also grows.

Hence, for the modified D-ACB the mean delay grows considerably when there
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Figure 14: Successful Probability Access for All UEs.

are 40000 M2M UEs. In the case of the reinforcement learning solutions, the

delay is usually higher. However, it should be noted that the Double Deep QL-

ACB solution maintains a lower mean delay than that of the QL-ACB solution,

and even if it is higher than the D-ACB solutions, it does it while accepting

all the UEs in the system with a lower number of transmissions. Therefore,

by deciding to avoid congestion through a lower number of transmissions, our

solutions are able to increase the successful access probability by increasing the

delay.

One aspect that has to be considered when implementing reinforcement

learning based solutions, is the computational cost associated to learning. In

Fig. 17 the cost in time associated to training the two algorithms with data from

1 to 4 days is depicted. Clearly, although the performance of the Double Deep

QL-ACB solution is better than the QL-ACB solution in all the KPIs observed

previously, it has higher computational cost. In fact, when we use 1 day of

data to train the systems, it takes almost three times longer to train the Double

Deep QL-ACB solution than the QL-ACB solution. These times are measured

on a 2.5 GHz two core processor. The computational cost is marginal for the
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Figure 15: Mean number of preamble transmissions for All UEs.

Figure 16: Mean Access Delay for All UEs.

D-ACB mechanism, being just an online algorithm that does not need to learn

the system behaviour.
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Figure 17: Training Cost QL-ACB vs Double Deep QL-ACB.

6. Conclusions

In this work, we proposed a Double Deep Q-Learning ACB scheme that aims

to dynamically adapt the ACB barring rate for massive machine type commu-

nications. The mechanism is compatible with the standards, and only considers

the information that is available at the base station. In order to evaluate the

impact that our solution has on H2H UEs, we considered that H2H and M2M

UEs coexist. Also, we used real traces obtained from CDRs of a Telco to rep-

resent H2H communications. The mechanism is designed to avoid congestion

by reducing the number of transmissions required by each UE, which is bene-

ficial for energy constrained devices. The Double Deep Q-Learning scheme is

compared with our previous QL-ACB solution, and a well-known dynamic so-

lution. Results show that the Double Deep QL-ACB scheme outperforms the

other solutions by adapting to different traffic conditions, maintaining a 100 %

acceptance rate while keeping the number of transmissions of UEs low. Also, the

Double Deep QL-ACB solution is able to reach a lower delay than the QL-ACB

solution. The performance of the Double Deep QL-ACB scheme is evaluated as
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it is trained with different amounts of data, showing its capacity to work even

when there are processing or data constraints.
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