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Abstract. In communication networks that guarantee seamless mobil-
ity of users across service areas, reattempts occur as a result of user be-
havior but also as automatic retries of blocked handovers. A multiserver
system with two reattempt orbits is obtained when modeling these net-
works. However, an exact Markovian model analysis of such systems has
proven to be infeasible and resorting to approximate methods is manda-
tory. To the best of our knowledge all the existing methods are based on
computing the steady-state probabilities. We propose another approach
based on the relative state values that appear in the Howard equations.
We compare the proposed method with the most well-known methods
appeared in the literature in a wide range of scenarios. The results of the
numerical evaluation carried out show that this solution outperforms the
previous approaches in terms of both accuracy and computation cost for
the most common performance parameters used in retrial systems.

Key words: Wireless and Mobile Systems and Networks (WLAN, 2G-
3G-4G); Queueing Systems and Networks; Stochastic Models, Markov
Models; Performance Modelling

1 Introduction

The retrial phenomenon appears in multiple situations in telecommunications
and computer networking. In this paper, we focus our attention on a generic
communication network that guarantees seamless mobility to its customers by
means of a cellular architecture. In this type of networks, the network coverage
area is divided into cells and customers can move across different cells of the
network. When a customer with an active communication moves from one cell
to another, a so-called handover procedure is executed. Nowadays, perhaps the
most widespread and popular example of this type of networks are the cellular
telephone networks —2G and 3G— but the current perspective is that in near
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future a variety of technologies fitting into this category will be in place, e.g.,
Mobile IP, IEEE 802.16e —WiMAX— and IEEE 802.20 —Mobile Broadband
Wireless Access, MBWA.

This paper deals with the case in which reattempts appear not only when a
customer is blocked but also when a handover is blocked as in GSM [1]. To the
best of our knowledge, the first and only paper that has considered the effect
on network performance of both types of reattempts simultaneously is [2]. Now,
in this paper, we refer to the former as redials and to the latter as (automatic)
retrials, while we use the term reattempt to refer to any of them. Blocked han-
dovers will be automatically retried until a reattempt succeeds or the user moves
outside the handover area. In the former case the session will continue without
the user noticing any disruption, while in the latter the session will be abruptly
terminated. In contrast, persistence of redials depends on the user patience and
an eventual abandonment results in session setup failure. Another difference is
that the maximum number of unsuccessful automatic retrials is set by the net-
work operator while redials are affected by the randomness of human behavior.
Therefore, both types of reattempts have different characteristics and as a con-
sequence two separate retrial orbits have to be considered in the analysis of the
system.

The modeling of repeated attempts has been the subject of numerous in-
vestigations. Two functional blocks are typically distinguished in models which
consider reattempts: a block that accommodates the servers and possibly a wait-
ing queue, and a block where users that reattempt are accommodated, usually
called reattempt orbit. It is known [3] that to solve this type of systems it is nec-
essary to resort to approximate methods. These methods are usually grouped
into three categories: approximations, finite truncated methods and generalized
truncated methods [3, 4]. We will direct our attention only to finite and gen-
eralized truncated methods. The finite truncated methods replace the original
infinite state space by a finite one, where steady-state probabilities can be com-
puted. On the other hand, generalized truncated methods replace the original
infinite state space by another infinite but solvable state space. This last type of
methods usually outperforms the other two types [4].

All the approaches presented in the literature so far rely on the numerical so-
lution of the steady-state Kolmogorov equations of the Continuous Time Markov

Chain (CTMC) that describes the system under consideration. Very recently,
however, an alternative approach for evaluating infinite state space Markov pro-
cesses has been introduced by Leino et al. [5]. The new method, named Value
Extrapolation (VE), does not rely on solving the global balance equations, but
considers the system in its Markov Decision Process (MDP) setting and solves
the expected value from the Howard equations written for a truncated state
space.

The main objective of this work is to tailor the VE method to a system with
two reattempt orbits and compare its performance with the performance of other
possible approximate methods. This performance evaluation is done in a cellular
network scenario that guarantees seamless mobility to its users. We conclude
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Fig. 1. System model.

that VE greatly outperforms the rest of the methods throughout a wide range of
scenarios not only in terms of accuracy, but also in terms of computation cost,
so its use is highly recommendable.

The rest of the paper is structured as follows. First, we describe the cellular
network under study and its associated model. In Section 3, we enumerate and
explain the main features of the methods we compare VE with. Section 4 is
devoted to the description of VE and how it has been applied to the model under
study. A numerical study is performed in Section 5 and finally, a summary of
the paper and some concluding remarks are given in Section 6.

2 System description and model

We consider a cellular mobile network with a fixed channel allocation scheme
and where each cell is served by a different base station, where C is the number
of resources in the cell. As shown in Fig. 1 there are two arrival streams: the
first one represents new sessions and the second one handovers from adjacent
cells. Both arrival processes are considered to be Poisson with rates λn and
λh respectively. This leads to an overall arrival rate of λ = λn + λh. For the
sake of mathematical tractability, the channel holding time is assumed to be
exponentially distributed with rate µ [6].

In general, blocking a new session setup is considered to be less harmful
than blocking a handover attempt. Therefore, we must include an admission
control policy to guarantee the prioritization of handovers —and retrials— over
new sessions —and their associated redials— and therefore, assure a certain
degree of Quality of Service (QoS). The most widespread technique is to reserve
some resources to highest priority flows, being in our case handovers and their
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associated automatic retrials. This technique can be generalized to a fractional
reservation, the so-called Fractional Guard Channel (FGC) admission control
policy [7]. The FGC policy is characterized by only one parameter t (0 ≤ t ≤ C).
New sessions and redials are accepted with probability 1 when there are less than
L = ⌊t⌋ resources being used and with probability f = t − L, when there are
exactly L resources in use. If there are more than L busy resources, new sessions
and redials are no longer accepted. Handovers and automatic retrials are only
rejected when the system is completely occupied.

When an incoming new session is blocked, according to Fig. 1, it joins the
redial orbit with probability (1−P 1

in) or leaves the system with probability P 1
in.

If a redial is not successful, the session returns to the redial orbit with probability
(1−Pin), redialing after an exponentially distributed time with rate µred. Redials
are able to access to the same resources as the new sessions. Note that P 1

in and
Pin model the impatience phenomenon of leaving the system without having been
served. Similarly, P 1

ih, Pih and µret are the analogous parameters for automatic
retrials. There are several performance parameters that are generally used to
describe the behavior of this type of cellular systems with retrials and redials.
On the one hand, the widely used blocking probabilities for both new sessions
(Pn

b ) and handovers (Ph
b ). On the other hand, the mean number of users redialing

(Nred) and handovers retrying (Nret) can describe more accurately the reattempt
phenomenon.

The model considered can be represented as a tridimensional (k,m, o) CTMC,
where k denotes the number of sessions being served, m specifies the number of
sessions in the redial orbit and o represents the number of sessions in the retrial
orbit. The state space can be represented by:

S := {(k,m, o) : k ≤ C;m ∈ Z+; o ∈ Z+}.

The transition rates of this model are represented in Table 1. The main
mathematical features of this queueing model consist of having two infinite di-
mensions —the state space of the model is {0, . . . , C} × Z+ × Z+— and the
space-heterogeneity along them. This heterogeneity is produced by the retrial
and redial rates, which respectively depend on the number of customers in the
retrial and the redial orbits.

3 Solving methods

It is known that the classical theory, see, e.g., [8], is developed for random walks
on the semi-strip {0, . . . , C} × Z+ with infinitesimal transitions subject to con-
ditions of space-homogeneity. When the space-homogeneity condition does not
hold the problem of calculating the equilibrium distribution has not been ad-
dressed beyond approximate methods [9]. Indeed, if we focus on the simpler case
of multiserver retrial queues with only one retrial orbit, the absence of closed
form solutions for the main performance characteristics when C > 2 can be
enphasized [3].
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Table 1. Transition rates of the exact model.

Transition Condition Rate

(k, m, o) → (k + 1, m, o) 0 ≤ k ≤ L − 1 λ

k = L λh + fλn

L < k < C λh

(k, m, o) → (k + 1, m, o − 1) 0 ≤ k ≤ C − 1 oµret

(k, m, o) → (k, m, o − 1) k = C oµretPih

(k, m, o) → (k + 1, m − 1, o) 0 ≤ k ≤ L − 1 mµred

k = L mµredf

(k, m, o) → (k, m − 1, o) k = L mµred(1 − f)Pin

L < k ≤ C mµredPin

(k, m, o) → (k − 1, m, o) 1 ≤ k ≤ C kµ

(k, m, o) → (k, m, o + 1) k = C λh(1 − P 1
ih)

(k, m, o) → (k, m + 1, o) k = L λn(1 − P 1
in)(1 − f)

L < k ≤ C λn(1 − P 1
in)

Obviously, to solve the system under study, it will also be necessary to re-
sort to approximate models and numerical methods of solution. Although other
approaches exist, for the comparison against VE we have chosen the three most
well-known methods that are able to solve the problem under study. These meth-
ods are explained in the next subsections.

3.1 Double truncation (DT)

The easiest and more intuitive method to solve the proposed model lies in the
truncation of the infinite dimensions of the state space [10]. In our case, it must
be applied to both the redial and retrial orbits, truncating them beyond levels
Qn and Qh respectively and obtaining the state space:

S := {(k,m, o) : k ≤ C;m ≤ Qn; o ≤ Qh}.

Obviously, by increasing the values of Qn and/or Qh the considered state space
in the approximation is enlarged and the accuracy of the solution is expected to
improve at the expense of a higher computational cost.

The stationary probability distribution can be obtained by solving πQ = 0
along with the normalization condition. As Q is a finite matrix this system can
be solved by any of the standard methods defined in classical linear algebra [11].

3.2 Double FM (DFM)

As DT, DFM belongs to the family of finite truncated methods [3]. These meth-
ods consist of replacing the original infinite state space by a finite one. However,
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DFM is more sophisticated than DT as it introduces in some sense the effect of
the truncated states.

In [12] we developed FM, a generalization of the approximation method pro-
posed in [13]. Although developed initially for a single orbit scenario, FM was
applied to a system like the one under study in [14]. In this case FM has been
applied to both retrial and redial orbits —resulting in DFM—, reducing the
state space to a finite set by aggregating all states beyond a given occupancy of
the orbits, producing the same approximate state space as DT:

S := {(k,m, o) : k ≤ C;m ≤ Qn; o ≤ Qh}.

where Qn (Qh) defines the occupancy from which the states in the redial (re-
trial) orbit are aggregated. In this case states of the form (·, Qn, ·) represent the
situation where at least Qn users are in the redial orbit. Likewise the states of
the form (·, ·, Qh) represent the situation where there are Qh or more users in
the retrial orbit. Due to that aggregation two new parameters for each orbit are
introduced. The parameter Mn denotes the mean number of users in the redial
orbit conditioned to those states where there are at least Qn users in the orbit,
i.e., Mn = E(m|m ≥ Qn). The probability that after a successful redial the
number of users in the redial orbit does not drop below Qn is represented by pn.
For the retrial orbit the parameters Mh and ph are defined analogously.

The global balance equations, the normalization equation and equations for
parameters Mn, pn, Mh, ph form a system of simultaneous non-linear equations,
which can be solved using, for instance, the iterative procedure shown in [14].

3.3 Truncation and generalization (TNR)

While the two previous approximations consider a finite truncated method for
each retrial orbit, this method considers the use of a generalized truncated
method in one of the two orbits. Obviously, we cannot use a generalized method
for both orbits as the resulting model would not be solvable. For this reason, we
have applied a generalized truncated method for the automatic retrial orbit and
a Truncation (T) for the redial orbit. The method chosen for the retrial orbit is
the method proposed by Neuts and Rao, denoted as NR, in [15]. This method
is based on the homogenization of the model beyond a given level Qh, which
supposes to restrict the maximum automatic retrial rate, i.e.,

µret(o) =

{

oµret if o < Qh

Qhµret if o ≥ Qh

Therefore, the resulting state space is defined by

S := {(k,m, o) : k ≤ C;m ≤ Qn; o ∈ Z+}

With these two approximations we have to solve a system whose state space
presents two finite dimensions and an infinite one, being the infinite dimension
homogeneous beyond a given level Qh. So, we can solve the resulting system
and obtain the steady-state probabilities making use of the matrix-geometric
solutions for stochastic models proposed by Neuts in [8].



7

4 Value extrapolation

All the approximate methods described in the previous sections compute the
steady-state probabilities using the balance equations. Very recently, however,
an alternative approach for evaluating infinite state space Markov processes has
been introduced by Leino et al. [5]. This approach, named Value Extrapolation
(VE), does not rely on the probability of being in a certain state, but on a new
metric called relative state values, that appear when we consider the system in its
MDP setting. Formally, an MDP can be defined as a tuple {S,A,P,R}, where
S is a set of states, A is a set of actions, P is a state transition function and
R is a revenue function. The state of the system can be controlled by choosing
actions a from A, influencing in this way the state transitions. The transition
function P : S × S × A → R+ specifies the transition rate to other states when
a certain action is taken at a given state. The first characteristic of VE is the
necessity of the definition of a revenue function that must be a function of the
system state, i.e., r(s). Following the definition of the revenue function for every
state, we will also have a mean revenue rate of the entire process (r), which will
be the performance metric we want to compute.

Once the MDP framework as well as the revenue function are specified, we
are able to define the relative state values. It is obvious that after performing an
action in state s the system will collect a revenue for that action (r(s)), but, as
the number of transitions increases, the average revenue collected converges to r.
The relative state value (v(s)) indicates the difference between the total revenue
incurred when the system starts at state s and the total revenue incurred in a
system for which the cost rate at all states is r. If we denote by tn the time
instants in which there is a change in the system state, then

v(s) = E

[

∞
∑

n=0

(r(S(tn)) − r)
∣

∣

∣
S(t0) = s

]

.

The equations that relate revenues, relative state values, and transition rates
are the Howard equations defined by:

r(s) − r +
∑

s′

qss′(v(s′) − v(s)) = 0 ∀s.

There will be as many Howard equations as number of states, |S|. The number
of unknowns will be the |S| relative state values plus the expected revenue r, i.e,
|S| + 1 unknowns. As only the differences in the relative values appear in the
Howard equations, we can set v(0) = 0, so we will have a solvable linear system
of equations with the same number of equations as unknowns.

However, a finite number of Howard equations are needed to solve the sys-
tem and, therefore, we need to truncate the state space to Ŝ. Whereas the
traditional truncation consists of doing qss′ = 0 ∀s′ /∈ Ŝ, VE performs a more
efficient truncation. Basically, VE considers the relative state values outside Ŝ
that appear in the Howard equations as an extrapolation of some relative state
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values inside Ŝ. The objective of VE is to find a function f(s) that interpolates
some points (s, v(s)) for s ∈ Ŝ so that it approximates also (s, v(s)) for s /∈ Ŝ. It
is important to choose a fitting function, f(s), that makes the Howard equations
remain a closed system of linear equations. The most common fitting functions
that acomplish that fact are the polynomials. We can use all (s, v(s))-pairs of
the state space into the fitting procedure —global fitting— or only a subset (Sf )
of them —local fitting. The choice of Sf will highly depend on the relative state
value we want to extrapolate. Note also that function f(s) and set Sf need to be
chosen so that parameters have unambiguous values, i.e., in the case of choosing
a polynomial as the fitting function, the number of different (s, v(s))-pairs in Sf

has to be equal or greater than the number of coefficients in the polynomial.
Note that if the relative values outside Ŝ were correctly extrapolated, the results
obtained by solving the truncated model would be exact.

4.1 Howard equations of the system

To obtain the Howard equations for a certain state of the system under study,
we can classify these states into four different cases depending on the number of
sessions being served (k). We next describe such cases and their corresponding
Howard equations.

1. k < L: states in which both new sessions and handovers are accepted. The
transition rates that go out from these states are represented in Fig. 2.
Therefore, the Howard equations related to these states are:

r(k, m, o) − r + λ[v(k + 1, m, o) − v(k, m, o)] + kµ[v(k − 1, m, o) − v(k, m, o)]+

+mµred[v(k + 1, m − 1, o) − v(k, m, o)] + oµret[v(k + 1, m, o − 1) − v(k, m, o)] = 0.

(k−1, m, o)

(k+1, m−1, o) (k, m, o)

kµ

OO

λ //mµredoo

oµret

��

(k+1, m, o)

(k+1, m, o−1)

Fig. 2. Transition rates when k < L.

(L−1, m, o)

(L+1, m−1, o) (L, m, o)

Lµ

OO

λh+fλn//mµredfoo

oµret

��

mµred(1−f)Pin

wwooooooooo
λn(1−f)(1−P1

in)

&&MMMMMMMMM
(L+1, m, o)

(L, m−1, o) (L+1, m, o−1) (L, m+1, o)

Fig. 3. Transition rates when k = L.

2. k = L: states in which handovers are accepted but new sessions are only
accepted with probability f = t − L, where t is the parameter that charac-
terizes the FGC admission control policy. Figure 3 represents the transition
rates going out from these states, obtaining the next Howard equations:
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r(L, m, o) − r + (λh + λnf)[v(L + 1, m, o) − v(L, m, o)]+

+Lµ[v(L − 1, m, o) − v(L, m, o)] + mµredf [v(L + 1, m − 1, o) − v(L, m, o)]+

+mµred(1 − f)Pin[v(L, m − 1, o) − v(L, m, o)]+

+oµret[v(L + 1, m, o − 1) − v(L, m, o)]+

+λn(1 − f)(1 − P
1
in)[v(L, m + 1, o) − v(L, m, o)] = 0.

3. L < k < C: states where handovers are accepted but new sessions are blocked,
as shown in Fig. 4. That leads to the Howard equations:

r(k, m, o) − r + λh[v(k + 1, m, o) − v(k, m, o)] + kµ[v(k − 1, m, o) − v(k, m, o)]+

+mµredPin[v(k, m − 1, o) − v(k, m, o)] + oµret[v(k + 1, m, o − 1) − v(k, m, o)]+

+λn(1 − P
1
in)[v(k, m + 1, o) − v(k, m, o)] = 0.

(k−1, m, o)

(k, m, o)

kµ

OO

λh //

oµret

��

mµredPin

xxqqqqqqqqq
λn(1−P1

in)

&&MMMMMMMMM
(k+1, m, o)

(k, m−1, o) (k+1, m, o−1) (k, m+1, o)

Fig. 4. Transition rates when L < k < C.

(C−1, m, o)

(C, m, o)

Cµ

OO

λh(1−P1
ih

)
//

oµretPih��

mµredPin

xxrrrrrrrr
λn(1−P1

in)

&&LLLLLLLL
(C, m, o+1)

(C, m−1, o) (C, m, o−1) (C, m+1, o)

Fig. 5. Transition rates when k = C.

4. k = C: states where both new sessions and handovers are blocked, being the
transition rates as shown in Fig. 5 and their corresponding Howard equations:

r(C, m, o) − r + λh(1 − P
1
ih)[v(C, m, o + 1) − v(C, m, o)]+

+Cµ[v(C − 1, m, o) − v(C, m, o)] + mµredPin[v(C, m − 1, o) − v(C, m, o)]+

+oµretPih[v(C, m, o − 1) − v(C, m, o)]+

+λn(1 − P
1
in)[v(C, m + 1, o) − v(C, m, o)] = 0.

4.2 Revenue function

As performance parameters are not computed from the steady-state probabilities
as usual, it is important to explain more carefully how they are computed. For
that purpose we must set the inputs r(s) in the Howard equations properly
in order to ensure that the revenue rate of the entire process r is equal to
the performance parameter we want to compute. In a nutshell, r will be the
parameter we want to compute if we let r(s) to be the value of that parameter
when the system is in state s. Table 2 gives several examples on how r(s) can
be set in order to obtain the performance parameters under study.
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Table 2. Revenue function definition.

Parameter Value

P h
b

r(k, m, o) = 1 for k = C, ∀m, ∀o

r(k, m, o) = 0 otherwise

P n
b

r(k, m, o) = 1 − f for k = L, ∀m, ∀o

r(k, m, o) = 1 for k ≥ L, ∀m, ∀o

r(k, m) = 0 otherwise

Nret r(k, m, o) = o ∀k, ∀m, ∀o

Nred r(k, m, o) = m ∀k, ∀m, ∀o

4.3 Polynomial fitting and solution

Note that in the system under study the number of states is infinite because
both m and o can take any value in Z+, thus some truncation is needed. We
have made a truncation similar to DT and DFM, obtaining a truncated state
space defined by:

Ŝ := {s = (k,m, o) : k ≤ C;m ≤ Qn; o ≤ Qh}.

Therefore, in the system under study, we have truncated the state space
beyond a value of Qn (Qh) for the occupancy of the redial (automatic retrial)
orbit. However, in the Howard equations of the truncated state space, relative
state values of some states appear that do not belong to the truncated state
space, being v(C,m,Qh + 1) ∀m and v(k,Qn + 1, o) for k ≥ L and ∀o. There-
fore, we must extrapolate these two sets of states to obtain a closed system
of equations. We have used a (n − 1)-th degree polynomial that interpolates
the n points in {(j, vj)|vj = v(C,m, j),∀m,Qh − n < j ≤ Qh} to extrapolate
v(C,m,Qh + 1). To extrapolate v(k,Qn + 1, o) for k ≥ L we interpolate the p
points in {(i, vi)|vi = v(k, i, o), k ≥ L,Qn −p < i ≤ Qn,∀o}. Note that including
value extrapolation neither increase the computational cost nor the number of
Howard equations, remaining in |Ŝ| = (C + 1) × (Qn + 1) × (Qh + 1).

After some algebra, and using the Lagrange basis to reduce the complexity
of the procedure, we obtain a simple closed-form expression for the extrapolated
value of both sets

v(C, m, Qh + 1)(n) =

n−1
∑

j=0

(−1)j

(

n

j + 1

)

v(C, m, Qh − j), ∀m,

and

v(k, Qn + 1, o)(g) =

g−1
∑

i=0

(−1)i

(

g

i + 1

)

v(k, Qn − i, o), k ≥ L, ∀o.
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5 Results and discussion

In this section a number of numerical examples are presented with the pur-
pose of illustrating the capabilities and versatility of our model and the analysis
methodology. The numerical analysis is also aimed at assessing a comparison
between the proposed methodology and previous approaches not only in terms
of accuracy but also in terms of computation cost.

For the numerical experiments a basic configuration of the system is used
and then the different parameters are varied. Thus, unless otherwise indicated,
the value of the parameters will be those of the basic configuration: C = 10,
t = 9, µ = 1, P 1

ih = P 1
in = 0, Pih = Pin = 0.2, and µred = µret = 1. The values

of λn and λh have been modified by means of the system load ρ = λ/Cµ, being
λ = λn + λh and taking λh = 2λn in all cases. It must be noted that, due to the
introduction of the impatience phenomenon modeled by P 1

in, Pin, P 1
ih, and Pih,

we will be able to consider values of ρ > 1.

5.1 VE performance

The objective of this section is to study the performance of different extrapola-
tion polynomials in a wide range of scenarios. Obviously, as stated in Section 3,
for the system under study we are not able to compute the exact values of the
most common performance parameters. For this reason, the first step is to as-
sume that the exact value can be obtained choosing increasing and sufficiently
high values of the truncation level. More specifically, we ran all methods pre-
sented in Section 3 and VE until the value of all the performance parameters
under study had stabilized up to the 8th decimal digit.

In the system under study, there are two different truncation levels that must
be specified, namely Qn and Qh. The purpose of this study will be to determine
the pair (Qn, Qh) that makes the cardinality of the problem ((C + 1) × (Qn +
1) × (Qh + 1)) as small as possible while a certain accuracy criterion is met. To
fulfil these requirements we must define a direction of search to determine the
desired (Qn, Qh) pair.

To avoid an exhaustive search to determine (Qn, Qh) we have used an algo-
rithm similar to the one proposed in [16]. Our algorithm increase (Qn, Qh) along
the diagonal until we obtain a system that fulfils the desired accuracy and later
we decrease both parameters separately following descendent directions of the
coordinate axis and finally take the best solution in terms of the cardinality of
the problem. The rationale behind this last movement for only one of the two
parameters (Qn or Qh) is the fact that, generally, Qn 6= Qh, and this cannot be
accomplished only with the diagonal movement, so the solution with this last
movement improves the initial diagonal movement.

In Table 3 we show the minimum complexity of the problem needed to fulfil a
relative error lower than 10−4 for parameters Pn

b and Ph
b , for different loads (ρ)

and reattempt rates ({µred, µret}) and for different orders of the extrapolation
polynomial.
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Table 3. Minimum Ω to obtain relative errors lower than 10−4 in P n
b /P h

b .

µred, µret ρ VE1 VE2 VE3 VE4 VE5 VE6

{1,1}

0.4 25/30 12/12 16/16 25/25 36/36 49/49

0.8 144/144 49/72 64/72 49/35 36/36 49/49

1.2 484/506 342/342 240/36 98/120 121/132 99/120

{2,0.5}

0.4 20/25 12/12 16/16 25/25 36/36 49/49

0.8 130/90 45/55 56/64 36/30 36/36 49/49

1.2 -/- 432/336 280/170 99/136 126/144 135/168

{0.5,2}

0.4 20/25 12/12 16/16 25/25 36/36 49/49

0.8 160/160 66/110 80/100 56/49 36/42 49/49

1.2 -/- -/- 400/- 154/189 144/187 162/198

{0.5,0.5}

0.4 25/30 9/9 16/16 25/25 36/36 49/49

0.8 224/160 100/121 90/100 48/35 36/36 49/49

1.2 -/- -/- -/- 168/280 195/196 441/378

Note that VEx denotes the use of an extrapolation polynomial of order x.
Note also that the numbers shown in each cell represent the product (Qn + 1)×
(Qh + 1) which defines the complexity and it is denoted by Ω, although the
cardinality of the problem should also include the factor (C + 1). However, we
have omitted this factor as it is common to all cases. Therefore, the best order
for the extrapolation polynomial will be the one that has the lowest Ω, which
is in bold in the table. Moreover, we denote by “-” those cases in which the
computer could not obtain a result because of lack of memory3.

From the results in Table 3 we can conclude that there is not a clear choice
in the order of the extrapolation polynomial that is able to get the lowest Ω in
all cases. Neither the lowest nor the highest orders offer the best results. When
the load is not high (ρ = 0.4), VE2 offers the lowest complexities, due to the
fact that VE3-VE6 offer the result of the minimum Ω they require to work, e.g.,
to extrapolate with VE4 at least Qn = Qh = 4 is needed and therefore, the
minimum Ω required to use VE4 is (4 + 1) × (4 + 1) = 25. When the retrial
orbits are more heavily loaded, VE4 is a good choice, as it offers low values of
Ω. Therefore, hereafter we will use the polynomial of order 4 (VE4) and we will
simply denote it as VE.

5.2 Comparison among different methods

Accuracy: The objective of this section is to compare the performance of VE
with DT, DFM, and TNR. In Table 4 we show the minimum values of Ω needed
to obtain a relative error lower than 10−4 for Nred. The results for the rest of per-
formance parameters have been omitted as Nred is usually the worst case for all
methods and results are found to be qualitatively equivalent for all performance
parameters. We show in bold the best results, i.e., those that offer the minimum

3 Results have been obtained using Matlab running in an Intel Core 2 Quad Q6600
with 4GB RAM memory.
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Table 4. Minimum Ω to obtain relative errors lower than 10−4 in Nred.

µred, µret = {1, 1} µred, µret = {2, 0.5} µred, µret = {0.5, 5} µred, µret = {0.5, 0.5}

ρ 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2 0.4 0.6 0.8 1.0 1.2

DT 64 143 324 550 930 56 132 304 522 - 54 120 264 - - 63 180 528 - -

DFM 48 72 208 360 324 49 100 176 378 - 45 98 198 - - 56 126 352 - -

TNR 48 91 180 400 651 48 99 182 196 640 36 90 192 - - 54 135 240 - -

VE 25 25 35 110 196 25 25 35 108 204 25 25 60 66 161 25 25 45 195 396

complexity Ω. Results show that VE clearly outperforms classical methods as it
needs a much lower value of Ω to achieve the desired accuracy in all the scenarios
under study. Moreover, and what is probably more important, there are some
scenarios where VE is the only method that is able to get a result due to the
complexity of those scenarios produced by having low reattempt rates.

Computation cost: Although it is shown that VE clearly outperforms the
other methods in terms of accuracy, it is also interesting to study their associ-
ated computation cost. From a practical perspective, it is more interesting to
consider accuracy along with computation time. Figure 6 shows a joint represen-
tation of both parameters. As the figure shows, VE yields much higher accuracy
than any other method for a given computation time. Results should be inter-
preted carefully, because computation cost highly depend on the algorithm used
to solve the resulting system of equations. More concretely, in order to compute
matrix R that appear in TNR we have used the logarithmic reduction algo-
rithm as proposed in [17, Section 8.4], using a precision of 10−6 for the iterative
procedure. Moreover, for solving the systems obtained with the DT, DFM, and
TNR methods we have made use of the efficient algorithm described in [11] that
takes advantage of the block-tridiagonal structure that presents the infinitesimal
generator. Unfortunately, the linear system of equations obtained in VE has no
longer such a block-tridiagonal structure, and therefore, we must use a more
general algorithm. More concretely, we have used LU factorization.

It can be seen that in the system under study the computation times needed
for any of the methods are not very high from a human point of view. For that
reason, the time results should be compared qualitatively, as the time units may
be different from just seconds when we solve more complex systems or when we
have to solve the basic retrial system several times —for example to balance the
incoming handover rate to the outgoing handover rate, as shown in [18]—.

6 Conclusions

In mobile communication systems like cellular networks, Mobile IP or the re-
cently defined IEEE 802.16e and IEEE 802.20 networks, mobile operators must
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Fig. 6. Computation time for different methods.

guarantee seamless mobility to its customers. In these networks, repeated at-
tempts occur due to user redials when their session establishments are blocked
and also due to automatic retries when a handover fails. The Markovian model
describing such a complex network is a multiserver retrial system that presents
space-heterogeneity along two infinite dimensions. To the best of our knowledge,
all the methods studied in the literature to solve these systems are based on
their steady-state probabilities. In this paper, we propose an alternative method
based on a different metric: the relative state values and the Howard equations
that relate them.

We have compared the proposed method with the most well-known ap-
proaches appeared in the literature so far. The results show that the proposed
method greatly outperforms previous approaches not only in terms of accuracy,
but also in terms of computation cost. Moreover, we have shown that in some
scenarios the proposed method is the only one that is able to guarantee a certain
accuracy. For all those reasons the proposed method is highly recommendable
to solve this type of systems.
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