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Abstract

In cognitive radio networks, there are scenarios where secondary users (SUs) uti-
lize opportunistically the spectrum originally allocated to primary users (PUs).
The spectrum resources available to SUs fluctuates over time due to PUs ac-
tivity, SUs mobility and competition between SUs. In order to utilize these
resources efficiently spectrum sharing techniques need to be implemented. In
this paper we present an approach based on game-theoretical mechanism de-
sign for dynamic spectrum sharing. Each time a channel is not been used by
any PU, it is allocated to SUs by a central spectrum manager based on the
valuations of the channel reported by all SUs willing to use it. When an SU
detects a free channel, it estimates its capacity according to local information
and sends the valuation of it to the spectrum manager. The manager calculates
a conflict-free allocation by implementing a truthful mechanism. The SUs have
to pay for the allocation an amount which depends on the set of valuations.
The objective is not to trade with the spectrum, but to share it according to
certain criteria. For this, a virtual currency is defined and therefore monetary
payments are not necessary. The spectrum manager records the credit of each
SU and redistributes the payments to them after each spectrum allocation. The
mechanism restricts the chances of each SU to be granted the channel depending
on its credit availability. This credit restriction provides an incentive to SUs to
behave as benefit maximizers. If the mechanism is truthful, their best strategy
is to communicate the true valuation of the channel to the manager, what makes
possible to implement the desired spectrum sharing criteria. We propose and
evaluate an implementation of this idea by using two simple mechanisms which
are proved to be truthful, and that are tractable and approximately efficient.
We show the flexibility of these approach by illustrating how these mechanisms
can be modified to achieve different sharing objectives which are trade-offs be-
tween efficiency and fairness. We also investigate how the credit restriction and
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redistribution affects the truthfulness of these mechanisms.

Keywords: wireless networks, cognitive radio, radio spectrum management,
channel allocation, game theory, mechanism design

1. Introduction

Cognitive radio is the technology that enables dynamic spectrum access
(DSA) networks to fully utilize the scarce spectrum resources [1]. In DSA net-
works, users who have no spectrum licenses, known as secondary users (SUs),
are allowed to use the spectrum opportunistically. In this paper, we will focus
on DSA networks with hierarchical and overlay access [2]. In the hierarchical
access model, SUs use spectrum that is licensed to primary users (PUs). As
PUs have priority in using the spectrum, when SUs coexist with PUs, they have
to perform real-time wideband monitoring of the licensed spectrum to be used
in order to avoid harmful interference to PUs. In overlay access, also referred
to as opportunistic spectrum access, SUs only use the licensed spectrum when
PUs are not transmitting. In order not to interfere with the PUs, SUs need to
sense the licensed frequency band and detect the spectrum opportunities. The
availability and quality of spectrum opportunities may change rapidly over time
due to PUs activity, SUs mobility and competition between SUs. Therefore,
dynamic spectrum allocation and sharing schemes are needed to achieve flexible
spectrum access in long-run scenarios. They should be able to adapt to the
spectrum dynamics, (e.g., channel variations), based on local observations.

Dynamic spectrum sharing in cognitive radios has been extensively stud-
ied from a game theoretical perspective [3, 4]. Some works address the dy-
namic spectrum sharing problem using game theory with a decentralized ap-
proach [5, 6], in which each two SUs in a link decide how to access the available
spectrum opportunities in the environment based only on the local data avail-
able to them. The decentralized approach has several advantages that make
it attractive: lower complexity than the centralized approach, robustness and
scalability. However, with decentralized approaches there is no guarantee that
optimal solutions can be achieved. To optimize objectives, such as global effi-
ciency and fairness, and some important parameters, such as price of anarchy
and price of stability, the spectrum data for all SUs in the network should be
considered. This can only be achieved by means of a centralized approach, in
which the optimization problem is solved globally for the whole network. In
centralized spectrum allocation, opportunistic spectrum access of SUs is coor-
dinated by a central element serving as a spectrum manager. The spectrum
manager collects operation information from each SU, and allocates the spec-
trum resources to achieve the objectives of efficiency and fairness.

The centralized dynamic spectrum sharing can be modelled as a non-coope-
rative game in which SUs only aim at maximizing their own benefit. SUs might
exchange false information about their channel conditions in order to get more
access opportunities to the spectrum. Therefore, cheat-proof spectrum shar-
ing schemes should be developed to meet the objectives. Mechanism design is
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a game theoretical approach that can be applied to dynamically redistribute
spectrum across several players to meet their demands. Mechanisms aim at
achieving the desired equilibrium by enforcing SUs to play truthfully, so that
the spectrum resources are allocated according to reliable information. This
is attained by means of payments, which are collected and redistributed by a
trusted entity. In spectrum auction games, a specific form of mechanism de-
sign, a spectrum manager collects bids and allocates spectrum resources to SUs
and charges them according to some rules. By multiplexing spectrum supply
and demand in time and space, dynamic mechanisms can improve spectrum
utilization or fairness.

Most of the studies on spectrum auctions focus on the scenario where one
or more PUs want to lease spectrum to SUs, and a monetary gain for PUs is
involved. In [7], an auction model is proposed where a PU announces a por-
tion of its licensed band and a unit price, and SUs bid for the desired amount
of bandwidth. In [8], SUs bid for a pool of homogeneous channels announc-
ing a demand curve, from which the auction is cleared using an approximate
algorithm. A belief-assisted double auction is proposed in [9] with collusion-
resistant strategies based on the use of optimal reserve prices. In [10], a truthful
and computationally-efficient spectrum auction is presented to support spec-
trum reselling from PUs to SUs with the aim of maximizing the sellers revenue
by assigning spectrum to bidders who value it the most. Another solution for
double auctions is presented in [11], where several PUs auction a channel each,
while several SUs bid for just one of them, assuming that all the channels are
homogeneous to the SUs. In [12] a resource-transaction algorithm to realize
IEEE 802.22 dynamic spectrum renting is presented.

Other works propose mechanisms for power allocation in spectrum shar-
ing. In [13] sequential second price auctions are proposed assuming complete
information. In [14] an auction model is proposed where the utility of each
SU is defined as a function of the received signal-to-noise-and-interference ratio
(SINR). SUs are charged a unit price for their received SINR, so that the auc-
tion achieves the desired social utility. Mechanism design is used in [15]. There
the underlay model is assumed, so SUs may transmit in the licensed spectrum
when PUs are also transmitting, and their transmission power is restricted by
the interference temperature limit. The objective power allocation is calculated
using channel information obtained locally by SUs. A truthful mechanism with
monetary transfers enforces SUs to reveal this information.

Our work differs from those cited above in three major aspects. Firstly, we
address the problem of sharing spectrum opportunities between SUs in a central-
ized manner, controlled by a spectrum manager, but without the intervention
of PUs. These opportunities appear sparse in time and space, therefore we pro-
pose mechanisms to allocate them in real time, i.e., mechanisms that have to be
run every time that a spectrum opportunity appears. We describe and test two
simple mechanisms (one deterministic and one randomized) for dynamic spec-
trum allocation which are truthful and approximately efficient, and with a very
low computational complexity, so that they can be used in real-time allocations.
Secondly, we investigate how these mechanisms can operate without monetary
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transactions. If monetary gain is not involved in the spectrum allocation prob-
lem, SUs payments will no longer be chosen as money, but as an alternative form
of ‘virtual currency’. This internal currency will be managed by the spectrum
manager, which will record the credit of every SU and will distribute it to them.
The operation of this scheme with virtual currency poses many challenges. The
biggest one is how to get that this currency retains its value for the SUs. To
achieve this, it is necessary that the mechanism itself should consider the credit
kept by any SU. That is, the choice and payment functions should depend on
the credit so limiting what SUs spend. Moreover, certain amount of currency
units have to be injected into the system. This should be done by the manager
redistributing a proper ‘cash flow’ to SUs. Thirdly, since the ultimate goal is
not to trade with spectrum, but to share it, these mechanisms need to have the
flexibility to achieve long-run objectives other than efficiency, such as fairness,
maintaining their properties. We investigate how these three requirements can
be satisfied and how the proposed solutions affect to the mechanisms properties.
The theoretical background of this work and some preliminary experimental re-
sults were presented in [16].

The rest of the paper is organized as follows. In Section 2 we describe the
model of spectrum sharing on networks with hierarchical and overlay access
and with a central manager implementing a truthful mechanism. In Section 3
some background on mechanism design relevant to our problem is summarized.
In Section 4 we describe two mechanisms based on the theoretical results and
explain how these mechanisms can be modified to achieve fairness and to operate
with virtual currency. We show and discuss experimental results in Section 5
and conclude in Section 6.

2. Spectrum Sharing Model

We assume that the spectrum is divided into non-overlapping channels and
that SUs are able to detect when a channel can be used without interrupting
any PU. When one of these opportunities, called white spaces, appears, SUs
may try to use it opportunistically. Every white space might be used by one
or several SUs, with the condition of non-conflict between them. We model the
interference between SUs according to the protocol interference model [17, 18].
This model assumes that, for a given channel, SU i has a communication range
Ri and a larger interference range R′

i. Let dij denote the distance between SU i
and SU j. A transmission from SU i to SU j is successful if both of the following
conditions are satisfied:

1. dij ≤ Ri.

2. Any SU k, such that dkj ≤ R′
k, is not transmitting.

A conflict graph as defined in [19] represents interference among all possible
transmissions in the network. The conflict graph contains a vertex correspond-
ing to every link in the network topology between a transmitter and a receiver.
If, for a given channel, every SU has a single receiver, the conflict graph contains
a vertex for each SU. We place an edge between SU i and SU p in the conflict
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graph if the corresponding links (from SU i to its receiver SU j and from SU p
to its receiver SU q) in the network can interfere each other. For the protocol
model, this happens if dpj ≤ R′

p or diq ≤ R′
i.

The interference ranges depend on the transmitting power, which is imposed
by the position and channel usage of nearby PUs. Additionally, the transmitting
power and the distance to the receiver determines the transmission rate. Hence
for a given white space, SU i will be able to transmit at Bi bps. With these
assumptions, the conflicts for a given white space can be modelled by a conflict
graph whose vertices correspond to the SUs which are able to use the channel.
This graph, for a network of N SUs, can be written in matrix form:

F =
[

fij
]

N×N
with fij ∈ {0, 1} ,

where fij = 1 if SUs i and j are in conflict, and fij = 0 otherwise. The
sharing problem in this scenario is, for each white space, to find an allocation ~x
compatible with the conflict graph:

~x = (x1 . . . xN ) with xi ∈ {0, 1} ,

where xi = 1 if the channel is allocated to SU i and xi = 0 otherwise. The
condition of non-conflict is that xi · xj = 0 if fij = 1.

A single allocation ~xeff is said to be efficient if

~xeff = argmax
~x

N
∑

i=1

xiBi ,

and we quantify the efficiency of a single allocation ~x using the efficiency index

Ie =

∑N
i=1 xiBi

∑N
i=1 xeffiBi

. (1)

For a given period, we quantify the long-term efficiency index by applying (1)
to the resources accumulated by SUs during this time. If during a period M
consecutive allocations were made, and we denote by ~xj = (xj

1 . . . x
j
N ) and

(Bj
1 . . . B

j
N ) the allocations and bit-rates, respectively, at the j-th allocation,

the most efficient aggregate allocation (~x1
eff . . . ~x

M
eff) for this period is

(~x1
eff . . . ~x

M
eff) = argmax

(~x1,...,~xM)

N
∑

i=1

M
∑

j=1

xj
iB

j
i .

Clearly, maximum long-term efficiency is achieved if every single allocation is
efficient.

To quantify fairness of a single allocation ~x we employ the Jain’s Fairness
Index [20]

If =
(
∑N

i=1 xiBi)
2

N
∑N

i=1(xiBi)2
, (2)
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whose value ranges from 1/N (when a single SU gets all resources) to 1 (when
resources are equally shared by all SUs). For a given period, we quantify the
long-term fairness index by applying (2) to the resources accumulated by SUs
during this time. However, the optimal long-term fairness is not obtained by
maximizing fairness in every allocation, and therefore the maximizing criterion
should be applied directly to aggregate allocations. The fairest aggregate allo-
cation (~x1

fair . . . ~x
M
fair) for M consecutive allocations is

(~x1
fair . . . ~x

M
fair) = argmax

(~x1,...,~xM )

(
∑N

i=1

∑M
j=1 x

j
iB

j
i )

2

N
∑N

i=1(
∑M

j=1 x
j
iB

j
i )

2
.

Clearly allocations cannot fulfil efficiency and fairness simultaneously. There-
fore the objective will be a trade-off between long-term efficiency and long-term
fairness, as defined above.

In our proposal we assume that there is a spectrum manager whose rules are
abided by SUs, and there is a control channel dedicated to the communication
between manager and SUs [21, 22]. Every time a white space appears, the SUs
detect it and estimate their Bis. These estimates are made by each SU based
on local information and are not available to the manager. Those SUs willing
to use the channel send a valuation of the channel to the manager. The system
must be designed so that SUs are encouraged to send their actual valuations of
the channel ({Bi}). The manager then will calculate the allocation according
to the objectives, and communicate the allocation to SUs.

We assume that SUs detect and communicate which neighbours they conflict
with (fij), and from this the manager derives the conflict graph. We also assume
that no SU can benefit from lying about the conflict graph. If SU i declares non-
existing conflicts (it falsely declares fij = 1), this will reduce the set of possible
allocations, so it will reduce its chances to obtain the channel. On the other
side, if it hides a conflict (it falsely declares fij = 0), the resulting allocation
may be useless for i and j. Although there is no guarantee that the above
reasoning is valid for any allocation procedure, this is a reasonable assumption
in most cases, especially for those allocation procedures which favour the more
efficient allocations. It seems also reasonable that the behaviour regarding the
reporting of conflicts is part of the game rules which are abided by SUs. By
making this assumption, the game is simplified so that the only decision that
SUs make autonomously is which values of {Bi} to report, and the problem
becomes a type of mechanism called single parameter mechanism, as explained
in Section 3. If this assumption were removed, the resulting problem would
become exceedingly complex and we could not take advantage of the properties
of single parameter mechanisms.

This scheme would be implementable in real time if the time necessary for
an allocation was short enough in relation with the white spaces mean duration.
Allocation time will be equal to the sensing time required by an SU to estimate
its B plus the time required by the manager to calculate the allocation and
payments plus the time required to interchange messages between SUs and the
manager. The sensing time is inherent to opportunistic spectrum access, and
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it would introduce a delay depending only on the state of the technology and
equal for any allocation scheme. The calculation time could be negligible if a
low complexity mechanism as those proposed in Section 4 is used. Regarding
the messages interchanged, these are of two types: conflict-reporting messages
sent by SUs to the manager to derive the conflict graph; and auction messages,
those sent by SUs containing channel valuations and the response broadcasted
by the manager containing the channel allocation. We assume that the conflict
graph changes slower than white spaces. Therefore the graph updating could be
made parallel to the allocations, and at a slower rate, so that the time required
by conflict-reporting messages would not be a limiting factor. However, the
auction messages propagation delay should be considered, although in local area
environments it would be much shorter than the sensing time. The practical
implementation of this scheme would be limited by the value of

ts + tRTT

t̄ws
,

where ts is the sensing time, tRTT is the round trip time in the control channel
of the SU farthest to the manager, and t̄ws is the mean duration of white spaces.
This value should be considerably smaller than one for the proposed mechanism
to be of practical relevance.

To calculate the allocation according to the objectives, the manager needs to
know the true bit-rate estimates of all SUs. We assume that every SU estimate
is the real channel capacity for this SU. Errors in the estimates could have a
negative impact on the objectives of the allocation, and its magnitude would
depend on the statistical distribution of the errors. This impact could become
important if the estimates were biased, for example if some SUs obtain estimates
which are systematically too optimistic or pessimistic. However, since here
we are interested in how to encourage SUs to communicate truthfully their
information to the manager, we will assume that the estimates are correct. On
the other hand, SUs could benefit from lying about the channel bit-rate estimate;
a higher declared value of Bi rises the value of

∑N
i=1 xiBi if xi = 1, so rising

the manager evaluation of the efficiency of allocations including SU i.

Example 2.1. Consider a network of six SUs with the conflict graph shown
in Fig. 1. Let {a, b, c, d, e, f} be the order in which the SUs are arranged. The
conflict graph in matrix form is

F =

















0 0 1 0 0 0
0 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 0
0 0 0 1 0 0

















.

Suppose that, at some white space, the bit-rate estimates of SUs are (3, 2,
6, 5, 1, 4). First, suppose and that all the SUs report the true estimates to
the manager. In this case the efficient allocation will be ~xeff=(0, 0, 1, 0, 1, 1).
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Figure 1: Conflict graph example.

But, for example, SU 4 (d in the graph) could declare an untrue value of 7 to
cheat the manager. In this case, being the declared values (3, 2, 6, 7, 1, 4), the

efficient allocation would be ~x′
eff=(1, 1, 0, 1, 0, 0), and SU 4 would benefit.

We propose a solution based on mechanism design for enforcing the SUs to
tell the truth to the spectrum manager driven by self-interest. The incentive
to tell the truth is provided by means of payments. For each allocation, the
manager will also calculate, based on the set of bit-rates reported by SUs, a
price that each SU will have to pay. Thereby, the benefit obtained by an SU is
the true bit-rate of the channel, if allocated to that SU, minus the price the SU
pays for it. A truthful mechanism ensures that the best strategy for every SU,
when behaving as a benefit maximizer, is to report the true bit-rate estimate.
The price paid by SUs can be measured in monetary units, or alternatively it
can be measured in a virtual currency. The first case applies when monetary
transactions are desired and the main objective is to trade with spectrum. In
the second case, which is the main issue of this work, the virtual currency units
are distributed to SUs by the spectrum manager and they are charged after
every channel allocation. Despite the fact that the currency does not have an
actual monetary value, SUs will still behave as benefit maximizers because they
need some credit in virtual currency to participate in the allocation game.

3. Mechanism Design for Spectrum Sharing

In this section we summarize the theoretical background on mechanism de-
sign underlying the mechanisms proposed in Section 4

We model the allocation procedure of each white space as a mechanism in
which a spectrum manager implements the game rules and the players are the
SUs. Formally, a mechanism is a game in which the players do not know the
utilities of the other players, and the rules of the game are designed such that
the equilibrium of the game is guaranteed to have certain desired properties. It
is defined by the tuple (N , O,Θ, ρ, u, A,M):

• N is a set of N players or, in the spectrum allocation problem, SUs.

• O is the set of possible outcomes and will include the allocations.
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• Θ = Θ1 × · · · × ΘN is the set of possible SU types. The type of SU i,
θi ∈ Θi is known only by SU i and determines its utility function. Here,
θi is determined by Bi.

• ρ is the probability distribution of Θ. Here ρ depends on the position of
SUs and interference restrictions.

• u = (u1 . . . uN), where ui : O × Θ 7→ R is the utility function of SU i
depending on the outcome o and on SU types Θ. This mechanisms has the
property of conditional utility independence, because the value ui depends
only on SU i type and not on other SUs type. Then, here ui : O×θi 7→ R.

• A = A1 × · · · × AN is the action profile, where Ai is the set of actions
available to SU i. In this problem, allowed actions for each SU i are to
declare a type θ̂i ∈ Θi, i.e., Ai = Θi, what results in a so-called direct

mechanism. Since SUs types are determined by the rates at which they
are able to transmit in the channel, the actions available to SU i are the
set of values of Bi that it can declare.

• M : A 7→ Π(O) maps each action profile to a distribution over outcomes.
If the mechanism is deterministic, then M : A 7→ O.

If we want the resulting allocations to have certain properties, such as efficiency
or fairness, the mechanism should implement a social function C : u 7→ Π(O)
that maps each joint utility function to a distribution of outcomes with the de-
sired properties. A mechanism is said to implement a social function C if the
game has an equilibrium in dominant strategies a∗ in which M(a∗) = C(u).
This means that the best strategy for each SU i is a∗i . We also want the
SUs to truthfully reveal their types, what will be fulfilled if the equilibrium
is a∗ = (θ1 . . . θN ). In this problem, the solution can be restricted to a so-called
quasilinear mechanism, where the possible outcomes can be written as

O = X × R
N ,

where X is a finite set. In this problem, X is the set of possible allocations ~x.
Hence the outcome is an allocation plus a vector of N real numbers, whose i-th
value is the price that SU i has to pay for the allocation. Thus, for a given type
θi ∈ Θi, the utility function of SU i is

ui(o, θi) = νi(~x, θi)− pi ,

where νi(~x, θi) is the valuation that allocation ~x has for SU i, and pi is the price
that SU i has to pay when the allocation is ~x. We refer to the value νi(~x, θi)
as valuation of SU i for allocation ~x, and we will write it as νi(~x), considering
implicit its dependence on θi. Then:

ui(o, θi) = νi(~x)− pi . (3)
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Here νi(~x) can be interpreted as the maximum amount that SU i would be
willing to pay for allocation ~x. Let νi denote the mapping that assigns a valu-
ation νi(~x) for each ~x ∈ X . Revealing type θi is equivalent to revealing νi and
the set of allowed actions for SU i is the set of possible values of νi. Let ν̂i
denote the declared valuation of SU i, which might be different from νi. The
mechanism can be interpreted as an auction, being ν̂ = (ν̂1 · · · ν̂N ) the bids, and
~p = (p1 · · · pN) the prices to pay. Let V be the set of all possible vectors of
valuations. Given ν̂ ∈ V , the manager calculates allocation and payment from:

• A choice rule: f : V 7→ Π(X), or f : V 7→ X if the mechanism is deter-
ministic.

• A payment rule: p : V 7→ R
N .

A truthful mechanism is in equilibrium in dominant strategies when ν̂ = ν,
and no SU can benefit from declaring a false valuation. A theoretical result says
that [23], for non-restricted quasilinear preferences domains, the only existing
truthful mechanism is the weighted Vickrey Clarke Groves (VCG) mechanism.
This is a well-known mechanism that implements efficiency. However, here we
need a mechanism able to implement other criteria, such as fairness, and simple
to compute. The valuation setting described before belongs to the family of
single parameter domain, in which a valuation νi is defined by a single value.
For single parameter domain mechanisms the former restriction does not hold
since they can implement choice functions other than efficiency [24]. Formally,
for each SU i the set of allocations can be partitioned into a winning set Wi and
a losing set:

νi(~x) =

{

vi if ~x ∈ Wi

0 if ~x /∈ Wi

Here ~x ∈ Wi if xi = 1, that is, SU i wins if the channel is allocated to it,
regardless what happens to other SUs. A deterministic single parameter domain
mechanism has good properties if the choice function f is monotone, that is, if
an SU wins with a given valuation, it also wins with all higher valuations:

∀v̂i, ∀v̂
′
i, v̂

′
i > v̂i, f(v̂i, v̂−i) ∈ Wi ⇒ f(v̂′i, v̂−i) ∈ Wi , (4)

where v̂−i denotes the vector of declared valuations of all SUs except SU i. For
deterministic mechanisms with a monotone choice function, the critical value
for SU i is defined, given v̂−i, as the value of v̂i below which player i losses and
above which player i wins:

ci(v̂−i) = sup
f(vi,v̂−i) 6∈Wi

vi . (5)

If losing players pay 0, the mechanism is said to be normalized. A normalized
deterministic mechanism is truthful if the payment rule is [23]

pi(v̂i, v̂−i) =

{

ci(v̂−i) if ~x ∈ Wi

0 if ~x /∈ Wi.
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A randomized mechanism is said to be truthful on expectation if for every
player, when it reveals its true valuation it maximizes its expected benefit, i.e.,
∀i ∀vi∀v−i∀v̂i:

E[νi(f(vi, v̂−i))− pi(f(vi, v̂−i))] ≥

≥ E[νi(f(v̂i, v̂−i))− pi(f(v̂i, v̂−i))] .

Let us denote by ωi(v̂i, v̂−i) = Pr[f(v̂i, v̂−i) ∈ Wi] the probability that SU i
wins when its declared valuation is v̂i and the declared valuations for the rest
of SUs is given by v̂−i. Then, the expected benefit for SU i is

ui(v̂i, v̂−i) = viωi(v̂i, v̂−i)− pi(f(v̂i, v̂−i)) .

If ωi(v̂i, v̂−i) is monotonically non-decreasing in v̂i and v0i is the valuation under
which i cannot win, a randomized mechanism is truthful if and only if [24]

pi(v̂i, v̂−i) = v̂iωi(v̂i, v̂−i)−

∫ v̂i

v0

i

ω(t, v̂−i)dt+ hi(v̂−i) , (6)

where hi(v̂−i) is any function that does not depend on v̂i.

4. Truthful Mechanisms with Virtual Currency

In the spectrum sharing setting described in Section 2, a mechanism is exe-
cuted to allocate a channel every time a white space appears. When SUs detect
the white space, each of them estimates its valuation vi = Bi. Then, each SU
willing to use the channel sends a valuation of the channel (v̂i) to the spectrum
manager, using for this purpose the control channel. The manager starts an
allocation procedure when it receives the first valuation and, after a fixed time
interval, it closes the allocation procedure. The allocation procedure is cleared
by applying the mechanism choice and paying rules to the set {v̂i} of declared
valuations, given a conflict graph C, resulting in a set of winning SUs and a
vector ~p of payments. Finally, the manager sends a message to the winning SUs
through the control channel, and charges pi currency units to every SU i.

The mechanism required belongs to the class of single parameter domain
mechanisms, and it will be truthful if the choice function is monotonically non-
decreasing in v̂i for every i, and the payment function is the critical value for
winning SUs. If the mechanism is randomized, then the winning probability
function must be monotonically non-decreasing in v̂i for every i and the payment
rule must be given by (6). In this section we describe two simple truthful
mechanisms that meet these conditions: a deterministic one and a randomized
one. Then we propose some modifications to the general setting to make possible
the use of virtual currency and the implementation of flexible allocation criteria.

11



4.1. Simple truthful mechanisms for spectrum sharing

The most straightforward truthful mechanism is that which allocates the
channel to SUs in sequence, starting with SUs with higher valuations, on the
condition that there is no conflict with previously allocated SUs. This is a
particular case of the mechanism presented in [10], when channels are allocated
one at a time. In pseudo-code form, the deterministic mechanism is:

procedure DeterministicMechanism({v̂i})
let L be a list of SUs indexes i, ordered from highest to lowest value of v̂i
~x=ChoiceRule(L)
~p=PaymentRule(L)

end procedure

function ChoiceRule(L)
~x = ~0
start an iteration on L
repeat

i = next element of L
if fijxj = 0, j = 1 . . .N then

xi = 1
end if

until end of L is reached
return ~x

end function

function PaymentRule(L)
for i = 0 to N do

remove i from L
~x′ = ~0
start an iteration on L
repeat

j= next element of L
if fjkx

′
k = 0, k = 1 . . .N then

x′
j = 1

end if

until end of L reached or fjix
′
j = 1

if x′
j = 0 then

pi = 0
else if v̂i > v̂j then

pi = v̂j
else

pi = 0
end if

insert i into L at its original position
end for
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end function

The payment rule searches the critical values as defined in (5). For each
SU, its valuation is removed from the list, a virtual allocation is calculated,
and its critical value is the declared valuation of the first winner, if exists, that
conflicts with this SU. If an SU wins and the critical value exists, it pays this
critical value. If an SU losses, it pays nothing. If an SU wins but it does not
conflict with any other SU, then there is not critical value for this SU, and it
pays nothing either.

Example 4.1. Lets now apply the deterministic mechanism to the conflict
graph and the bit-rate estimates of Example 2.1. First, suppose that the val-
uations are reported truthfully: ~̂v=(3, 2, 6, 5, 1, 4). SUs indexes are ordered
as L = {3, 4, 6, 1, 2, 5}, and the choice rule results ~x=(0, 0, 1, 0, 1, 1). The
payment rule finds, for each SU i in L, the index j of the first winner conflicting
with SU i in an allocation in which SU i is removed:

1. SU 3: j = 4 and v̂4 < v̂3. The critical value is v̂4 and p3 = v̂4 = 5.

2. SU 4: j = 3 but v̂3 > v̂4. There is not critical value and p4 = 0.

3. SU 6: The end of L is reached without finding j. There is no critical value
and p6 = 0.

4. SU 1: j = 3 but v̂3 > v̂1. There is not critical value and p1 = 0.

5. SU 2: j = 3 but v̂3 > v̂2. There is not critical value and p2 = 0.

6. SU 5: The end of L is reached without finding j. There is no critical value
and p5 = 0.

Therefore the payments are ~p=(0, 0, 5, 0, 0, 0) and the benefits (bit-rates
obtained minus amounts paid) are (0, 0, 1, 0, 1, 4). Suppose now that SU 4 tried
to cheat the manager by reporting an untrue valuation of v̂′4=7. By applying

the mechanism to ~̂v′=(3, 2, 6, 7, 1, 4), it would result ~x′=(0, 0, 1, 0, 1, 1), and
SU 4 would win the channel. But now the payments would be ~p′=(0, 0, 0, 6,
0, 0), the benefits would be (3, 2, 0, -1, 0, 0) and SU 4 would not benefit from
lying.

Theorem 1. The deterministic mechanism is dominant strategy incentive com-

patible.

Proof. The deterministic mechanism is a normalized mechanism (payment for
loosing is always 0) on a single parameter domain (the valuation is defined by
a single value). Such a mechanism is dominant strategy incentive compatible if
and only if the following conditions hold [23]:

(i) The choice function is monotone in every valuation as defined in (4).

(ii) Every winning user pays the critical value.

The first condition holds because the choice function depends only on the order
in the list L. Then, if a valuation v̂i wins, any valuation v̂′i > v̂i ranks higher
in L and wins too. The second condition holds because the payment function
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for user i finds the highest valuation v̂j for which user j conflicts with user i;
if v̂i > v̂j , user i wins, otherwise it losses, which is the definition of the critical
value.

This mechanism can be randomized maintaining its truthfulness, with the
only condition that the resulting winning probability function ωi(v̂i, v̂−i) is
monotonically non-decreasing in v̂i. A way of doing this, given a set of de-
clared valuations {v̂i}, is by generating for each player i a random value ri
between 0 and v̂i. Then L is ordered from highest to lowest value of ri. With
L ordered in this way, choice and payment rules are applied. In pseudo-code
form, the randomized mechanism is:

procedure RandomizedMechanism({v̂i})
for each i, calculate a random value ri between 0 and v̂i
let L be a list of SUs indexes i, ordered from highest to lowest value of ri
~x=ChoiceRule(L)
~p=RandomizedPaymentRule(L,{ri})

end procedure

The choice rule for the randomized mechanism is identical to that of the
deterministic one, but now it is applied to the list of SUs indexes ordered by
ri. The resulting winning probability function is monotonically non-decreasing
in v̂i because clearly the winning probability of an SU cannot decrease when
its declared valuation rises. The payment rule will perform a virtual allocation
for each player as in the deterministic case, but now there is no critical value,
and the payments depends on the winning probability and must be calculated
applying (6) to ensue the truthfulness of the mechanism. Specifically, if in the
virtual allocation there is a winner SU j that conflicts with SU i, v̂i > rj , and
assuming that {ri} values are generated with uniform distribution, SU i winning
probability is

ωi(v̂i|r−i) = 1−
rj
v̂i

, (7)

and, applying (6) with hi(v̂−i) = 02,

pi = v̂iωi(v̂i|r−i)−

∫ v̂i

rj

ωi(t|r−i)dt = rj ln
v̂i
rj

. (8)

However, if in the virtual allocation there is a winner SU j that conflicts with
SU i and v̂i < rj , SU i winning probability is

ωi(v̂i|r−i) = 0 ,

2Here the function ωi(v̂i|r−i) has been used instead of ωi(v̂i, v̂−i). However, the proof [24]
of the condition expressed by (6) holds for both functions.
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and pays nothing. Finally, if in the virtual allocation there is no winner SU j
that conflicts with SU i, SU i winning probability is

ωi(v̂i|r−i) = 1 ,

and pays nothing either.
In pseudo-code form:

function RandomizedPaymentRule(L,{ri})
for i = 0 to N do

remove i from L
~x′ = ~0
start an iteration on L
repeat

j= next element of L
if fjkx

′
k = 0, k = 1 . . .N then

x′
j = 1

end if

until end of L reached or fjix
′
j = 1

if x′
j = 0 then

pi = 0
else if v̂i > rj then

pi = rj ln
v̂i
rj

else

pi = 0
end if

insert i into L at its original position
end for

end function

Example 4.2. Lets now apply the randomized mechanism to the conflict graph
and the bit-rate estimates of Examples 2.1 and 4.1. First, suppose that the
valuations are reported truthfully, ~̂v=(3, 2, 6, 5, 1, 4), and that the {ri} val-
ues, obtained randomly with uniform distribution between 0 and v̂i, are ~r =
(1.12, 1.29, 2.01, 1.67, 0.35, 1.34). SUs indexes are ordered as L = {3, 4, 6, 2, 1, 5},
and the choice rule results ~x = (0, 0, 1, 0, 1, 1). The payment rule finds, for each
SU i in L, the index j of the first winner conflicting with SU i in an allocation
in which SU i is removed:

1. SU 3: j = 4 and r4 < v̂3. Then w3(v̂3|r−i) = 1 − r4/v̂3 = 0.7217 and
p3 = r4 ln(v̂3/r4) = 2.1358.

2. SU 4: j = 3 and r3 < v̂4. Then w4(v̂4|r−i) = 1 − r3/v̂4 = 0.5980 and
p4 = r3 ln(v̂4/r3) = 1.8317.

3. SU 6: The end of L is reached without finding j. Then w6(v̂6|r−i) = 1
and p6 = 0.

4. SU 2: j = 3 and r3 > v̂2. Then w2(v̂2|r−i) = 0 and p2 = 0.

15



5. SU 1: j = 3 and r3 < v̂1. Then w1(v̂1|r−i) = 1 − r3/v̂1 = 0.3300 and
p1 = r3 ln(v̂1/r3) = 0.8050.

6. SU 5: The end of L is reached without finding j. Then w5(v̂5|r−i) = 1
and p5 = 0.

Therefore the winning probabilities are ~w=(0.33, 0, 0.7217, 0.5980, 1, 1),
the expected bit-rates (estimated bit-rates by the winning probabilities) are
(0.99, 0, 4.33, 2.99, 1, 4), the payments are ~p=(0.8050, 0, 2.1358, 1.8317,
0, 0) and the expected benefits (expected bit-rates minus amounts paid) are
(0.1850, 0, 2.1942, 1.1583, 1, 4). Suppose now that SU 4 tried to cheat the
manager by reporting an untrue valuation of v̂′4 = 7. By applying the mech-

anism to ~̂v′=(3, 2, 6, 7, 1, 4), and assuming that the {ri} values obtained
for i 6= 4 were the same than before, the resulting winning probability of
SU 4 would be w4(v̂

′
4|r−1) = 1 − r3/v̂

′
4=0.7129 and the payment would be

p4 = r3 ln(v̂
′
4/r3)=2.5080. Although the winning probability would increase,

the expected benefit would be 5 · w4(v̂
′
4|r−1) − p4=1.0565, which is lower than

before. In fact, the expected benefit of SU 4 as a function of its reported valua-
tion is given by 5 · (1− 2.01/v̂4)− 2.01 · log(v̂4/2.01), which has a maximum at
the true valuation: v̂4=5.

Theorem 2. The randomized mechanism is incentive compatible in expectation.

Proof. The randomized mechanism is a normalized mechanism (payment for
user i with ωi(v̂i, v̂−i) = 0 is 0) on a single parameter domain (the valuation is
defined by a single value). Such a randomized mechanism is incentive compatible
in expectation if and only if for every i and every fixed v̂−i we have that [23]:

(i) The winning probability function ωi(v̂i, v̂−i) is monotonically non-decreasing
in v̂i.

(ii) The payment function is (6), with hi(v̂−i) = 0.

The first condition holds because the winning probability is given by (7), which is
clearly monotonically non-decreasing in v̂i. The second condition holds because
the payment function given by (8) is derived from (6) with hi(v̂−i) = 0.

Both mechanisms approximate efficiency by giving priority to higher val-
uations. Furthermore, choice and payment functions of both mechanisms are
computationally tractable.

4.2. Implementation of fairness

The previous mechanisms can be easily modified to achieve different sharing
objectives which are trade-offs between efficiency and fairness. To illustrate the
flexibility of these approach, in this section we propose a heuristic modification
of the mechanism in order to increase fairness.

It is easy to see that, in the original mechanisms, SUs having more com-
petition (more neighbours conflicting with) have less chances to win and when
winning, they pay a higher price. For this reason, the resulting sharing is not
fair, and SUs with less competitors are favoured. We propose to compensate
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this effect by introducing a factor that favours SUs with more competition. This
can be done by weighting the valuations by a function which is increasing with
the number of edges in the conflict graph.

We have tested this idea by multiplying each valuation v̂i by a weighting
factor gi calculated as

gi = nα
i ,

where ni is the number of edges related to vertex i in the conflict graph of SU
i and the parameter α ≥ 0 will control the degree of fairness compensation.
Simulation results are shown in Sec. 5 for several values of α.

Clearly, the introduction of the factor gi does not affect the truthfulness,
because the original conditions still hold. The choice functions are still mono-
tonically non-decreasing in v̂i and the payment function for the deterministic
mechanism is the critical value. For the randomized mechanism the payment
function can be easily obtained from (6), and is given by

pi = v̂iωi(v̂i|r−i)−

∫ v̂i

rj

gi

ωi(t|r−i)dt =
rj
gi

ln
giv̂i
rj

.

4.3. Operation with virtual currency

The main objective of spectrum sharing in this scenario is to dynamically
share the available spectrum according to certain objectives of efficiency and
fairness, not to trade with spectrum. For this reason, SUs should not be charged
with real money, but with a virtual currency internal to the system. The virtual
currency units are distributed to SUs by the spectrum manager and they are
charged after every channel allocation. The manager also records the credit of
each SU. SUs will still behave as benefit maximizers because they will need some
credit in virtual currency to participate in the allocation game. This would also
make the system simpler by avoiding monetary transactions. Furthermore, a
limitation of the credit offered to SUs would help to achieve fairness.

The use of virtual currency requires the manager to implement two addi-
tional tasks:

• Credit redistribution: SUs need to receive a flow of credit along the time.
At a given time, an SU could accumulate credit and it could also have a
negative amount of credit, but in long-term the neat balance should be
zero. If an SU accumulated positive credit, then its best strategy would
be to overbid to get more chances to win. On the other side, if the system
allowed an SU to accumulate negative credit with no consequences, its
best strategy would be to overbid too. Therefore, in order to preserve the
value of the credit unit, SUs should no accumulate credit, neither positive
nor negative, when they play truthfully.

• Credit restriction: the system should limit the amount of credit that each
SU spends. As in the redistribution, this is a long-term requirement. At
a given time, an SU could have negative credit, but the system must
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prevent any SU from spending in long-term more than he received from
the redistribution system. SUs with negative credit cannot be excluded
from auctions, because they must still get their share of the redistribution
and so recover credit for successive auctions. Instead, when an SU has low
credit, the mechanism would grant it less chances to win.

Credit restriction and redistribution are necessary to get SUs to value the
credit. Without them, the currency unit would loose its meaning because the
virtual currency only has value within the system, and its value is directly
related to how much channel capacity SUs can buy with it. If the value of the
currency is not preserved, payments will not be an incentive any more, because
the profit maximizer behaviour consists in maximizing the utility function (3),
in which it is assumed that the valuations of the channel can be measured in
the same units as the payments, or what is the same, that a valuation unit (bit
per second) has a fixed price in currency units.

A mechanism that distributes among SUs what they pay at each allocation
has a property called budget balance. Several solutions have been proposed
to achieve budget balance while preserving truthfulness [25, 26, 27]. But in
our problem, budget balance per allocation is not a requirement, because what
we need is long-term balance between payments and redistribution, which is a
much more relaxed condition. Moreover, budget balance per allocation does not
guarantee individual SU balance in long-term although it guarantees that the
credit of the overall system is in balance.

In order to achieve long-term balance per SU between payments and redistri-
bution while preserving truthfulness, it is required that, for a given period, each
SU may receive on expectation as much as it will spend on expectation during
this period when it behaves truthfully. Because the mechanism is truthful, if
an SU underbids, it will lose winning chances. On the other hand, if an SU
overbids, it will accumulate negative credit and will be punished by the credit
restriction system losing winning chances too. Besides, to preserve truthfulness
per allocation, it is also required that the amount of credit granted to a player
after an allocation be independent of its valuation declared in this allocation.
By doing this, the credit granted to SU i is included in the term hi(v̂−i) of the
payment function in (6), and truthfulness is preserved.

A straightforward method which fulfils the above conditions is the following.
For every channel allocation:

• A parallel virtual allocation is created with the same players and ran-
domly generated valuations. Ideally, the generated valuations should have
a random distribution equal to the random distribution of real valuations.

• Every SU receives what it would pay in this virtual allocation playing
truthfully.

We have evaluated experimentally this method, and simulation results shown
in Sec. 5 suggest that it works when the distribution used to generate the ran-
dom valuations has the same mean and variance as the distribution of the real
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valuations, although the distributions are different. To implement this method,
the manager should estimate the mean and the variance of the distribution of
the real valuations, based on the valuations reported in successive runs of the
mechanism.

To implement credit restriction, we have added to the previous mechanisms
another weighting factor qi which depends on credit. Valuations are weighted by
qi and the payment functions are modified accordingly. If we consider a single
channel allocation, this change preserves the truthfulness of the mechanism, as
it did the weighting for fairness described in Sec. 4.2. However, this does not
hold if we consider successive channel allocations, because qi depends on the
credit of SU i, which in turn depends on v̂i. As a consequence, the valuation
on the current allocation has an effect not only in the benefit obtained in this
allocation, but also in what happens in successive allocations. For this reason,
it cannot be assured that SUs could not obtain a long term benefit from lying.
Because successive channel allocations are not independent, this issue should be
studied as a repeated game.

We have tested the mechanisms with a weighting factor qi that varies linearly
between 0 and 1 when the credit enters the interval (−β, β), i.e.:

qi =











1 if ci ≥ β
ci/β+1

2 ; if − β < ci < β

0 if ci ≤ −β

where ci is the credit of SU i, and parameter β regulates how sharply the credit
limitation is applied. By doing this, SUs are forced to keep its credit not far
under 0, that is, they cannot spend much more than they receive. Simulation
results shown in Sec. 5 suggest that the mechanisms with this modification
still behave reasonably well, though truthfulness cannot be guaranteed in all
situations.

These mechanisms described above, including credit redistribution an re-
striction, would work equally in dynamic scenarios in which SUs enter and leave
the system. Each time an SU enters the system, it would be granted a certain
amount of credit, and from the next auction, it would participate in the credit
redistribution. The initial credit granted to incoming SUs should be sufficiently
low as to offer them no advantage over those already in the system. This initial
value could be zero or, alternatively, the average credit of all SUs currently in
the system.

5. Experimental Results and Discussion

We have evaluated the properties of the mechanisms presented in Sec. 4 by
means of discrete-event simulations, using a simulation software we developed
specifically to model and simulate this problem. We have simulated a static
configuration of 6 SUs with the conflict graph of Fig. 1, located into the inter-
ference range of a PU which conveys traffic bursts whose inter-arrival time is
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Figure 2: Benefit of SU c as a function of its t.

exponentially distributed with mean 20 time units. The PU has a pool of 10
channels, and allocates traffic bursts randomly. The duration of these traffic
bursts is exponentially distributed with mean 10 time units. We repeated these
experiments for log-normally distributed traffic bursts duration and we obtained
almost identical results, not shown here.

Idle periods of these channels are detected by SUs as white spaces. SUs
estimates of the bit-rate of a white space are uniformly distributed between 0
and 2 bit-rate units. Every white space all SUs send their valuations of the
channel to the spectrum manager, which executes the mechanism. Then the
manager sends a message to the winners who occupy the channel until it is used
by the PU again. The credit available for each SU is recorded and updated by
the spectrum manager. We assume that SUs are backlogged and their objective
is to send as much traffic as possible.

The plot in Fig. 2 illustrates the truthfulness of both mechanisms without
credit restriction and without fairness compensation. As can be observed the
results agree with the theory. Here, the benefit of SU c is the sum of the bit-
rate of all the channels it won during the simulation run minus the total price
it paid for them. The plot shows the ratio between the benefit obtained and
the maximum benefit which would be obtained if the SU won all the allocations
with no cost. This is plotted as a function of a true factor t which measures the
relation between the declared valuation and the true valuation: v̂c = tvc. When
t > 1, SU c is overvaluing the channel and when t < 1 it is undervaluing it. The
rest of SUs are truthful. It can be seen that SU c maximizes its benefit when
t = 1, i.e., when it declares the truth.

The ratio between benefit and maximum benefit shown in Fig. 2 can be
interpreted as the expected fraction of available bandwidth that an SUs will
obtain in long term with a given mechanism and a given configuration. We
have evaluated the statistical significance of this expected value by repeating
the experiment several times and calculating the confidence intervals. The plot
in Fig. 3 shows these confidence intervals with a confidence level of 95% for
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Figure 3: Confidence intervals for expected benefit with confidence level of 95% as a function
of t parameter on SU c. Deterministic mechanism.

SUs c and d with the deterministic mechanism. Confidence intervals for the
randomized mechanism, not shown here, are very similar.

To verify that these results can be generalized to any physical configura-
tion, we have repeated the former experiment for a large number of randomly
generated topologies, with the condition that the resulting conflict graph was
totally connected. Note that if an SU was disconnected from the conflict graph,
it would have no competition and it would win every allocation, and then its
winnings would be of no interest for our study and could hide the overall results.
The plot in Fig. 4 shows the result for 5000 random connected configurations
with the deterministic mechanism. Similar results have been obtained with the
randomized mechanism. It can be seen that SU c obtains the maximum benefit
when t = 1, as expected. Besides, SUs who behave in the same way (i.e., all
SUs except SU c) obtain the same result, because adverse configurations are
compensated by other more favorable, and this happens for all SUs with the
same probability. An interesting point is that truthful SUs benefit when SU c
undervalues the channels, but instead when SU c overvalues the channels, all
SUs are harmed, including SU c, which suffers a more severe degradation than
SUs behaving truthfully.

The capability of the mechanisms to compensate the unfairness due to disad-
vantage in the conflict graph, as described in Sec. 4.2, is shown in Fig. 5. This
plot shows the efficiency index as a function of the fairness index for several
values of parameter α. The efficiency index has been calculated as

Ie =

∑N
i=1 ti

∑N
i=1 t

′
i

,

where ti is the amount of spectrum allocated to SU i (or equivalently the traffic
conveyed by SU i) with the current mechanism, and t′i is the spectrum allocated
to SU i with an efficient mechanism (as for example VCG). The fairness index
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Figure 4: Average benefit over 5000 random topologies as a function of t parameter on SU c.
Deterministic mechanism.

is obtained by applying (2) to ti values:

If =
(
∑N

i=1 ti)
2

N
∑N

i=1(ti)
2
.

Obviously, to improve fairness some efficiency has to be sacrificed, but these
results show that an acceptable trade-off can be achieved with a high degree of
fairness and without a dramatic reduction in efficiency. It is also observed that
for the same degree of fairness, the deterministic mechanism yields a slightly
better efficiency. Moreover, the deterministic mechanism is Pareto dominant
in terms of efficiency and fairness, since for any solution reached by the ran-
domized mechanism, there is a solution of the deterministic mechanism that
is not inferior to the former in both objectives, and, additionally, there is at
least one objective where it is better. However, when the random mechanism
is used, fairness increases monotonically up to its maximum value as α varies
from 0 to 1, while when the deterministic mechanism is used, as α varies from
0 to 1 fairness declines after reaching the highest value. Therefore, according to
these results, with the stochastic mechanism it would be simpler to adjust the
trade-off between efficiency and fairness.

Credit restriction as described in Sec. 4.3 has been evaluated for several
values of parameter β and the results for SU c are plotted in Figs. 6 and 7,
for deterministic and randomized mechanisms respectively. Since credit is not
exceeded nor accumulated, now the benefit is the obtained bit-rate, i.e., the
mean traffic, and the plot shows the ratio between the benefit bit-rate obtained
during the simulation run and the maximum bit-rate which would be obtained
if the SU won all the allocations.

It can be seen that, for high values of β, the mechanism is not truthful
in the long term. Specifically, with the deterministic mechanism SU c can
benefit from overvaluing, while whith the randomized mechanism it can benefit
from undervaluing. However, both mechanisms maintain truthfulness when low
values of β are used. In fact, the best results are obtained with β = 0. The
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Figure 5: Efficiency index vs.fairness index as a function of parameter α.

Figure 6: Traffic of SU c as a function of its t with credit limitation. Deterministic mechanism.

reason for this is that β = 0 maintains the influence of credit in the mechanism
as small as possible, that is, qi = 1 most of time while qi = 0 only when SU i
runs out of credit. Then, if the redistribution policy works properly, SUs will
work most of time with qi = 1. When an SU overvalues and spends all its credit
it is punished. Moreover, an SU cannot benefit from saving credit because,
once it reaches enough credit to have qi = 1, having more does not increase its
winning probability.

Figs. 8 and 9 show the behavior of both mechanisms with credit restriction
and fairness compensation, with β = 0 and α = 0.4. With these values, both
mechanisms are truthful and when SU c behaves truthfully (t = 1), a high degree
of fairness is obtained. Note that in this experiment, the randomized mechanism
does not obtain maximum fairness because for α = 0.4 its fairness index is less
than 0.98 (as shown in Fig. 5). However, for the deterministic mechanism and
α = 0.4 the fairness index is close to 1. The randomized mechanism would
obtain higher fairness index with higher values of α.

The previous results have been obtained assuming that the channel bit-rate
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Figure 7: Traffic of SU c as a function of its t with credit limitation. Randomized mechanism.

Figure 8: Traffic as a function of t parameter on SU c. Credit limitation and fairness com-
pensation. Deterministic mechanism.

had uniform distribution with known mean, and the random valuations used for
credit redistribution were calculated with this distribution too. Figs. 10 and 11
show what happens when the channel bit-rate has a different distribution of that
used to generate the random valuations. Here, we assume that channel bit-rate
mean and variance are known or can be estimated, and random valuations are
generated with log-normal distribution with these mean and variance. The plots
show the result for SU c with several channel bit-rate distributions. It can be
seen that truthfulness is maintained except in case of the deterministic mecha-
nism and uniform and Pareto channel distributions, in which a slight deviation
is observed. However, the random mechanisms performs well for all the distri-
butions tested, suggesting that randomization makes the credit redistribution
less dependent on the channel bit-rate distribution, and therefore more robust.
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Figure 9: Traffic as a function of t parameter on SU c. Credit limitation and fairness com-
pensation. Randomized mechanism.

Figure 10: Traffic of SU c as a function of its t for several channel rate distributions. Random
valuations for credit redistribution are lognormal. Deterministic mechanism.

6. Conclusions

We have described a dynamic spectrum sharing scheme in which SUs access
opportunistically to those channels not temporarily used by PUs. Every time
an available channel is detected, a centralized spectrum manager can allocate it
in real-time by executing a low-complexity mechanism. Given that free chan-
nels are sensed and estimated by SUs, the mechanism should be truthful so
that SUs are encouraged to communicate their true estimates to the manager.
This property will allow the manager to implement the allocation according to
certain objectives such as fairness or efficiency. Moreover, by using virtual cur-
rency, this scheme can operate without monetary transactions. We have tested
this scheme with two simple mechanisms. Both mechanisms have been thor-
oughly evaluated and it is shown that their performance is independent of the
physical configuration. We show how they can be modified to implement a flex-
ible trade-off between fairness and efficiency, maintaining their properties. We
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Figure 11: Traffic of SU c as a function of its t for several channel rate distributions. Random
valuations for credit redistribution are lognormal. Randomized mechanism.

also show how they can work with a virtual currency, by controlling the credit
of SUs, making the choice and payment functions dependent on the credit, and
redistributing cash to SUs. When the mechanisms are dependent on credit, al-
though they are still truthful on a single run, on repeated runs truthfulness does
not hold, because successive runs become dependent. But although truthfulness
cannot be guaranteed in all situations, our experimental results show that under
certain conditions they still behave truthfully. One condition is that credit is
redistributed to SUs according to their expected needs. This requires a previous
knowledge of channel bit-rate statistics, but we found that only mean and vari-
ance are needed to maintain the mechanisms properties. We also found that the
randomized mechanism has some advantages over the deterministic mechanism.
One advantage is that with the randomized mechanism it is simpler to adjust
the trade-off between efficiency and fairness, because in its case efficiency and
fairness indices depend monotonically on the adjusting parameter. Another ad-
vantage is that with the randomized mechanism the credit redistribution policy
is less dependent on the channel bit-rate distribution.
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