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Abstract

The complexity of modern communication networks makes the solution of the

Markov chains that model their traffic dynamics, and therefore, the determi-

nation of their performance parameters, computationally costly. However, a

common characteristic of these networks is that they manage multiple types of

traffic flows operating at different time-scales. This time-scale separation can

be exploited to substantially reduce the computational cost. Following this ap-

proach, we propose a novel solution method named Absorbing Markov Chains

Approximation (AMCA) based on the transient regime analysis. Briefly, we

model the time the system spends in a series of subsets of states by a phase-

type distribution and, for each of them, determine the probabilities of finding

the system in each state of this subset until absorption. We compare the AMCA

performance to that obtained by classical methods and by a recently proposed

approach that aims at generalizing the conventional quasi-stationary approxi-

mation. We find that AMCA has a more predictable behavior, is applicable to

a wider range of time-scale separations and achieves higher accuracy for a given

computational cost.
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1. Introduction

Nowadays, wireless communication networks incorporate sophisticated tech-

nology and algorithms to provide a wide range of services. In order to evaluate

their performance and to understand the interactions among different compo-

nents of these rather complex networks, the deployment of analytical models5

has become a common approach with multiple advantages. Accurate modeling

of the wireless network events allows to determine performance parameters like

the blocking probability, throughput, average transfer delay, and others [1, 2].

The increasing complexity of wireless networks in terms of size, different

configurations, and the interactions among types of traffic flows makes modeling10

more challenging. From the modeling perspective, we normally encounter two

main common characteristics in continuous-time Markov chain (CTMC) models

of wireless networks. First, the cardinality of the state-space of their CTMC is

large. Second, the multiple types of traffic flows evolve at different time-scales.

While the first characteristic usually makes the exact solution of the CTMC15

computationally intractable, the second one allows us to apply specific solution

approaches that exploit the time-scale separation to reduce the computational

cost. We can structure the model into subsets of states by using the fact that

transitions occur at a fast time-scale in the states belonging to the same subset,

while transitions between subsets occur at a slower time-scale. Then, we can20

approximate the solution of the stationary probability distribution of the com-

plete system by computing separately the stationary distribution of each subset,

and then combining them to obtain the stationary distribution of the complete

system. Once this is achieved, the performance metrics of the wireless network

can be easily computed [3, 4].25

The analysis of wireless networks based on time-scale separation has been

proposed in recent studies [5, 6, 7, 8, 9, 10, 11, 12]. In many of them, the so-

called quasi-stationary approximation (QSA) has been shown to be accurate and

computationally efficient [6, 9, 10, 11]. However, when the gap between time-

scales shortens, the accuracy of the method deteriorates to a point in which the30
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method is no longer useful from a practical perspective.

In [7] a generalization of QSA (called GQSA) has been proposed. It can

adjust the accuracy with a parameter called radius (R). In a recent study [13]

we showed that, in some network scenarios, the accuracy achieved with GQSA

improves as R increases. However, in other scenarios increasing R reduces the35

accuracy. More importantly, it is difficult to predict the scenarios in which the

accuracy can be improved by increasing R.

The main contribution of this paper is a new approximation method ap-

plicable to a wide range of time-scale separations, and whose accuracy can be

improved by increasing the computational cost. The proposed method is based40

on an original iterative approach named Absorbing Markov Chains Approxima-

tion (AMCA). In AMCA, the Markov model of the network is structured in

levels and phases. Then, we analyze the transient regime at each level to de-

termine the fraction of time that the system spends at each of its phases until

a level change occurs. Once these fractions of time are found for all phases in45

all levels, a new approximation of the stationary distribution of the complete

system is computed. We repeat the procedure until a predefined accuracy is

satisfied. This iterative procedure is initialized with the solution obtained by

QSA.

To evaluate the proposed method, we used it to analyze two different net-50

works. One is a cognitive radio network (CRN) with two channel sets: one

shared by primary and secondary users, and the other dedicated to the sec-

ondary users [14, 15]. The other is an integrated service network (ISN), where

a single base station serves real-time and non-real-time traffic [16, 17]. We will

refer to these two networks as the test networks. Note that we selected these55

test networks to apply the new approximation method to the same scenarios

employed by previous approximate methods based on time-scale separation so

that a fair comparison is carried out. Specifically, the CRN scenario was em-

ployed in [6] and the ISN scenario in [7]. However, the selection of these test

networks does not limit the applicability of AMCA in any way.60

We carry out two types of analysis in the test networks. First, we evaluate
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the behavior of AMCA at different time-scale separations. Second, we study

the trade-off between accuracy and computational cost. We compare the per-

formance of AMCA with that of QSA, GQSA, and a classical iterative method

named iterative aggregation/disaggregation (IAD), which is particularly suited65

to these type of systems [4, Sect. 10.5]. Considering the range of time-scale

separations at which we obtain an acceptable accuracy, the results show that

AMCA outperforms the other methods.

The rest of the paper is structured as follows. Section 2 details the char-

acteristics of the test networks analyzed and their associated CTMC models.70

Section 3 describes the quasi-stationary approximation and the related approx-

imation methods based on time-scale separation. In Section 4 we present our

approximation method called AMCA. Section 5 shows the numerical evaluation

and the results. Finally, Section 6 draws the conclusions.

2. Wireless networks description and modeling75

In this section, we detail the main characteristics of the test networks. We de-

scribe the performance metrics of interest and define a two-dimensional CTMC

model for each network.

2.1. Cognitive radio network

As in [6, 18], we model the primary user (PU) and secondary user (SU)80

traffic at the session (connection) level and ignore interactions at the packet level

(scheduling, buffer management, etc.). We assume an ideal MAC layer for SUs,

which allows a perfect sharing of the allocated channels among the active SUs

(all active SUs get the same bandwidth portion), introduce zero delay and whose

control mechanisms consume zero resources. In addition, we also assume that an85

active SU can sense the arrival of a PU in the same channel instantaneously and

reliably. In this sense, the performance parameters obtained can be considered

as an upper bound.

The cognitive radio network has C1 primary channels (PCs) that can be

shared by PUs and SUs, and C2 secondary channels (SCs) only for SUs. Let C =90
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C1 +C2 be the total number of channels in the network. Note that the SCs can

be obtained from e.g., unlicensed bands, as proposed in [18]. This assumption

is applicable to the coexistence deployment scenario for CRNs. Alternatively,

as it might be of commercial interest for the primary and secondary networks

to cooperate, the secondary channels may be obtained based on an agreement95

with the primary network [19]. A SU in the PCs might be forced to vacate its

channel if a PU claims it to initiate a new session. As SUs support spectrum

handover, a vacated SU can continue with its ongoing communication if a free

channel is available. Otherwise, it is forced to terminate.

For the sake of mathematical tractability, Poisson arrivals and exponentially100

distributed service times are assumed. The arrival rate for PU (SU) sessions is

λ1 (λ2), their service rate is µ1 (µ2), and requests consume 1 (1) channel when

are accepted.

We denote by (i, j) the network state, when there are i ongoing PU sessions

and j SU sessions. The set of feasible states is S := {(i, j) : 0 ≤ i ≤ C1, 0 ≤105

i+ j ≤ C} and the cardinality of S is |S| = (C1/2 +C2 + 1)(C1 + 1). The state-

transition diagram of the network is depicted in Fig. 1. Given the set of feasible

states and the transition rates among them, the global balance equations can be

defined. Finally, the global balance equations together with the normalization

equation can be solved to obtain the steady-state probabilities denoted as π(i, j).110

The network performance parameters are determined as follows:

Ppu =

C2∑
k=0

π(C1, k) , Psu =
C∑

k=C2

π(C − k, k), (1)

Pft =
λ1(Psu − π(C1, C2))

λ2(1− Psu)
, (2)

Thsu =

C∑
j=1

Z∑
i=0

jµ2 · π(i, j), (3)

where Ppu is the PUs blocking probability, which clearly coincides with the one

obtained in an Erlang-B loss model with C1 servers; Psu is the SUs blocking

probability, i.e., the fraction of SU sessions rejected upon arrival as they find the
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Figure 1: State-transition diagram, Cognitive Radio Network.

network full; Pft is the forced termination probability of the SUs, i.e., the rate

of SU sessions forced to terminate divided by the rate of accepted SU sessions;115

Thsu is the SUs throughput, i.e the rate of SU sessions successfully completed

and Z = min(C1, C − j).

2.2. Integrated service network

We use the same model defined in [7, 17] for an integrated service network,

where a single base station serves real-time (RT) and non-real-time (NRT) traf-120

fic. We consider that a link with a total capacity of C Mbps is shared among

RT and NRT communications.

We assume that all RT calls (sessions) are of the same class and are given

strict priority over the NRT traffic. We denote by Nrt the maximum number of

channels for RT calls. When a RT call arrives, it occupies 1 channel (if available)125
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of rate c bps. Note that a RT call occupies 1 channel during its entire service

duration to meet its required QoS; otherwise, it is blocked. We set Nrt, such

that Nrt · c is sufficiently smaller than C to avoid starvation of the NRT traffic.

Let nrt(t) be the stochastic process number of RT calls in the network at time

t, t ≥ 0.130

The capacity not used by the RT traffic is evenly shared by the NRT flows

according to the processor sharing (PS) discipline. Let nnrt(t) be the stochas-

tic process number of NRT flows in the network at time t, t ≥ 0. Then,

{(nrt(t), nnrt(t))} is the joint RT and NRT stochastic process. The available

capacity for the NRT traffic at time t is given by Cnrt(t) = C − nrt(t) · c . The135

bit-rate of each admitted NRT flow at time t is cnrt(t) = Cnrt(t)/nnrt(t), and it

is updated after any RT or NRT accepted arrivals or departures. To satisfy the

QoS of admitted NRT flows, the maximum number of concurrent NRT flows

is limited to Nnrt. Accordingly, an NRT flow arriving at time t is blocked if

nnrt(t) = Nnrt.For the sake of mathematical tractability, we assume Poisson140

arrivals for RT and NRT requests with rates λrt and λnrt respectively. Also,

the service time of each admitted RT request is exponentially distributed with

rate µrt. The size of the flows generated by the NRT sessions are exponen-

tially distributed with mean L (bits). Note that, the service time of NRT flows

(transfer delay) depends on the available resources.145

We denote by (i, j) the network state, when there are i ongoing RT calls and

j NRT flows. Let S be the set of feasible states as S := {(i, j) : 0 ≤ i ≤ Nrt, 0 ≤

i+ j ≤ Nrt +Nnrt} and the cardinality of S is |S| = (Nrt + 1)(Nnrt + 1). The

state-transition diagram of the network is depicted in Fig. 2.

As before, given the set of feasible states and the transition rates among

them, the global balance equations can be defined. Finally, the global balance

equations together with the normalization equation can be solved to obtain the

steady-state probabilities denoted as π(i, j). Clearly, the service rate of NRT

flows varies according to the number of RT calls in the network as:

µ
(i)
nrt =

C − i · c
L

. (4)
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Figure 2: State-transition diagram, Integrated Service Network.

The network performance parameters are determined by

Pnrt =

Nrt∑
k=0

π(k,Nnrt), (5)

E [Xnrt] =

Nnrt∑
j=1

Nrt∑
i=0

j · π(i, j), (6)

E [Dnrt] =
E [Xnrt]

λnrt(1− Pnrt)
, (7)

where Pnrt is the blocking probability of NRT flows, E [Xnrt] is the mean number150

of NRT flows in the network and E [Dnrt] is the average transfer delay of NRT

flows. Note that (7) is a direct application of Littles’s law.
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3. Approximate solution methods

In this section, we describe the approximation methods based on time-scale

separation that have appeared in the literature.155

If the wireless network model in its entirety is too large or complex to an-

alyze, the state-space may be partitioned into disjoint subsets of states. This

partition is made by considering the essence of time-scale separation: the in-

teractions among the states of a subset are strong (high frequency of events)

but the interactions among the states of different subsets are weak (low fre-160

quency of events). Such models are sometimes referred to as nearly completely

decomposable (NCD), nearly uncoupled, or nearly separable [4, 20].

Then, we organized the state-space of the CTMC of each test network into

levels and phases (as shown in Fig. 1 for CRN and in Fig. 2 for ISN), so that we

call levels the subsets in the y-axis and we call phases the states in the x-axis165

contained in the same level. The state transitions between states of the same

level (phases) very often occur at a higher rate than the transitions between

states of different levels, i.e., a high number of phase changes (in the same level)

occur before a level change.

Next (Sections 3.1, 3.2, and 3.3) we detail how to compute the approximate170

steady-state probabilities with each of the approximation methods. With these

approximated values, the performance parameters of each test network can be

computed using (1)–(3) for the CRN, and (5)–(7) for the ISN.

3.1. Quasi-stationary approximation (QSA)

The simplest approximation based on time-scale separation is the so called175

quasi-stationary (or, quasi-static) approximation (QSA) [21, 9, 10, 5, 22]. This

approximation produces easily computable and accurate results when the sepa-

ration of the time-scales is large.

We start by obtaining the probability distribution of finding the system at

each level, i.e., the slow transitions (PUs in the CRN or RT traffic in the ISN)

9



and denote it by

π = [π(0) π(1) · · · π(i) · · · π(y)], (8)

where y represents the highest level of the CTMC. Then, for each level, we

proceed to obtain the conditional probability distributions of finding the system

at each phase. This conditional distribution for level i is given as

π̂(i) = [π̂(0|i) π̂(1|i) · · · π̂(j|i) · · · π̂(x|i)], (9)

where x represents the highest phase in level i. These are approximate proba-

bility distributions because they are computed assuming that when the process180

enters a level, the time spent there is sufficiently large so that the stationary

regime is reached.

Finally, the approximate stationary distribution of the system is computed

using (8) and (9) as follows

π(i, j) ≈ π̂(i, j) = π(i) · π̂(j|i). (10)

3.2. Generalized quasi-stationary approximation (GQSA)

In GQSA [7], the system stationary distribution can be approximated as in

QSA, but now a set of adjacent levels is considered for the analysis of level i,185

rather than just level i. For that, the parameter R indicates the number of

adjacent levels to consider. Clearly, R allows to adjust the trade-off between

accuracy and computational cost.

The number of levels required at each GQSA step is equal to 2R + 1. Note

that QSA can be seen as a special case of GQSA with R = 0.190

Let Ω(i) be the set of states contained in level i and its 2R closest levels

and denote by πΩ(i)(i, j) the stationary distribution of the CTMC restricted to

the states in Ω(i) and the transitions between them. Then, the approximate

stationary distribution of the system (i, j) is computed as follows

π(i, j) ≈ π(i, j) = π(i) ·
πΩ(i)(i, j)∑
j πΩ(i)(i, j)

. (11)
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3.3. Iterative aggregation/disaggregation approximation (IAD)

In the IAD method, as with QSA, the idea is to partition the state-space

into aggregates (subsets of states), estimate the probability that the system is

in a particular aggregate, estimate the conditional probabilities of being in each

state of every aggregate, and then combine them to obtain an approximation of195

the stationary distribution of the complete system [4, Chap.10], [23].

In our test networks, the transition rate matrix Q has the following NCD

block structure:

Q =



D1 U1

L2 D2 U2

. . .
. . .

. . .

Ln−1 Dn−1 Un−1

Ln Dn


.

Next we detail our specific implementation of the IAD method:

1. Use the QSA to determine the initial stationary distribution π
(0)
i .

2. Apply the following iteration until the convergence test is met:

π
(k+1)
i =


π

(k)
i+1Wi, i = 1,

π
(k+1)
i−1 Vi + π

(k)
i+1Wi, i = 2, . . . , n− 1

π
(k+1)
i−1 Vi, i = n,

(12)

where π = [π1, . . . ,πn], πi is the sub-vector of π that corresponds to level

i, π
(k)
i is the sub-vector value at the k-th iteration, Vi = −Ui−1D

−1
i and200

Wi = −Li+1D
−1
i .

3.3.1. Convergence Test

Using the solution obtained by the QSA as π(0), the iterative procedure

terminates when the following convergence test is met:

êr(z(k)) =
|z(k−1) − z(k)|

z(k)
≤ ε , (13)
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where z is one of the performance metrics in {Psu, Pft, Thsu} for the CRN

evaluation, or in {Pnrt, E [Dnrt]} for the ISN evaluation. We iterate until the

estimated error for all performance parameters of the test network is less than205

a predefined ε.

4. Absorbing markov chains approximation

In this section, we present the proposed Absorbing Markov Chains Approx-

imation (AMCA), which is an iterative method. As in previous methods, in

AMCA we also structure the CTMCs of the test networks in levels and phases.210

We analyze the system in the transient regime and model the time spent by

the system in a level as a phase-type distribution. For each level, we determine

the fraction of time the system spends in each of the phases of the level, i.e.,

since entering the level until departing from it. For doing so, AMCA requires

to know the probabilities of finding the system in each phase of the adjacent215

levels. Thus, an iterative method is devised, that is terminated using the same

convergence test detailed in 3.3.1. Next, we detail the procedure, the equations

and variables involved in our method, and finally present the AMCA algorithm.

4.1. Approximation method

In the QSA it is assumed that, when the process enters a level, it takes an220

infinitely long time to leave that level. In our method, we assume that although

the sojourn time in a level will be typically large (consistently with the large

separation between time-scales), it is finite. Then, we obtain the probability

that the process is in phase j of level i, given that the process is in level i, as

the fraction of time that the process spends in phase j during a sojourn of the225

CTMC in level i.

In order to study the sojourn time in a level, we model the states of each level

i of the original CTMC as transient states of an absorbing Markov chain with

an absorbing state A, where all states outside level i have been lumped together.

To illustrate this, in Fig. 3(a) we represent a region of the CRN state-transition230
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Figure 3: Transitions and absorption state

diagram (level i and its adjacent levels) and in Fig. 3(b) the absorbing Markov

chain corresponding to level i. As a result, the outgoing transitions from a

state (i, j) that in the original CTMC go to a state inside level i (those with

rates bi,j and fi,j) are directly mapped onto the absorbing Markov chain. In

contrast, all transitions from a state (i, j) that in the original CTMC go to a235

state outside level i (those with rates li,j and ui,j) are aggregated into a single

transition in the absorbing Markov chain that leads to the absorbing state (i.e.,

aj = li,j + ui,j).

Note that, if we knew the probabilities with which the sojourn time in a level

is initiated at each of its phases, then the conditional probabilities obtained by240

this method would be the exact ones. However, unless the original CTMC has

some special structure (for instance, if each level can only be entered by exactly

one of its phases), these initial probabilities cannot be obtained without having

the stationary distribution of the whole CTMC.

We propose to use the QSA to estimate the initial stationary distribution of245

the complete system. Then, we obtain the fractions of time spent at each of the

phases of each level before absorption. Finally, we combine the estimation of the

conditional probabilities of finding the system at the phases of each level, and

13



the probability distribution of finding the system at each level, to determine a

new approximation for the stationary distribution of complete system. This way,250

we obtain a refinement of the initial approximate stationary distribution. The

same process can be repeated iteratively to further improve the approximation.

Based on the basic properties of PH distributions (see AppendixA), the

iterative procedure described above is defined by the following equations:

v
(k−1)
i = πi−1(π̃

(k−1)
i−1 Ui−1) + πi+1(π̃

(k−1)
i+1 Li+1) , (14)

α
(k−1)
i =

[
v

(k−1)
i e

]−1

v
(k−1)
i , (15)

π̃
(k)
i =

[
α

(k−1)
i (−T−1

i )e
]−1

α
(k−1)
i (−T−1

i ) , (16)

where

• the superscript (k) denotes the iteration number and e is a column vector

of ones of appropriate dimension.255

• v(k−1)
i is a row vector that contains the input rates to each state of the

level i. Its initial value is given by

v
(0)
i = πi−1(π̃

(0)
i−1Ui−1) + πi+1(π̃

(0)
i+1Li+1), (17)

where Ui−1 is a matrix of suitable dimension with the transition rates

from level i− 1 to level i and Li+1 is a matrix of suitable dimension with

the transition rates from level i+ 1 to level i.

• α(k−1)
i is the initial probability row vector for level i, i.e., the j-th element

of this vector, α
(k−1)
i (j), is the probability that the process enters through

phase j when it visits level i. Its initial value is given by

α
(0)
i =

[
v

(0)
i e

]−1

v
(0)
i . (18)

• π̃(k)
i is a row vector containing the fractions of time the process spends

in each phase of level i before absorption, e.g., the j-th element of this

vector, π̃
(k)
i (j), is the fraction of time the process spends in the phase j of

14



level i before absorption. Its initial value is given by QSA

π̃
(0)
i = π̂(j|i), (19)

where π̂(j|i) is the distribution of probabilities of

– CRN: finding j ongoing SU sessions in an M/M/(C−i)/(C−i) system260

with only SUs.

– ISN: finding j NRT flows in an M/M/1/N-PS system with only NRT

traffic.

• πi is the probability of finding the system at level i. It is the probability

of finding i PUs in the CRN or i ongoing RT sessions in the ISN. It is265

computed using simple recursions since their corresponding CTMC are

one-dimensional birth-and-death processes.

Finally, the steady-state probability distribution can be approximated as

π(i, j) ≈ π̃(k)(i, j) = πi · π̃(k)
i (j) . (20)

To compute the approximate values of the performance parameters, we use

(1)–(3) for the CRN, and (5)–(7) for the ISN, with the distribution of probabil-

ities defined in (20). Finally, the proposed iterative method may be halted once270

the predefined convergence test defined in Section 3.3.1 is satisfied.

Algorithm 1 summarizes the procedure used to conduct the performance

evaluation of the test networks with AMCA.

5. Numerical evaluation and results

We perform two types of analysis. First, we evaluate the behavior of the275

approximation methods when the separation of time-scales varies. Second, we

study the trade-off between accuracy and computational cost. The results of

these analyses are presented in Sections 5.1 and 5.2 respectively.

As a baseline for our study, we implemented the exact solution of the CTMC

associated with each test network, in order to evaluate the error of the approx-280

imation methods. For the sake of comparison, we used test network sizes that
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Algorithm 1 Iterative Absorbing Markov Chains Approximation Method

1: Set π(0) ≈ π̂(i, j) = π(i)·π̂(j|i) as the initial approximation to the π solution

computed by QSA. Set k = 1.

2: a) Compute the vector of input rates to each state of the level i, v
(k−1)
i ,

using (14).

b) Compute the initial probability vector of level i, α
(k−1)
i , using (15).

c) Compute the conditional probabilities vector, π̃
(k)
i , using (16).

3: Compute the new approximate steady-state probability distribution

π(i, j) ≈ π̃(k)(i, j) using (20).

4: Compute the performance metrics of each network: using (1)–(3) for CRN,

and (5)–(7) for ISN.

5: Apply the convergence test to iterations k and k − 1, using (13):

If satisfactory, then stop. Otherwise, set k = k + 1 and go to step 2.

allowed the computation of the exact solution with reasonable execution time

and memory requirements. In addition, we implemented GQSA and the IAD

method to validate AMCA and to compare its performance with that of the

other methods in terms of accuracy and computational cost.285

The accuracy of the methods is measured as the relative error (er) of each

performance parameter. For instance, the relative error of the SUs blocking

probability in the CRN is computed as

er(Psu) =
|PE

su − PA
su|

PE
su

, (21)

where PE
su is the exact SUs blocking probability and PA

su is the approximate

SUs blocking probability. Note that (21) is the (exact) relative error whereas

êr(P
(k)
su ), as defined in (13), is an estimation of it.

We evaluate the performance of the test networks for different sizes (number

of channels available for each type of user or flow) and different load condi-290

tions. For the SUs in the CRN, we analyze their blocking probability, forced

termination probability and throughput. We consider the following values for

16



the number of primary channels: C1 = {70, 80, 90, 100, 120, 140}. For each of

them, we consider the following values for the number of secondary channels:

C2 = {10, 20, 40, 60}.295

For the NRT traffic in the ISN, we determine its blocking probability and

the average transfer delay. Keeping c = 64 kb/s and L = 500 kB constant,

we consider the following values for the total link capacity of the network:

C = {1.92, 7.68, 10}Mbps, which are a similar to the ones used in [7].

We set the service rates to 1 s−1, and then we adjust the arrival rates to300

obtain two load conditions: low (L) and high (H), which correspond to block-

ing probabilities of 1 · 10−3 and 5 · 10−2 respectively. Combining the two load

conditions for each user type or traffic category, we obtain four different config-

urations:

LL low load condition for PUs (RT traffic), and low load condition for SUs305

(NRT traffic).

LH low load condition for PUs (RT traffic), and high load condition for SUs

(NRT traffic).

HL high load condition for PUs (RT traffic), and low load condition for SUs

(NRT traffic).310

HH high load condition for PUs (RT traffic), and high load condition for SUs

(NRT traffic).

Next we present the results obtained for the two types of analysis.

5.1. Behavior of the approximation methods when the separation of time scales

varies315

We analyze the behavior of the approximation methods as a function of

the time-scale separation. For that, we first configure the test networks to

a specific load condition (LL, LH, HL or HH). Then, we use an accelerating

factor f , 10−5 ≤ f ≤ 105, to equally accelerate or decelerate both the arrival

and service rates of the components with high priority in the networks (PUs in320
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Figure 4: Relative error for the SUs blocking probability in LH load condition:

λ1 = 110.90 s−1, µ1 = 1 s−1, C1 = 140; λ2 = 87.69 s−1, µ2 = 1 s−1, C2 = 60; k denotes the

number of iterations performed.

the CRN or RT traffic in the ISN), while keeping the offered traffic constant.

For instance, in the CRN, for each value of f the PU arrival and service rates

are obtained as λ1(f) = f · λ1 and µ1(f) = f · µ1. Note that the offered traffic

λ1(f)/µ1(f) = λ1/µ1 is independent of f . As f approaches 0 the event rate of

high priority users gets lower. Therefore, the behavior of the systems gets better325

aligned with the hypothesis underlying all approximation methods considered

here: high priority users are nearly static from the perspective of low priority

users. As a consequence, it is expected that the accuracy of all approximation

methods improves when f decreases toward 0, and conversely, degrades when f

grows.330

In Figs. 4–7 we show the relative error of the blocking probability against the

accelerating factor f for LH and LL load conditions. With regard to the other

performance metrics and load conditions, the behavior of the approximation

methods is qualitatively similar, but for conciseness their results are not shown.

We can quantify the validity range of an approximation in the time-scale335

domain as the maximum value of f for which a certain accuracy is met. Figures 4

and 5 show that AMCA can extend the validity range of QSA at the expense

of higher computational cost.
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c = 64 kbps, L = 4 Mb; k denotes the number of iterations performed.

In Figs. 6 and 7 we compare AMCA with GQSA and IAD in terms of ac-

curacy at different time-scales. These results were obtained by the following340

procedure. We measured the time to execute GQSA with a given radius R

(GQSAR). Then, for IAD and AMCA we performed the maximum number

of iterations such that computation time not higher than computation time of

GQSAR. These results are labeled as AMCAR and IADR. For instance, the

curve for AMCA1 represents the result obtained iterating AMCA while the345

computation time not exceeding that of GQSA1.

The following observations can be made from Figs. 6 and 7:

• As expected, with all approximation methods, when the accelerating factor

f decreases (f → 0) the approximate values of all evaluated performance

parameters tend to their exact values.350

• Increasing the radius in GQSA not always ensures a reduction of the rel-

ative error [13]. Figure 6 illustrates this behavior; as can be seen for

f > 10−1, GQSA1 has better accuracy than GQSA2 and GQSA3.

• AMCA outperforms GQSA and IAD in terms of validity range, i.e., with

the same computation time AMCA is able to achieve a validity range355
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wider than that of GQSA and IAD method. For instance, see in Fig.7

the curves of QSA, GQSA3, IAD3 and AMCA3; for a relative error lower

than 0.05, AMCA is able to achieve a validity range that is approximately

18 times wider than that of QSA, whereas GQSA and IAD method are

able to achieve a validity range of approximately 2 and 6 times wider than360

that of QSA, respectively. A similar behavior was observed for all load
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conditions and network sizes.

5.2. Trade-off between accuracy and computational cost

In this section, we analyze the trade-off between accuracy and computational

cost. Figures 8 (CRN) and 9 (ISN) illustrate the evolution of the relative error365

of the blocking probability with the execution time. To obtain these results, we

set f such that the relative error obtained by QSA for the studied parameter is

10%. Recall that the stationary distribution obtained by QSA is used for the

initial values of IAD and AMCA.

It is worth nothing that GQSA is not an iterative method in the sense that it370

can be executed for any radius value, R = n, without having previously obtained

the results for R = 0, 1, . . . , n − 1. However, there is no available method

that allows to find the appropriate n to achieve a given accuracy. Although

it does not always occur (for example in Fig. 8 the accuracy decreases from

GQSA1 to GQSA2), it is expected that the obtained accuracy tend to improve375

when R is increased. Thus, in our comparative study we increase R until a

predefined convergence test (estimated relative error) is met, roughly mimicking

the operation of the other two iterative methods.

We can observe in Figs. 8 and 9 how the accuracy of each method evolves
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as the number of iterations, and hence the computation time, increases. Note380

that the execution time to obtain a determined accuracy with AMCA is lower

than that of GQSA and IAD.

Tables 1 and 2 show the relative error estimations (êr), the execution times

of all the approximation methods, and (for comparative effects) the required

time to obtain the exact system stationary distribution for the CRN and the ISN385

test networks respectively. To obtain these results, we have considered scenarios

where the initial (exact) relative errors obtained by QSA were 20% and 40%,

and with different load configurations. These two values represent scenarios

in which the separation between time-scales is not long enough so that QSA

cannot provide a sufficiently accurate approximation and, as a consequence, an390

enhanced method is required.

In practice, where the exact value of the error is not available, a stop criterion

is needed for the normal use of the approximation methods. Here the estimated

relative error (êr) is used in the stop criterion.

The threshold that êr must fall below for the procedure to stop is chosen395

heuristically such that: i) the (exact) relative error obtained after the iterative

procedure stops must be er ≤ 10−2; ii) it is unique for each method and for all
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Table 1: Relative Error Analysis - Cognitive Radio Network

Load

Config.

e
(0)
r

(%)

ê
(k)
r Execution Time (s)

GQSA IAD AMCA GQSA IAD AMCA Exact

LL 20 9.1e-4 9.9e-6 9.9e-6 184.9 134.5 10.4 209.1

LL 40 0.01 2.1e-5 9.9e-6 197.9 209.8 43.7 210.6

LH 20 6.6e-4 9.9e-6 9.9e-6 88.1 25.5 3.9 207.5

LH 40 9.8e-4 9.9e-6 9.9e-6 14.3 55.7 8.1 208.8

HL 20 7.1e-4 9.9e-6 3.9e-6 91.2 79.0 0.8 207.3

HL 40 6.3e-4 9.9e-6 9.9e-6 132.5 187.1 55.0 209.5

HH 20 6.8e-4 9.6e-6 9.8e-6 54.8 30.3 4.4 207.5

HH 40 7.0e-4 9.9e-6 9.7e-6 100.4 65.0 9.2 212.1

Table 2: Relative Error Analysis - Integrated Service Network

Load

Config.

e
(0)
r

(%)

ê
(k)
r Execution Time (s)

GQSA IAD AMCA GQSA IAD AMCA Exact

LL 20 9.6e-4 9.7e-6 9.9e-6 53.4 25.7 3.1 118.8

LL 40 7.4e-4 9.9e-6 9.9e-6 61.9 46.8 6.3 120.0

LH 20 3.5e-4 4.9e-6 9.5e-6 96.1 23.5 3.4 118.5

LH 40 6.4e-3 1.1e-4 9.9e-6 108.9 118.4 35.2 118.8

HL 20 7.7e-4 9.9e-6 4.3e-6 20.5 12.1 1.2 118.8

HL 40 5.8e-4 9.6e-6 8.8e-6 34.6 24.7 2.3 118.8

HH 20 9.7e-4 7.6e-6 5.0e-6 38.1 15.8 2.8 118.8

HH 40 3.6e-4 9.7e-6 9.5e-6 77.6 69.1 9.2 118.9

the studied configurations. Note however that êr is not necessarily the same for

all the methods; the êr values used for GQSA, IAD and AMCA are: 10−3, 10−5

and 10−5, respectively. In addition, the iterative procedure is halted by time,400

i.e., we established a maximum execution time so that, the iterative procedure

stops when the time required to meet the convergence test is larger than the

maximum execution time.

23



We observe that AMCA converges in all the evaluated scenarios with signif-

icantly lower execution times than those of GQSA and IAD. In the CRN case,405

AMCA is between 2 and 114 times faster than GQSA, and between 3 and 99

times faster than IAD. A similar behavior was observed in the ISN case: AMCA

is between 3 and 28 times faster than GQSA and between 3 and 11 times faster

than IAD. Note that there are a couple of scenarios (see Table 1, row LL - 40%

and Table 2, row LH - 40%) in which GQSA and IAD were halted by time.410

Although in such cases converge could have been achieved if more iterations

had been performed, it would be of no practical interest, since the benefit with

respect to the exact solution (in terms of execution time) will be marginal or

non-existent.

6. Conclusion415

We have presented a novel approximation method for the performance evalu-

ation of wireless networks that is based on time-scale separation. The proposed

method, which is iterative in nature, permits trading-off computational effort in

exchange of an increased accuracy. We applied the new method to two differ-

ent types of wireless networks and we compared the performance of our method420

with that of a recently published generalization of QSA (GQSA) and also with a

classical method known as iterative aggregation/disaggregation (IAD). Numeri-

cal results show that our method outperforms GQSA and IAD by providing the

same accuracy with a substantially lower computational cost.

AppendixA. Phase-type (PH) distribution425

Consider a CTMC on a finite state-space S = {0, 1, 2, . . . ,m} where one state

is absorbing and the remaining m states are transient. The random variable de-

fined as the time to absorption is said to have a continuous PH distribution [24].

A PH distribution is uniquely given by the pair (α;T ), where α is a m-

dimensional row vector that defines the probabilities that the system starts at430

any of the transient states and meet
∑m

i=0 αi = 1; while T is a m ×m matrix
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referred to as the PH generator that contains the transition rates between the

transient states.

The infinitesimal generator for the CTMC can be written in block-matrix

form as Q =

T t

0 0

 . Here, 0 is a 1×m row vector of zeros. The elements of435

the column vector t = [t1, t2, . . . , tm]′ are the transition rates from the transient

states to the absorbing state. The m ×m sub-stochastic matrix T meets t =

−Te, where e is a column vector of ones of appropriate dimension.

It is known that −(T−1)ij is the expected total time spent in phase j during

the time until absorption, conditioned on the system starting at phase i [25,440

Theorem 2.4.3]. The elements of −T−1 are used to obtain the fractions of time

the system spends at each of them states until absorption. The interested reader

is referred to [24, 25, 26] for further details and a comprehensive theoretical

treatment of PH distributions.
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