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a b s t r a c t

We consider joint strategies of bandwidth allocation and admission control for elastic users
competing for a downlink data channel in a cellular network. For the sake of robustness
and generality of the results we focus on the set of strategies whose performance does
not depend on the detailed traffic characteristics beyond the traffic intensity. Performance
is studied at the flow level in a dynamic setting where users come and go over time. A num-
ber of user classes are considered, which are characterized by their achievable bit rate,
guaranteed throughput, arrival rate and mean flow size. We aim at characterizing a strat-
egy which is optimal in the sense of having the lowest blocking probability. Such charac-
terization provides some interesting insights into the optimal policy and its evolution as
the system load increases. In some cases computing the optimal policy can be exceedingly
complex except for lightly loaded systems. For those cases we propose a computationally
feasible suboptimal policy that achieves a good relative performance. Finally, we show that
in scenarios of practical interest, the loads of interest lie inside the region where the opti-
mal policy can be efficiently computed.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In spite of the enormous variety of traffic flows in the
multiservice Internet and the corresponding difficulty in
its characterization, the abstraction of flows pertaining to
two broad classes (elastic and streaming) has proven to be
simple yet practical for traffic engineering purposes [1]. Fu-
ture wireless cellular networks are expected to provide not
only voice service but also data services—mainly Internet
access traffic—thus carrying the same traffic type than
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ma.virtamo@tkk.fi (J.
set).

nment (30% PGE) and
oject TSI2007-66869-

nment (30% PGE) and
oject TSI2005-07520-
wired access networks, although not necessarily in the
same proportion.

Streaming traffic corresponds to real-time audio or vi-
deo and hence has rather stringent requirements on pack-
et delay and jitter. Elastic traffic in turn can adapt to
available bandwidth up to a minimum. If available band-
width drops below that minimum flows may abandon be-
fore completing the transaction leading to an unwanted
waste of resources [2,3]. Therefore, despite the adaptabil-
ity of elastic flows it is advisable to enforce some type of
admission control (AC) in order to guarantee a minimum
bandwidth per flow and ensure an efficient use of
resources.

In the quest of an equivalent of the Erlang formula for
the Internet, Bonald and Proutiére, following the seminal
work of Kelly [4], invented the concept of balanced fairness
[5,6], which is defined as the most efficient way to share
network capacity among different flows so that (under
some assumptions on the generation of flows) the result-
ing system is insensitive, i.e., the stationary distribution
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of the underlying queuing network does not depend on the
detailed distribution of service requirements beyond their
means. A further extension of the results on insensitive
queuing network is presented in [7]. In [8] balanced fair-
ness allocation is applied to several network types and its
performance is compared with that of max–min fairness
and proportional fairness. Insensitive scheduling from a
classical teletraffic perspective is presented in [9].

Despite the packetized nature of data in 3G networks,
performance analysis of wireless data networks at the flow
level has attracted a considerable interest during the last
years [10–18]. The vast majority of these studies rely to
some extent on queuing models based on processor sharing
(PS) and discriminatory processor sharing (DPS) queues;
see, for instance, the seminal paper [19], and also [20–23].

In [10,11] it is shown that the Proportional Fair sched-
uler, which is commonly deployed in downlink data chan-
nels, at the flow level can be satisfactorily evaluated by
means of a processor sharing (PS) based queuing model.
The resulting model has the advantage of being insensitive.
Applications of such model to a single cell with no moving
users can be found in [10–12]. Bonald et al. [13] study the
flow level performance of mobility induced rate variations.

While the exact analysis turns out to be exceedingly dif-
ficult, there are two limiting regimes, corresponding to
infinitely fast and slow movement, that provide an upper
and a lower performance bound. The models for the anal-
ysis of both limiting regimes are, again, insensitive. In
[15] Liu and Virtamo extended the limiting regimes analy-
sis to a finite population model. A multicell scenario where
neighboring base stations interfere each other having a
negative impact on the downlink data rate is examined
in [14]. The multicell setting is modeled as network of mul-
ticlass PS queues. The exact analysis of the model proves to
be unfeasible but after some simplifications the authors
obtain a bound and approximations that turn out to be
insensitive. The mutual interference between cells impacts
negatively on the downlink data rates. Such a negative ef-
fect, however, can be lessened by means of intercell coor-
dination and load balancing [24,25]. Borst et al. [16]
looked at a more complex scenario with multiple cells
and intra and intercell mobility. Their study focuses on
capacity (defined from a stability perspective) and the
main conclusion is that mobility increases capacity even
if the system works in a decentralized manner with no
intercell scheduling coordination.

On the other hand, DPS based models are introduced to
model the unequal capacity sharing arising in some situa-
tions. Unequal sharing may arise fundamentally due to TCP
rate control or service differentiation enforced by packet
schedulers. Under the assumption of time-scale separation
Kessel et al. [26] show that the performance of a class with
relatively slow dynamics is insensitive to the DPS weights.
Moreover, in normal load conditions, realizing service dif-
ferentiation through a packet scheduler that operates in a
DPS manner is rather ineffective [27]. Wu et al. [17] study
insensitivity in a DPS system from a practical perspective.
They conclude that if DPS weights are moderately asym-
metric insensitivity can be assumed for practical purposes,
whereas for highly skewed weights a significant degree of
sensitivity to traffic details arises. Previously, Kessel et al.
[26] have studied a DPS system in an asymptotic regime
where the flow dynamic of the various classes occur on
separate time scales and obtain insensitive performance
measures. Furthermore, Bonald and Roberts [27] conclude
that sensitivity of DPS is ‘‘slight for reasonable values of the
weights, say w1=w2 < 10” (for a two-class case).

Integration of streaming and elastic traffic has also re-
ceived some attention during the last years as the model
for an integrated services network. Such scenario, though,
results in a significantly more complex mathematical mod-
el and for which the theoretical support of insensitivity is
lost. Exact analyses [28,29] rely on the assumption of expo-
nentially distributed size (duration) of elastic (streaming)
flows and even then numerical methods and approxima-
tions can be considered useful [30]. In [31,32] a more gen-
eral distribution for streaming flows is allowed but then
only an approximate analysis is feasible. In [33–35,18]
insensitive models are obtained by analyzing the system
using a time-scale separation approximation: elastic flows
see streaming flows evolve infinitely slowly (quasi-station-
ary regime) or fast (fluid regime), and vice versa. This
approximation proves to be accurate for the time-scales
of some practical scenarios and otherwise they yield upper
and lower performance bounds. Finally, based on the re-
sults of [36] insensitive performance bounds are obtained
in [37] for an integrated traffic scenario. These bounds,
however, tend to be looser than those obtained using the
quasi-stationary and fluid approximations [37].

In this paper we focus on elastic traffic carried over a
wireless cellular network. Specifically, we address jointly
the problem of bandwidth allocation (BWA) and admission
control (AC). Our main goal is to characterize the optimal
joint BWA–AC scheme—in the sense of having the lowest
loss probability—among those that are insensitive to the
distribution of the flow size, i.e., performance only depends
on their mean values.

Our work inherits some of the ideas of a series of papers
dealing with insensitive dynamic load balancing [38–40].
In all of them—and also here—the simplicity and robust-
ness of insensitivity is an essential condition for the opti-
mal policy that is sought. In [38] it is assumed that
capacities are allocated according to balanced fairness
and then the optimal routing policy is sought constrained
to being balanced in order to preserve insensitivity. The
optimality objective is to minimize the overall blocking
probability or the maximum per-class blocking probability.
A simple characterization of the optimal routing policy is
obtained for the single-class traffic and also for the more
general multiclass traffic. However, in the latter case the
policy optimization is restricted to the set of decentralized
policies, i.e., strategies where the routing decision for a
class-k customer does not depend on the number of cus-
tomers of other classes.

For the purpose of obtaining the insensitivity property
it is not necessary that capacity allocation and routing
are balanced separately. Actually, it was already noted in
[5] that a better performance can be achieved if capacity
allocation and routing are jointly balanced, which is a
weaker requirement than separate balancing. This ap-
proach is followed in [39,40]. However the performance
advantage of joint balancing comes at the cost of higher
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complexity. In [39] the authors obtain and characterize the
optimal joint allocation-routing policy in a single-class
traffic scenario. To the best of our knowledge no similar re-
sults exist for the multiclass traffic scenario. A multiclass
traffic scenario with global information policies is studied
in [40] but the aim is not a characterization of the optimal
policy. An approach based on the theory of Markov deci-
sion processes (MDP) is used to formulate the optimization
as a linear programming (LP) problem (see, for instance,
[41]). The LP formulation allows more flexibility and hence
a greater variety of problems, objective functions and con-
straints can be considered [40].

In this paper we address the more general problem of
seeking a characterization of the optimal global policy in
a multiclass traffic setting, but in turn we restrict ourselves
to a simpler network topology—which fits a cellular sce-
nario—than in all the aforementioned studies of this kind
[38–40]: all traffic classes have a single feasible route into
which they are allocated or otherwise blocked, and there is
a single constraining resource, i.e., the time-slotted wire-
less channel. We employ the same optimization approach
as in [40] based on an MDP-LP formulation.

The remainder of the paper is structured as follows:
Section 2 describes the model of the system and the opti-
mization problem is formally stated. In Section 3 we pres-
ent the characterization of the optimal policy and
introduce several suboptimal policies. Numerical experi-
ments illustrating the contents of this section and explor-
ing scenarios of practical interest are shown in Section 4.
Concluding remarks are given in Section 5.
2. Model description and problem formulation

We model traffic at the flow level and ignore interac-
tions at the packet level (scheduling, buffer management,
TCP congestion control,. . .). The flow content is then
viewed as a fluid which is transmitted as a continuous
stream with rate changes occurring only at flow arrivals
and departures. This is a widely used traffic model in the
literature (see for instance [8] and its references). We focus
on a single base station with a downlink channel allocated
to data users. We consider that the downlink resources are
time-shared among active users, i.e., flows. Transmission is
done in a one-by-one fashion using time slots with dura-
tion much shorter than flow duration or flow inter-arrival
times so that the validity of the flow level abstraction is
maintained [12,17].

Flows are classified into K different classes. Class-i flows
arrive as a Poisson process with rate ki, their mean flow
size (expressed in bits) is 1=li and require a minimum
bit rate ui. Let Ci denote the feasible bit rate for class-i
flows, i.e., the bit rate that is achieved during a slot as-
signed to one of such flows. Moreover, let us introduce
qi ¼ ki=ðCiliÞ, q ¼

PK
i¼1qi and k ¼

PK
i¼1ki. Classes can be

defined by the feasible rates—which correspond to differ-
ent locations within the cell [12,42]—flow types—having
different mean flow sizes or minimum rate require-
ments—or both.

Let x ¼ ðx1; . . . ; xKÞ denote the system state, where xi is
the number of active flows of the ith class. The BWA–AC
policy is described by /iðxÞ and piðxÞ: when the system is
at state x arriving class-i flows are accepted with probabil-
ity piðxÞ and the ensemble of class-i flows is served with bit
rate /iðxÞ ¼ CisiðxÞ, i.e., a fraction siðxÞ of time-slots is as-
signed to class i; note that

XK

i¼1

siðxÞ ¼ 1: ð1Þ

Within a class, bandwidth is fairly shared among the flows.
The bit rate seen by a class-i flow is /iðxÞ=xi (if xi > 0).

Subject to the minimum bit rate per flow requirements
/iðxÞP xiui and the total capacity constraint of Eq. (1), it is
easily seen that the set of feasible states is

S :¼ x :
XK

i¼1

xi

bi
6 1

( )
;

where bi ¼ Ci=ui.
Denote by pðxÞ the stationary state probabilities and by

Pb the aggregate blocking probability. We want to find the
insensitive BWA–AC policy that minimizes Pb while fulfill-
ing the minimum rate requirements. More formally the
problem can be stated as:

Find: /iðxÞ and piðxÞ for i ¼ 1; . . . ;K and x 2 S that
Minimize: Pb

Subject to:
1. insensitivity with respect to the service time

distribution,
2. minimum rate requirements: /iðxÞP xiui, 8i.
We formulate the optimization problem above as an
MDP-LP. The state of the MDP consists of the system state
x, the admission decision d vector, and the bandwidth allo-
cation b variable. The admission vector d ¼ ðd1; . . . ; dKÞ 2
f0;1gK codes which traffic classes will have their newly
arriving flows accepted: if di ¼ 1 new class-i flows are ac-
cepted, and rejected otherwise. The bandwidth allocation
variable codes to which class the transmission capacity is
allocated: b ¼ i means that transmission capacity is allo-
cated to class i. Let pðx;d; bÞ denote the MDP state proba-
bility, in other words, the probability that the system is
at state x, accepts only those new flows belonging to clas-
ses in the set fi : di ¼ 1g, and the transmission capacity is
allocated to ongoing class-b flows.

The system state probabilities pðxÞ, blocking probability
Pb and policy parameters /iðxÞ and piðxÞ can be expressed
in terms of pðx;d; bÞ as

pðxÞ ¼
X

d2f0;1gK

XK

b¼1

pðx;d; bÞ;

Pb ¼
XK

i¼1

ki

k

X
d:di¼0

X
x2S

XK

b¼1

pðx;d; bÞ

0
@

1
A;

siðxÞ ¼
P

dpðx;d; iÞP
d

P
bpðx;d; bÞ

; ð2Þ

piðxÞ ¼
P

d:di¼1

P
bpðx;d; bÞP

d

P
bpðx;d; bÞ

: ð3Þ

The LP problem can now be written as follows:
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min
pðx;d;bÞ

X
i

ki

k

X
d:di¼0

X
x

X
b

pðx;d; bÞ

0
@

1
A; ð4Þ

s:t: pðx;d; bÞP 0

8x 2 S; d 2 f0;1gK
; b ¼ 1; . . . ;K; ð5ÞX

x

X
d

X
b

pðx;d; bÞ ¼ 1; ð6Þ

bi

X
d

pðx;d; iÞP xi

X
d

X
b

pðx;d; bÞ

8x 2 S; i ¼ 1; . . . ;K; ð7Þ
qi

X
d:di¼1

X
b

pðx� ei;d; bÞ ¼
X

d

pðx;d; iÞ

8i ¼ 1; . . . ;K; x 2 S : xi > 0; ð8Þ

where ei is the vector with a 1 in the ith position and 0’s
elsewhere.

Eqs. (5) and (6) refer to probabilistic nature of pðx;d; bÞ,
Eq. (7) represents the minimum rate requirement and Eq.
(8) is the detailed balance condition. In the ordinary LP for-
mulation of MDP theory, global balance conditions appear
as linear constraints on the decision variables. In order to
retain insensitivity, we impose stricter detailed balance
conditions as constraints [40], which is equivalent to the
balance condition [40,7].

wiðx� ejÞ
wiðxÞ

¼
wjðx� eiÞ

wjðxÞ
i; j ¼ 1; . . . ;K; x 2 S : xi; xj > 0;

where

wiðxÞ ¼ qi
piðx� eiÞ

siðxÞ
: ð9Þ

Note that the radio channel capacity constraint is implic-
itly included in the definition of pðx;d; bÞ. From Eq. (2) it
readily follows that

PK
i¼1siðxÞ ¼ 1, actually it also holds

for x ¼ ð0; . . . ;0Þ, although it has no physical sense.

3. Policy characterization

For a given configuration, the LP formulated in the pre-
vious section can be numerically solved to obtain the val-
ues of pðx;d; bÞ and by applying Eqs. (2), and (3), the
BWA–AC parameters are obtained.

Our goal is to find a characterization for the optimal
insensitive joint BWA–AC policy. In our quest we followed
an inductive and rather experimental process: from the
observation of particular solutions in rather simple scenar-
ios we extracted and generalized the underlying character-
istics of the optimal policy, which have been subsequently
tested against a variety of more complex settings. In this
section we describe the general form of the optimal insen-
sitive joint BWA–AC policy. Since in some instances the
general form may turn out to be excessively complicated
for practical purposes, we also describe a simpler subopti-
mal form.

Denote by q̂ ¼ ðq̂1; . . . ; q̂KÞ ¼ q�1q the traffic share
across classes. Let us denote by letter x with a subscript
a BWA–AC policy, i.e., a set of values for fsiðxÞ; piðxÞ :

x 2 S; i ¼ 1; . . . ;Kg. Let xðqÞ represent the optimal policy
as a function of the system load q. It has been found that,
for a given traffic share q̂, there exists a finite number of
thresholds for q

0 ¼ qð0Þ < qð1Þ < qð1Þ < � � � < qðmÞ ¼ 1;

such that xðqÞ ¼ xj for q 2 ½qðj�1Þ;qðjÞ�. Therefore, xðqÞ
(and thus siðxÞ and piðxÞ) is a piecewise constant function
of q. Moreover, as it will be seen below, the policy settings
xj do not depend on the load conditions (qi), they only de-
pend on the values of Ci and ui. On the contrary the load
thresholds qðjÞ do depend on the load conditions. In Section
3.1 we precisely specify the form of x1 and in Section 3.2
we describe the transformations that x1 undergoes as q
increases giving rise to x2; . . . ;xm.

On the other hand, if the policy specification is available
then the values of wiðxÞ can be easily computed (see Eq.
(9)) and from these the system state probabilities easily
follow as:

pðxÞ ¼ pð0Þwi1
ðei1 Þwi2

ðei1 þ ei2 Þ . . . win ðxÞ; ð10Þ

where 0 ¼ ð0; . . . ;0Þ, n ¼
PK

i¼1xi is the number of flows in
the state x, and

0; ei1 ; ei1 þ ei2 ; . . . ; ei1 þ � � � þ ein ¼ x
� �

;

is any direct path from state 0 to state x. Note that the sim-
ple product-form above for the system state probabilities
is another consequence of the detailed balance condition.
The blocking probability can be then computed by

Pb ¼
XK

i¼1

ki

k

X
x2S
ð1� piðxÞÞpðxÞ

 !
:

In principle having the piecewise characterization of xðqÞ
does not save having to solve the LP since the load thresh-
olds qðjÞ remain to be known, but it can be circumvented
and the exact policy to apply can be determined as

xðqÞ ¼ arg min
xj

Pbðxj;qÞ: ð11Þ

This approach can be especially convenient if working with
suboptimal policies (see Section 3.3 below).

3.1. The first policy x1

For a sufficiently low load the optimal policy is x1, i.e.,
xðqÞ ¼ x1 if 0 6 q < qð1Þ. Here we describe the observed
principles that characterize x1 and by applying those prin-
ciples we obtain a method for computing the policy
parameters.

Throughout this section we assume, without loss of
generality, that C1 P C2 P � � �P CK . Define jðxÞ ¼maxfi :

xi > 0g.
At any state x, the observed principles can be stated as:

(1) The constraining resource (i.e., transmission time) is
shared equally among flows unless this allocation
fails to satisfy some class’ rate requirement. In the
latter case the throttled classes are allocated their
minimum required rate (xiui) and the remaining
capacity is equally shared among the flows of non-
throttled classes. Hence for x 2 S, siðxÞ can be com-
puted for classes in descending order as follows:
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sKðxÞ ¼
xK

min
PK

i¼1xi;bK

� � ;

siðxÞ ¼max
xi

bi
;

xiPi
j¼1xj

1�
XK

j¼iþ1

sjðxÞ
 ! !

:

(2) Let i be a class such that all classes with lower feasi-
ble rates have no active flows, then, if accepting one
more flow of this class leads to a feasible state, new
flows are accepted with probability 1. In a more for-
mal manner, for i P jðxÞ if xþ ei 2 S then piðxÞ ¼ 1.
Obviously, whatever the traffic class i, if xþ ei R S,
piðxÞ ¼ 0.

The first principle precisely specifies the BWA whereas
the second one gives the AC probabilities only in some
cases. Those cases not covered can be worked out by apply-
ing the fact that, since the system satisfies the detailed bal-
ance equations, it is reversible and, in particular, satisfies
Kolmogorov’s criterion (see, for instance, [43, Chapter
10]). The method for doing so is detailed in what follows.

Throughout all discussion we assume that x; xþ ei 2 S
and i < jðxÞ, otherwise the value of piðxÞ is already known:
piðxÞ ¼ 0 if xþ ei R S, and piðxÞ ¼ 1 if xþ ei 2 S but
i P jðxÞ.

Define niðxÞ ¼ wiðxþ eiÞ=qi ¼ piðxÞ=siðxþ eiÞ and by
applying Kolmogorov’s criterion to the cycle

x� xjðxÞejðxÞ þ ei  � � �  x� ejðxÞ þ ei  xþ ei

# "
x� xjðxÞejðxÞ ! � � � ! x� ejðxÞ ! x;

we obtain

niðxÞ ¼ niðx� xjðxÞejðxÞÞ
YxjðxÞ

j¼1

njðxÞ x� jejðxÞ þ ei
� �

njðxÞ x� jejðxÞ
� � : ð12Þ

Since

njðxÞðxÞ ¼
1

sjðxÞðxþ ejðxÞÞ
¼ 1

max xjðxÞþ1
bjðxÞ

;
xjðxÞþ1

1þ
PK

m¼1
xm

� 	

¼
min bjðxÞ;1þ

PjðxÞ
m¼1xm

� �
xjðxÞ þ 1

:

Eq. (12) becomes

niðxÞ ¼ niðx� xjðxÞejðxÞÞ
min bjðxÞ;1þ

PjðxÞ
m¼1xm

� �
min bjðxÞ;1þ

PjðxÞ�1
m¼1 xm

� � ; ð13Þ

and by applying Eq. (13) recursively it follows that

niðxÞ ¼
min bi;1þ

Pi
m¼1xm

� �
xi þ 1

�
YjðxÞ

j¼iþ1

min bj;1þ
Pj

m¼1xm

� �
min bj;1þ

Pj�1
m¼1xm

� � : ð14Þ

Finally, piðxÞ can be computed as piðxÞ ¼ siðxþ eiÞniðxÞ.
3.2. Policy evolution

The first policy x1 can be considered, in a way, biased
towards less-favored traffic classes in terms of feasible
rate, which makes sense given the low load situation. As
load increases, however, situation changes and optimal
policy orientation shifts towards efficiency, limiting the ac-
cess to the system of the more resource consuming traffic
classes. More precisely, we say that class i consumes more
resources than class j if liCi < ljCj. In other words, re-
source consumption of a class is measured as the flow
mean sojourn time in the system considering there are
no other active flows. Throughout this section it is as-
sumed without loss of generality that l1C1 P l2C2 P
� � �P lK CK , i.e., traffic classes are sorted in ascending order
according to resource consumption. It has been found that
starting with x1, a series of transformations Ti, which
penalize the most resource consuming classes and favor
the least resource consuming ones, are successively ap-
plied as load increases

x1!
T1 x2!

T2
. . . !Tm�1 xm:

The last policy xm is at the opposite side of x1, i.e., all re-
sources are reserved for class 1, which is the least resource
consuming class:

piðxÞ ¼
1 if i ¼ 1 and xþ e1 2 S
0 otherwise



;

siðxÞ ¼
1 if i ¼ 1 and x 2 S
0 otherwise



i ¼ 1; . . . ;K:

Next we describe the type of policy transformations Ti. Be-
fore doing so we need to introduce some additional
notation.

Let us define

R :¼ fx ¼ ð0; x2; . . . ; xKÞ : x 2 Sg;

and introduce the order relation � defined as follows: we
say that x � y if xj > yj and xi ¼ yi for i ¼ jþ 1; . . . ;K . Now
consider that y1; y2; � � � ; yjRj is a sorted list of all the ele-
ments in R, i.e.

y1 � y2 � � � � � yjRj:

Finally, for each yi we define the set

Di :¼ fx ¼ x1e1 þ yi; x 2 Sg:

Let us start with the policy x1. The set of feasible states for
x1 is S1 ¼ S. The transformation T1 will affect one or more
states in D1 in one of the following ways:

A: The bandwidth allocation to class K is set to its min-
imum, i.e., sKðxÞ ¼ bK xK , and the released capacity is
shared by the remaining classes,

B: at some states in D1 the admission probability of the
least resource consuming class is set to 1 (if all the
admission probabilities in D1 of the least resource
consuming class are already 1, the second least
resource consuming class is considered and so on),

C: states in D1 are made unfeasible by rejecting those
flow arrivals that would lead the system to a state
in D1, i.e., if xþ eK 2 D1 then pKðxÞ ¼ 0.
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Note that since the detailed balanced condition has to
be satisfied, changes applied to a state may also affect
other neighboring states, which might be outside D1.

Before the type-C transformation is applied, none or sev-
eral transformations of types A or B can be applied.
Obviously after the type-C transformation no more trans-
formations can target states in D1 since these are not feasi-
ble anymore. After the type-C transformation, the set of
feasible states becomes S2 ¼ S1 n D1, then none or several
type-A,B transformations are applied to states in D2 fol-
lowed by the type-C transformation which clips the feasible
state space to S3 ¼ S2 n D2; . . . This process is repeated until
the feasible state space becomes SM :¼ fðx1;0; . . . ;0Þ :

x1 6 b1g, which corresponds to the last policy xm. Note that
after some type-C transformations (more specifically after
bbKc of them) no class-K flows are let into the system and
class (K � 1) will then play the role of the most resource
consuming class. Again, when class (K � 1) has been com-
pletely removed it will be substituted by class (K � 2), and
so forth until only class 1 is let into the system.
3.3. Suboptimal policies

The description of policy transformations given in previ-
ous section is not sufficient to obtain xjP2 from x1. That will
require, at least, knowing how many and in which order
type-A,B transformations occur between two type-C trans-
formations. Unfortunately, in our experiments we could
not observe any general and simple rule for the occurrence
of transformations of types A and B. Considering the special
case of equal minimum bit rates did not lead to any progress
on this direction. Besides, even if we were able to determine
the exact sequence of transformations the load values at
which transformations occur ðqðjÞÞ will remain unknown.
As mentioned above, not knowing the thresholds qðjÞ can
be circumvented by the approach of Eq. (11) but this re-
quires computing Pb for each policy xj. Observe that if the
system state probabilities have been computed under policy
xj and Tj is of type C, the system state probabilities under
policy xjþ1 can be recomputed by simply renormalizing.

Motivated by the aforementioned reasons we propose a
set of suboptimal policies which are defined as follows:
x̂1 � x1 and x̂j � x1ðrestricted to SjÞ for j ¼ 2; . . . ;M,
which is equivalent to say x̂1 � x1 and then only the
type-C transformations are applied. By definition
x̂1 ¼ x1, and also x̂M ¼ xm but in general x̂j is not neces-
sarily included in fx1; . . . ;xmg since, as noted previously, a
transformation of type B or C may also affect states outside
its target set of states Dl. For a given value of q the subop-
timal policy can be obtained using the approach of Eq. (11),
x̂ðqÞ ¼ arg minx̂j

Pbðx̂j;qÞ.
A numerical evaluation example showing the good per-

formance achieved by the suboptimal policies presented in
this Section is given in Section 4.
3.4. Restriction to a fair sharing state space

In our policy optimization problem formulated as a lin-
ear program in Eqs. (4)–(6) the optimization is performed
over a state space S, which is the widest possible: for states
x lying outside S no bandwidth allocation satisfying the
minimum rate requirements is possible; for states inside
S the minimum rate requirements are enforced through
the linear constraint Eq. (7). It turns out that if the system
load is sufficiently low (0 < q < qð1Þ, i.e., x1 is optimal) the
optimal policy shares the time in a fair fashion

siðxÞ ¼ xiPK

j¼1
xj

 !
whenever it is possible, i.e., if the guaran-

teed minimum bit rates are satisfied: CisiðxÞP uixi; 8i. De-
note by SFS the set of those states, which is formally defined
below. Moreover, new flow arrivals taking the system to a
state where the fair sharing is possible are accepted with
probability 1. These evidences suggest that if the optimiza-
tion is constrained to SFS the resulting policy may have a
simpler form than in the general case. Of course, that sim-
plicity will come at the price of poorer performance.

In this section we provide a characterization of the opti-
mal policy over the restricted set SFS and in Section 4 we
show a numerical evaluation comparing its performance
to that of the optimal policy (over S) and the suboptimal
policy presented in 3.3.

Denote by AðxÞ :¼ fi : xi > 0g the set of classes with ac-
tive flows at state x, then

SFS :¼ x :
XK

i¼1

xi 6 min
j2AðxÞ

bj

( )
#S:

As expected the first policy xFS
1 has a simple form

siðxÞ ¼
xiPK
j¼1 xj

; x 2 SFS n 0; i ¼ 1; . . . ;K

piðxÞ ¼
1 if xþ ei 2 SFS

0 otherwise



; x 2 SFS; i ¼ 1; . . . ;K:

The policy evolution

xFS
1 !

T1 xFS
2 !

T2 � � � !Tn�1 xFS
n ;

proceeds in much the same way as before with the differ-
ence that now type-B transitions are not applicable. Note
that xm ¼ xFS

n . Even thought there are no type-B transi-
tions, building the sequence of policies xFS

2 ; . . . ;xFS
n by suc-

cessive transformations of xFS
1 can still be exceedingly

complex. Therefore we study the suboptimal approach in
this case too by applying only type-C transformations.
3.5. On the optimality region of x1

Here we obtain, under some assumptions, an analytical
expression that characterizes the optimality region of x1

(½0;qð1Þ�) and provides some insight into it.
As before, we assume without any loss of generality

that l1C1 P l2C2 P � � �P lK CK . Moreover, for the follow-
ing we need to assume that D1 ¼ fxb ¼ ð0; . . . ;0; bbKcÞg,
which implies that the first policy transformation T1 will
consist of removing state xb from S. This assumption will
be met iff 8i < K; xb þ ei R S, which is equivalent to

1
bi
> 1� bbKc

bK
i ¼ 1; . . . ;K � 1: ð15Þ

A sufficient condition for Eq. (15) is bK 2 N.



3264 V. Pla et al. / Computer Networks 52 (2008) 3258–3272
Under the assumption above we can write

Pbðx1;qÞ ¼
PK

i¼1ki

k
px1 ðxbÞ þ B1 ¼ px1 ðxbÞ þ B1;

Pbðx2;qÞ ¼
kK

k
px2 ðxb � eKÞ þ B2

¼ 1
1� px1 ðxbÞ

kK

k
px1 ðxbÞ

qK
þ B1

� 	
;

where B1 is the contribution to Pb, under policy x1, of all
states except xb; and B2 is the contribution to Pb, under pol-
icy x2, of all states except xb and arrivals of type K in state
xb � eK . Since Pbðx1;qÞ 6 Pbðx2;qÞ if q 6 qð1Þ it follows
that q lies in the optimality region of x1 iff

k
CKlK

ð1� Pbðx1;qÞÞ 6 1; ð16Þ

where k can be expressed as k ¼ q
PK

i¼1liCiq̂i.
A possible interpretation of Eq. (16) is that if, for a given

q, the total admitted rate under policy x1 was offered to a
server with capacity equal to the most recourse consuming
traffic class, and that such system is stable, then x1 is
optimal.

4. Numerical examples

In this section some numerical experiments are pre-
sented to illustrate the description of previous section
and its potential applicability to practical scenarios. First,
a rather simple configuration is studied with the purpose
of exemplify the appearance of optimal and suboptimal
policies, their evolution when load increases and the per-
formance comparison among them. Next, a set of more
realistic, albeit more complex, configurations is studied.

4.1. Basic configuration

Let ðC1;C2Þ¼ ð5;3Þ; ðu1;u2Þ¼ ð1=2;1=2Þ; ðl1;l2Þ¼ ð1;1Þ;
q̂¼ð2=5;3=5Þ.

4.1.1. First policy
The first policy x1, which is obtained as described in

Section 3.1, is given by

s1ði; jÞ½ �ij ¼

0 0 0 0 0 0

1 1=2 1=3 1=4 1=5 1=6 �
1 2=3 1=2 2=5 1=3 � �
1 3=4 3=5 1=2 1=3 � �
1 4=5 2=3 1=2 � � �
1 5=6 2=3 1=2 � � �
1 5=6 2=3 � � � �
1 5=6 � � � � �
1 5=6 � � � � �
1 � � � � � �
1 � � � � � �

2
66666666666666666666666664

3
77777777777777777777777775
s2ði; jÞ½ �ij ¼

1 1 1 1 1 1

0 1=2 2=3 3=4 4=5 5=6 �
0 1=3 1=2 3=5 2=3 � �
0 1=4 2=5 1=2 2=3 � �
0 1=5 1=3 1=2 � � �
0 1=6 1=3 1=2 � � �
0 1=6 1=3 � � � �
0 1=6 � � � � �
0 1=6 � � � � �
0 � � � � � �
0 � � � � � �

2
6666666666666666666664

3
7777777777777777777775

p1ði; jÞ½ �ij ¼

1 1 1 1 1 1 0
1 1 1 1 1 1 �
1 1 1 1 2=3 � �
1 1 1 3=4 0 � �
1 1 4=5 3=5 � � �
1 5=6 2=3 0 � � �
1 5=6 0 � � � �
1 5=6 � � � � �
1 0 � � � � �
1 � � � � � �
0 � � � � � �

2
6666666666666666666664

3
7777777777777777777775

p2ði; jÞ½ �ij ¼

1 1 1 1 1 1 0

1 1 1 1 1 0 �
1 1 1 1 1 � �
1 1 1 1 0 � �
1 1 1 1 � � �
1 1 1 0 � � �
1 1 0 � � � �
1 1 � � � � �
1 0 � � � � �
1 � � � � � �
0 � � � � � �

2
6666666666666666666664

3
7777777777777777777775

:

4.1.2. Policy evolution
Figs. 1–6 show the evolution of the policy parameters as

the load increases. Fig. 7a depicts the blocking probability
and a ‘‘summary” of the policy evolution. For each value of
x2 the admission probabilities for class 2, p2ðx1; x2Þ, have
been averaged over those values of x1 such that
ðx1; x2 þ 1Þ 2 S, i.e., p2ðx1; x2Þ > 0 in x1. The resulting
curves show the relative position (loadwise) of policy
changes affecting a ‘‘row” of states (x2 constant), and in
particular values of q at which such rows are removed
from the feasible states.

Fig. 7b shows the same type of plot as Fig. 7a but now
q̂ ¼ ð1=3;2=3Þ has been varied. From the shape of the
curves we observe that, as expected, varying q̂ changes
the values qðjÞ but not the set of optimal policies xj.

In order to see the effect of modifying the resource con-
sumption ordering we set l2 ¼ 2. Now C1 ¼ 5 > 3 ¼ C2 but
l1C1 ¼ 5 < 6 ¼ l2C2, so the optimal policy evolves limit-
ing the access of class-1 traffic as shown in Fig. 8.



0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

p 2

0.7 0.75 0.8 0.85 0.9 0.95
0

0.2

0.4

0.6

0.8

1

τ 2

ρ

Fig. 1. p2ð0;4Þ; s2ð0;5Þ.
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4.1.3. Optimal policy in SFS

The first policy xFS
1 is given by

s1ði; jÞ½ �ij ¼

0 0 0 0 0 0

1 1=2 1=3 1=4 1=5 1=6 �

1 2=3 1=2 2=5 1=3 � �

1 3=4 3=5 1=2 � � �

1 4=5 2=3 � � � �

1 5=6 � � � � �

1 � � � � � �

1 � � � � � �

1 � � � � � �

1 � � � � � �

1 � � � � � �

2
6666666666666666666666666664

3
7777777777777777777777777775

s2ði; jÞ½ �ij ¼

1 1 1 1 1 1

0 1=2 2=3 3=4 4=5 5=6 �

0 1=3 1=2 3=5 2=3 � �

0 1=4 2=5 1=2 � � �

0 1=5 1=3 � � � �

0 1=6 � � � � �

0 � � � � � �

0 � � � � � �

0 � � � � � �

0 � � � � � �

0 � � � � � �

2
6666666666666666666666666664

3
7777777777777777777777777775
p1ði; jÞ½ �ij ¼

1 1 1 1 1 1 0

1 1 1 1 1 0 �

1 1 1 1 0 � �

1 1 1 0 � � �

1 1 0 � � � �

1 0 � � � � �

1 � � � � � �

1 � � � � � �

1 � � � � � �

1 � � � � � �

0 � � � � � �

2
6666666666666666666666666664

3
7777777777777777777777777775

p2ði; jÞ½ �ij ¼

1 1 1 1 1 1 0

1 1 1 1 1 0 �

1 1 1 1 0 � �

1 1 1 0 � � �

1 1 0 � � � �

1 0 � � � � �

0 � � � � � �

0 � � � � � �

0 � � � � � �

0 � � � � � �

0 � � � � � �

2
6666666666666666666666666664

3
7777777777777777777777777775

:

Fig. 9 shows the policy evolution as load increases. Observe
that the curves corresponding to p1ð�; �Þ Fig. 9a shows a
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simpler behavior (p1ð�; �Þ is either 0 or 1) than in the general
case, which is due to the fact that there are no type-B pol-
icy transformations.
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Fig. 3. p1ðx1;4Þ; p2ðx1;3Þ; s1ðx1;4Þ; s2ðx1;
4.1.4. Comparison of policies
The curves in Fig. 10 represent the relative value of Pb

for the different policies taking the optimal insensitive pol-
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icy as the reference. The first policies (x1 and xFS
1 ) show

important degradations as the load moves away from their
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Fig. 5. p1ðx1;2Þ; p2ðx1;1Þ; s1ðx1;2Þ; s2ðx1;
optimality regions so it does not seem advisable to keep
using x1 far beyond qð1Þ. The optimal and suboptimal pol-
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icies in SFS (xFS, x̂FS) show a poor performance except for
considerably high loads, where all policies tend to con-
verge and the actual value of Pb is probably too high for
such loads being considered a practical point of operation.
Despite having little interest due to its poor performance
compared to x, it is noticeable that the policy x̂FS is actu-
ally quite good as an approximation, i.e., it is only slightly
above the policy xFS. Likewise x̂ is an excellent approxi-
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Fig. 11. Relative performance of x̂: sensi
mation to x, which is the targeted optimum, so its relative
performance is also excellent; in this scenario the maxi-
mum deviation of Pbðx̂Þ from PbðxÞ is a 1.3%. We also plot-
ted a curve corresponding to the optimal (non-necessarily
insensitive) policy, which exhibits an important gain over
the more restrictive case of insensitive policies. For this
curve, though, the validity of the results is limited to the
case where the flow sizes are exponentially distributed.
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In order to compute Pb for the optimal policy the set of
equations corresponding to the detailed balanced condi-
tion in the linear program (see Eq. (8)) were substituted
by the global balance equations

X
i

Ifxþei2Sgki

X
d:di¼1

X
b

pðx;d; bÞ þ Ifx�ei2SgCili

X
d

pðx;d; iÞ

0
@

�ki

X
d:di¼1

X
b

pðx� ei;d; bÞ � Cili

X
d

pðxþ ei;d; iÞ

1
A

¼ 0 8x 2 S;

where If�g is the indicator function and by convention
pðx;d; bÞ ¼ 0 if x R S.

In Fig. 11 the sensitivity of the relative suboptimal per-
formance to different configuration parameters is ana-
lyzed. All curves but the last one (l2=l1 ¼ 0:5) display an
excellent performance of x̂. Further experiments in that
direction revealed that it is indeed the imbalance between
l1C1 and l2C2 that is the cause of the performance
degradation.

4.2. Practical scenarios

Now we consider a typical scenario where C1=C2 ¼ 10,
and the mean flow sizes and minimum bit rates are equal
for both flow classes, i.e., l1 ¼ l2 and u1 ¼ u2. We assume
an ideal propagation model with no obstacles so that the
cell areas corresponding to feasible rates C1 and C2 are
two concentric ring of external radius r1 and r2 respec-
tively. Moreover [12],

C1

C2
¼ r2

r1

� 	a

; ð17Þ

where a is the path loss exponent. We also assume that
users are homogeneously distributed over the service area.
Then the arrival rate in each area is proportional to its sur-
face. Therefore, the relative load of the outer ring with re-
spect to the inner one is given by

q2

q1
¼ k2

k1

C1

C2
¼ pðr2

2 � r2
1Þ

pr2
1

C1

C2
¼ C1

C2

C1

C2

� 	2=a

� 1

" #

¼ 10ð102=a � 1Þ:

In the above derivation we employed Eq. (17) which
implicitly assumes that the target Eb=N0 (energy per bit
to noise density ratio) was constant for all rates, resulting
in a linear feasible rate versus SINR (signal to interfer-
ence-plus-noise ratio) dependency. In real systems the tar-
get is not necessarily constant but nevertheless the load
distribution remains approximately the same if real values
are used [12].

Feasible rates for the outer rings are in the order of tens
to a few hundred of kbps (see Table 1 in [12]). We consider
that a typical value for the minimum bit rates would be, at
the very least, in the order of a few tens of kbps. Thus, the
maximum number of class-2 users that can be accepted
(b2 ¼ C2=u2) will typically take values below 10. Given a
value of b2, the value of b1 is computed as b1 ¼ 10b2 6 100.
All in all, the cardinality of the state space associated to
the scenario specified above is far too high for getting any
insight by inspecting the shape of the optimal policy. Fur-
thermore, the size of the LP problem also poses a daunting
problem in terms of accuracy. On the other hand, however,
the optimality region of the first policy, x1, turns out to be
wide enough to cover the region were the performance
takes values which are of interest from a practical
perspective.

By solving Eq. (16) (actually is it solved as an equality)
one obtains qð1Þ and Pbðqð1ÞÞ. Since PbðqÞ > Pbðqð1ÞÞ if
q > qð1Þ, a value of Pbðqð1ÞÞ high enough entails that, for
practical purposes, knowing x1 is enough. Fig. 12 plots
the value of Pbðqð1ÞÞ for the setting of our scenario. As
shown, in most cases the load region of interest is included
within the optimality region of x1. Only when both a and
b2 take the highest values, a load higher than qð1Þ would
yield still a performance that is acceptable.

5. Conclusions

We have considered the joint optimization of band-
width allocation and admission control for elastic users
competing for a downlink data channel in a cellular net-
work. Robustness and generality of the results were main
concerns in our research and so we focused on those
strategies that are insensitive to the detailed traffic char-
acteristics beyond mean values. The optimization prob-
lem has been formulated using a Markov decision
process-linear programming approach. A characterization
of the optimal policy has been obtained inductively. It
has been found that the optimal policy is a piecewise con-
stant function of the system load having only finitely
many pieces. Moreover, the policy settings for each piece
depend only on the minimum rate requirements and fea-
sible rates, in particular they are not dependent on the ar-
rival rates. These features confer additional robustness to
the solution.

We observed that in some cases, the complexity of
computing the optimal policy can render this policy
impractical except for low loads. As an alternative to
those cases we proposed a much simpler suboptimal
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policy that satisfies the same requirements and achieves a
good relative performance unless the values liCi (recipro-
cal of the mean sojourn time if a class-i user was alone in
the system) for the different user classes are significantly
imbalanced.

Finally, we have shown that in most scenarios of practi-
cal interest, outside the load region where the optimal pol-
icy can be efficiently computed the performance is too
poor for being practical.
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