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Abstract. We deploy a novel Reinforcement Learning optimization te-
chnique based on afterstates learning to determine the gain that can be
achieved by incorporating movement prediction information in the ses-
sion admission control process in mobile cellular networks. The novel te-
chnique is able to find better solutions and with less dispersion. The gain
is obtained by evaluating the performance of optimal policies achieved
with and without the predictive information, while taking into account
possible prediction errors. The prediction agent is able to determine the
handover instants both stochastically and deterministically. Numerical
results show significant performance gains when the predictive informa-
tion is used in the admission process, and that higher gains are obtained
when deterministic handover instants can be determined.

1 Introduction

Session Admission Control (SAC) is a key traffic management mechanism in
mobile cellular networks to provide QoS guarantees. Terminal mobility makes
it very difficult to guarantee that the resources available at the time of session
setup will be available in the cells visited during the session lifetime, unless a
SAC policy is exerted. The design of the SAC system must take into account
not only packet level issues (like delay, jitter or losses) but also session level
issues (like loss probabilities of both session setup and handover requests). This
paper explores the second type of issues from a novel optimization approach
that exploits the availability of movement prediction information. To the best
of our knowledge, applying optimization techniques to this type of problem has
not been sufficiently explored. The results provided define theoretical limits for
the gains that can be expected if handover prediction is used, which could not
be established by deploying heuristic SAC approaches.

In systems that do not have predictive information available, both heuristic
and optimization approaches have been proposed to improve the performance
of the SAC at the session level. Optimization approaches not using predictive
information have been studied in [1–4]. In systems that have predictive infor-
mation available, most of the proposed approaches to improve performance are
heuristic, see for example [5, 6] and references therein.
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Our work has been motivated in part by the study in [5]. Briefly, the authors
propose a sophisticated movement prediction system and a SAC scheme that
taking advantage of movement prediction information is able to improve system
performance. One of the novelties of the proposal is that the SAC scheme takes
into consideration not only incoming handovers to a cell but also the outgoing
ones. The authors justify it by arguing that considering only the incoming ones
would led to reserve more resources than required, given that during the time
elapsed since the incoming handover is predicted and resources are reserved
until it effectively occurs, outgoing handovers might have provided additional
free resources, making the reservation unnecessary.

In this paper we explore a novel Reinforcement Learning (RL) optimization
technique based on afterstates learning, which was suggested in [7]. RL is a
simulation based optimization technique in which an agent learns an optimal
policy by interacting with an environment which rewards the agent for each
executed action. We will show that when comparing afterstates learning with
conventional learning, the former is able to find better solutions (policies) and
with more precision (less dispersion).

We do a comparative performance evaluation of different scenarios that differ
on the type of predictive information that is provided to the SAC optimization
process, like only incoming, only outgoing and both types of handover predictions
together. We also evaluate the impact that predicting the future handover ins-
tants either stochastically or deterministically have on the system performance.

The rest of the paper is structured as follows. In Section 2 we describe the
models of the system and of the two prediction agents deployed. The optimiza-
tion approaches are presented in Section 3. A numerical evaluation comparing
the performance obtained when using different types of information and when
handovers instants are stochastically or deterministically predicted is provided
in Section 4. This later Section also includes a comparison of the performance of
the two reinforcement learning approaches, i.e. afterstates and conventional lear-
ning. Finally, a summary of the paper and some concluding remarks are given
in Section 5.

2 Model Description

We consider a single cell system and its neighborhood, where the cell has a total
of C resource units, being the physical meaning of a unit of resources dependent
on the specific technological implementation of the radio interface. Only one
service is offered but new and handover session arrivals are distinguished, making
a total of two arrival types.

For mathematical tractability we make the common assumptions. New and
handover sessions arrive according to a Poisson process with rates λn and λh

respectively. The duration of a session and the cell residence time are exponen-
tially distributed with rates µs and µr respectively, hence the resource holding
time in a cell is also exponentially distributed with rate µ = µs + µr. Without
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Fig. 1. IPA and classifier models.

loss of generality, we will assume that each session consumes one unit of resource
and that only one session is active per mobile terminal (MT).

We used a model of the prediction agent, given that the focus of our study
was not the design of it.

2.1 Prediction Agent for Incoming Handovers

An active MT entering the cell neighborhood is labeled by the prediction agent
for incoming handovers (IPA) as “probably producing a handover” (H) or the
opposite (NH), according to some of its characteristics (position, trajectory, ve-
locity, historic profile,...) and/or some other information (road map, hour of the
day,...). After an exponentially distributed time, the actual destiny of the MT
becomes definitive and either a handover into the cell occurs or not (for instance
because the session ends or the MT moves to another cell) as shown in Fig. 1(a).
The SAC system is aware of the number of MTs labeled as H at any time.

The model of the classifier is shown in Fig. 1(b) where the square (with a
surface equal to one) represents the population of active MTs to be classified.
The shaded area represents the fraction of MTs (SH) that will ultimately move
into the cell, while the white area represents the rest of active MTs. Notice
that part of the MTs that will move into the cell can finish their active sessions
before doing so. The classifier sets a threshold (represented by a vertical dashed
line) to discriminate between those MTs that will likely produce a handover
and those that will not. The fraction of MTs falling on the left side of the
threshold (ŜH) are labeled as H and those on the right side as NH. There exists
an uncertainty zone, of width U , which accounts for classification errors: the
white area on the left of the threshold (Ŝe

H) and the shaded area on the right

of the threshold (Ŝe
NH). The parameter x represents the relative position of the

classifier threshold within the uncertainty zone. Although for simplicity we use
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a linear model for the uncertainty zone it would be rather straightforward to
consider a different model.

As shown in Fig. 1(a), the model of the IPA is characterized by three pa-
rameters: the average sojourn time of the MT in the predicted stage µ−1

p , the
probability p of producing a handover if labeled as H and the probability q of
producing a handover if labeled as NH. Note that 1 − p and q model the false-
positive and non-detection probabilities respectively and in general q 6= 1 − p.

From Fig. 1(b) it follows that

1 − p =
Ŝe

H

ŜH

=
x2

2U(a + x)
; q =

Ŝe
NH

1 − ŜH

=
(U − x)2

2U(1 − a − x)

Parameters a and b can be expressed in terms of SH and U , being a = SH −U/2
and b = 1 − SH − U/2. Then

1 − p =
x2

(U(2SH − U + 2x))
; q =

(U − x)
2

(U(2 − 2SH + U − 2x))
(1)

Referring to Fig. 1(a), the value of the session rate entering the classifier λ
is chosen so that the system is in statistical equilibrium, i.e. the rate at which
handover sessions enter a cell (λin

h ) is equal to the rate at which handover sessions
exit the cell (λout

h ). It is clear that

λin
h = λSH

µp

µp + µs

; λout
h =

µr

µr + µs

[(1 − Pn)λn + (1 − Ph)λin
h ]

where Pn (Ph ) is the blocking probability of new (handover) requests.
Making λin

h = λout
h , substituting Ph by Ph = (µs/µr) · [Pft/(1−Pft)], where

Pft is the probability of forced termination of a successfully initiated session,
and after some algebra we get

λ = (1 − Pn)(1 − Pft)λn(µr/µs + µr/µp)(1/SH) (2)

2.2 Prediction Agent for Outgoing Handovers

The model of the prediction agent for outgoing handovers (OPA) is shown in
Fig. 2. The OPA labels active sessions in the cell as H if they will produce a
handover or as NH otherwise. The classification is performed for both handover
sessions that enter the cell and new sessions that initiate in the cell, and are
carried out by a classifier which model is the same as the one used in the IPA.
The time elapsed since the session is labeled until the actual destiny of the MT
becomes definitive is the cell residence time that, as defined, is exponentially
distributed with rate µr. The fraction of sessions that effectively execute an out-
going handover is given by SH = µr/(µs +µr). The OPA model is characterized
by only two parameters 1 − p and q, which meaning is the same as in the IPA
model. Note that 1 − p and q can be related to the classifier parameters by the
expressions in (1).
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Fig. 2. Basic operation of the OPA.

In an earlier version of the IPA we were providing the optimization process
only with state information of the neighboring cells but without any predictive
information. We obtained that the gain was not significant, possibly because the
information was not sufficiently specific. The authors in [8] reached the same
conclusion but using a genetic algorithm to find near-optimal policies. As it will
be described in Section 4, here we are considering a circular-shaped cell of radio
r and a holed-disk-shaped neighborhood with inner (outer) radio 1.0r (1.5r) and
providing the optimization process with predictive information of this sufficiently
close neighborhood. This produces a significant gain. For the design of the OPA
we were faced with the same dilemma but in this case we decided not to use
more specific information. Defining a holed-disk-shaped neighborhood with outer
(inner) radio r (< r) for the outgoing handovers and an exponentially distributed
sojourn time in it, would had open the possibility of having terminals that could
go in and out of this area, making the cell residence time not exponential. This
would had increased the complexity and made the models with the IPA and with
the OPA not comparable.

3 Optimizing the SAC Policy

We formulate the optimization problem as an infinite-horizon finite-state Markov
decision process under the average cost criterion, which is more appropriate
for the problem under study than other discounted cost approaches. When the
system starts at state x and follows policy π then the average expected cost
rate over time t, as t → ∞, is denoted by γπ(x) and defined as: γπ(x) =
limt→∞

1
t
E [wπ(x, t)], where wπ(x, t) is a random variable that expresses the

total cost incurred in the interval [0, t] . For the systems we are considering, it is
not difficult to see that for every deterministic stationary policy the embedded
Markov chain has a unichain transition probability matrix, and therefore the
average expected cost rate does not vary with the initial state [9]. We call it the
“cost” of the policy π, denote it by γπ and consider the problem of finding the
policy π∗ that minimizes γπ, which we name the optimal policy.

In our model the cost structure is chosen so that the average expected cost
represents a weighted sum of the loss rates, i.e. γπ = ωnPnλn + ωhPhλh, where
ωn (ωh) is the cost incurred when the loss of a new (handover) request occurs and
Pn (Ph ) is the loss probability of new (handover) requests. In general, ωn < ωh
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Fig. 3. State transition diagram.

since the loss of a handover request is less desirable than the loss of a new session
setup request.

Two optimization approaches have been explored: a dynamic programming
(DP) approach and an automatic learning approach based on the theory of
Reinforcement Learning [7]. DP gives an exact solution and allows to evaluate
the theoretical limits of incorporating handover prediction in the SAC system,
whereas RL tackles more efficiently the curse of dimensionality and has the im-
portant advantage of being a model-free method, i.e. transition probabilities and
average costs are not needed in advance. In both approaches handover sessions
have priority over new sessions and they are accepted as long as resources are
available.

3.1 Dynamic Programming

We apply DP to the scenario that only considers the incoming handovers, in
which case the system state space is S := {x = (i, j) : 0 ≤ i ≤ C; 0 ≤ j ≤ Cp},
where i is the number of active sessions in the cell, j is the number of MTs
labeled as H in the cell neighborhood and Cp is the maximum number of MT
that can be labeled as H at a given time. We use a large value for Cp so that it has
no practical impact in our results. At each state (i, j), i < C, the set of possible
actions is defined by A := {a : a = 0, 1}, being a = 0 the action that rejects
an incoming new session and a = 1 the action that accepts an incoming new
session. The system can be described as a continuous-time Markov chain which
state transition diagram is shown in Fig. 3, where λ′

h = qλ(1− ŜH)µp/(µp + µs)
denotes the average arrival rate of unpredicted handovers. It is converted to
a discrete time Markov chain (DTMC) by applying uniformization. It can be
shown that Γ = Cp(µp + µs) + C(µr + µs) + λ + λn is an uniform upper-bound
for the outgoing rate of all the states, being λ the input rate to the classifier.
If rxy(a) denotes the transition rate from state x to state y when action a is
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taken at state x, then the transition probabilities of the resulting DTMC are
given by pxy(a) = rxy(a)/Γ (y 6= x) and pxx(a) = 1−

∑

y∈S pxy(a). We define
the incurred cost rate at state x when action a is selected by c(x, a), which can
take any of the following values: 0 (i < C, a = 1), ωnλn (i < C, a = 0) or
ωnλn + ωh(λ′

h + jpµp) (i = C, a = 0).
If we denote by h(x) the relative cost rate of state x under policy π, then we

can write

h(x) = c(x, π(x)) − γπ +
∑

y

pxy(π(x))h(y) ∀x (3)

from which we can obtain the average cost and the relative costs h(x) up to an
undetermined constant. We arbitrarily set h(0, 0) = 0 and then solve the linear
system of equations (3) to obtain γπ and h(x), ∀x. Having obtained the average
and relative costs under policy π, an improved policy π′ can be calculated as

π′(x) = argmin
a=0,1

{

c(x, a) − γπ +
∑

y

pxy(a)h(y)
}

so that the following relation holds γπ′

≤ γπ. Moreover, if the equality holds
then π′ = π = π∗, where π∗ denotes the optimal policy, i.e. γπ∗

≤ γπ ∀π.
We repeat iteratively the solution of system (3) and the policy improvement

until we obtain a policy which does not change after improvement. This process is
called Policy Iteration [9, Section 8.6] and it leads to the average optimal policy
in a finite —and typically small— number of iterations. Note that although
the number of iterations is typically small each iteration entails solving a linear
system of the same size as the state space, and thus the overall computational
complexity can be considerably high.

3.2 Reinforcement Learning

We formulate the optimization problem as an infinite-horizon finite-state semi-
Markov decision process (SMDP) under the average cost criterion. Only arrival
events are relevant to the optimization process because no actions are taken at
session departures. Additionally, given that no decisions are taken for handover
arrivals (they are always accepted if enough free resources are available), then
the decision epochs correspond only to the time instants at which new session
arrivals occur. The state space for the scenario that only considers the incoming
handovers is the same as defined when deploying DP, i.e. S := {x = (x0, xin) :
x0 ≤ C; xin ≤ Cp}, where x0 and xin represent, respectively, the number of
active sessions in the cell and the number of sessions labeled as H in the cell
neighborhood. The state space for the scenario that only considers the outgoing
handovers is defined as S := {x = (x0, xout) : xout ≤ x0 ≤ C}, where xout

represents the number of sessions labeled as H in the cell. The state space for
the scenario that considers both the incoming and outgoing handovers is defined
as S := {x = (x0, xin, xout) : xout ≤ x0 ≤ C; xin ≤ Cp}. At each decision epoch
the system has to select an action from the set A := {a : a = 0, 1}, being a = 0
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Fig. 4. Reinforcement learning process.

the action that rejects an incoming new session and a = 1 the action that accepts
an incoming new session.

The cost structure is defined as follows. At any decision epoch, the cost
incurred by accepting a new session request is zero and by rejecting it is ωn.
Further accrual of cost occurs when the system has to reject handover requests
between two decision epochs, incurring a cost of ωh per rejection.

Intuitively, in systems as the one being considered, afterstates learning is
based on the idea that what is relevant in the learning process is the state
reached immediately after the action is taken. More specifically, all states at
decision epochs in which the immediate actions taken drive the system to the
same afterstate, would accumulate the same future cost if the same future actions
are taken. The difference between conventional learning and afterstates learning
is shown in Fig. 4.

In SMDPs actions occur at variable length time instants and therefore, state
transition dynamics is specified not only by the state where an action was taken,
but also by a parameter specifying the length of time since the action was taken.
The Bellman optimality recurrence equations for a SMDP under the average
cost criterion when learning is done at each decision epoch can be written as

h∗(x) = min
a∈Ax

{w(x, a) − γ∗τ(x, a) +
∑

y∈S

pxy(a) min
a′∈Ay

h∗(y, a′)}

where h∗(x, a) is the average expected relative cost of taking the optimal action a
in state x and then continuing indefinitely by choosing actions optimally, w(x, a)
is the average cost of taking action a in state x, τ(x, a) is the average sojourn
time in state x under action a (i.e. the average time between decision epochs)
and pxy(a) is the probability of moving from state x to state y under action
a = π(x).

We deploy a modified version of the SMART algorithm [10] which follows an
afterstates learning process using a temporal difference method (TD(0)). The
pseudo code of the proposed algorithm is shown in the box below. In systems
where the number of states can be large, RL based on afterstates learning tackles
more efficiently the curse of dimensionality.

SMART with afterstates

1: Initialize h(x),∀x ∈ S , arbitrarily (usually zeros)
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2: Initialize γ arbitrarily (usually zeros)

3: Initialize N(x) = 0, WT = 0 and TT = 0

4: Repeat forever:

We denote by a the action taken in the current state y, by y
′

reject

(y′

accept) the afterstate when the reject (accept) action is taken and

by ωreject the immediate cost when the request is rejected.

5: Take action a:

6: Exploration: random action

7: Greedy : action selected from

if
�
h(y′

reject) + ωreject

�
< h(y′

accept) then

a = reject

else

a = accept

8: α = 1/(1 + N(x′))

being α de learning rate, x
′ the previous afterstate and N(x′) the number of

times the afterstate x
′ has been updated:

9: h(x′)← (1− α)h(x′) + α
�
wc(x

′, y) + w(y, a) + h(y′)− γτ
�

N(x′)← N(x′) + 1

being wc(x
′, y) the accrued cost when the system evolves from x

′ to y, w(y, a)

the immediate cost of taking action a in state y and τ the time elapsed

between decision epochs m and m + 1 (see Fig. 4(b)).

10: if a is greedy :

11: WT ←WT + wc(x
′, y) + w(y, a)

12: TT ← TT + τ

13: γ ←WT /TT

14: x
′ ← y

′

4 Numerical Evaluation

When introducing prediction, we evaluated the performance gain by the ratio
γπ

wp/γπ
p , where γπ

p (γπ
wp) is the average expected cost rate of the optimal policy

in a system with (without) prediction. We assume a circular-shaped cell of radio
r and a holed-disk-shaped neighborhood with inner (outer) radio 1.0r (1.5r).

The values of the parameters that define the scenario are: C = 10 and Cp =
60, µr/µs = 1, µr/µp = 0.5, λn = 2, µ = µs+µr = 1, x = U/2, wn = 1, and wh =
20. When deploying the IPA, SH = 0.4. Note that in our numerical experiments
the values of the arrival rates are chosen to achieve realistic operating values
for Pn(≈ 10−2) and Pft(≈ 10−3). For such values, we approximate (2) as λ ≈
0.989λn(Nh + µr/µp)(1/SH).

For the RL simulations, the ratio of arrival rates of new sessions to the cell
neighborhood (ng) and to the cell (nc) is made equal to the ratio of their surfaces,
λng = 1.25λnc. The ratio of handover arrival rates to the cell neighborhood from
the outside of the system (ho) and from the cell (hc) is made equal to ratio
of their perimeters, λho = 1.5λhc. Using the flow equilibrium property, we can
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Fig. 5. Performance gain when using stochastic handover prediction.

write λhc = (1 − Pn)(1 − Pft)(µr/µs)λnc ≈ 0.989(µr/µs)λnc. With regard to
the RL algorithm, at the mth decision epoch an exploratory action is taken
with probability pm, which is decayed to zero by using the following rule pm =
p0/(1 + u), where u = m2/(ϕ + m). We used ϕ = 1.0 · 1012 and p0 = 0.1. The
exploration of the state space is a common RL technique used to avoid being
trapped at local minima.

4.1 Stochastic Prediction

The prediction agents described in Sections 2.1 and 2.2 predict the time instants
at which handovers will occur only stochastically and Fig. 5 shows the gain for
different values of the uncertainty U when deploying such agents. When using
RL, for each value of U we run 10 simulations with different seeds and display the
averages. As observed, using incoming handover prediction induces a gain and
that gain decreases as the prediction uncertainty (U) increases. From Fig. 5 it is
clear that the knowledge of the number of resources that will become available
is not relevant for the determination of optimum SAC policies, being even inde-
pendent of the degree of uncertainty. This counter-intuitive phenomenon could
be explained as follows.

Lemma 1 Let X and Y be two independent and exponentially distributed rv

with means 1/µx and 1/µy, and f(X,Y )(x, y) its joint pdf, where f(X,Y )(x, y) =

fX(x)fY (y). Then the pdf of X conditioned on X < Y , is given by

fX(x|X < Y ) =

∫

∞

x
f(X,Y )(x, y)dy

∫

∞

0

∫

∞

x
f(X,Y )(x, y)dydx

=
fX(x)

∫

∞

x
fY (y)dy

∫

∞

0

∫

∞

x
fX(x)fY (y)dydx

= (µx + µy)e−(µx+µy)x
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Now consider a perfect OPA, i.e. one with p = 1 and q = 0. Those sessions
tagged as H will release the resources because they leave the cell —since we
know this will happen before the session finishes— and hence, applying the
result set in Lemma 1, the holding time of resources is exponentially distributed
with mean 1/(µr + µs). Conversely, those sessions tagged as NH will release the
resources because their sessions finish —since we know this will happen before the
terminal leaves the cell— and hence the holding time of resources is exponentially
distributed with mean 1/(µr + µs). Note that as the holding time of resources
for H and NH sessions are identically distributed, having an imperfect OPA will
not make any difference. On the other hand, if no out prediction is considered,
an active session will release the resources because the session finishes or the
terminal leaves the cell, whichever happens first, and therefore the holding time
of resources is also exponentially distributed with mean 1/(µr + µs).

Therefore, if both the cell residence time and the session holding time are
exponentially distributed, knowing whether a session will produce an outgoing
handover or not does not provide, in theory, any helpful information to the SAC
process. Additionally, the performance of the SAC should not be affected by the
precision of the OPA.

4.2 Deterministic Prediction

In this section we evaluate the impact that more precise knowledge of the future
handover time instants have on performance. Intuitively, it seems obvious that
handovers taking place in a near future would be more relevant for the SAC
process than those occurring in an undetermined far future. More precisely, in
this is section both the IPA and OPA operate as before but the prediction
will be made available to the admission controller, at most, T time units in
advance the handover takes place. If the future handover is predicted less than
T time units ahead of its occurrence the prediction is made available to the
admission controller immediately, i.e. when the handover sessions enter the cell
neighborhood or the cell and when new sessions are initiated. In that sense, the
stochastic prediction can be seen as particular or limit case of the deterministic
one when T → ∞. A similar approach is used in [5], where authors predict the
incoming and outgoing handovers that will take place in a time window of fixed
size.

For the performance evaluation we use the scenarios, parameters and metho-
dology described in Section 4.1, but now two uncertainty values are considered.
In the first we set U = 0.2, which we consider it might be a practical value, while
in the second, as a reference, we set it to U = 0. Figure 6 shows the variation
of the gain for different values of T and U . As observed, there exists an opti-
mum value for T , which is close to the mean time between call arrivals (λ−1),
although it might depend on other system parameters as well. As T goes beyond
its optimum value, the gain decreases, probably because the temporal informa-
tion becomes less significant for the SAC decision process. As expected, when
T → ∞ the gain is identical to the one in the stochastic prediction case. When
T is lower than its optimum value the gain also decreases, probably because the
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Fig. 6. Performance gain when using deterministic handover prediction.

system has not enough time to react. When T = 0 the gain is null because there
is no prediction at all.

Figure 6 shows again that the information provided by the OPA is in general
not relevant for the optimization process, except for a small interval around its
optimal value, which is slightly above unity. For values of T close to its optimum,
the gain is higher when using incoming and outgoing prediction together than
when using only incoming handover prediction, and it is significantly higher than
when stochastic time prediction is used.

Finally it is worth noting that the main challenge in the design of efficient
bandwidth reservation techniques for mobile cellular networks is to balance two
conflicting requirements: reserving enough resources to achieve a low forced
termination probability and keeping the resource utilization high by not blo-
cking too many new setup requests. Figure 7, which shows the ratio of the
system resources utilization when not using prediction and when using predic-
tion (utilizationwp/utilizationp) for both stochastic and deterministic prediction,
justifies the efficiency of our optimization approach.

4.3 Comparison of Learning Techniques

In this section we evaluate the performance of the afterstates learning process.
Figure 8 and Figure 9 compares the mean, the confidence interval and the rela-
tive width of the confidence interval (the ratio of the width to the mean) when
deploying conventional learning and afterstates learning. As observed, the solu-
tions obtained when deploying afterstates learning are better (the gain γπ

wp/γπ
p is

higher) and more precise (the relative width of the confidence interval is smaller).
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Fig. 7. Utilization gain when using handover prediction.
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Fig. 8. Comparison of the confidence intervals of the gain when deploying input pre-

diction.

5 Conclusions

In this paper we evaluate the performance gain that can be expected when
the SAC optimization process is provided with information related to incoming,
outgoing and incoming and outgoing handovers together, in a mobile cellular ne-
twork scenario. The prediction information is provided by two types of prediction
agents that label active mobile terminals in the cell or its neighborhood which
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Fig. 9. Comparison of the confidence intervals of the gain when deploying input and

output prediction.

will probably execute a handover. The prediction agents predict the future time
instants at which handovers will occur either stochastically or deterministically.

The optimization problem is formulated as a Markov or semi-Markov de-
cision process and two solving methods are used: dynamic programming and
an afterstates based reinforcement learning approach. A general model of the
prediction agents has been considered and as such it cannot be used neither
to obtain results for specific systems nor to evaluate the added complexity of
deploying a particular prediction method in operational systems. Nevertheless,
the generality of the prediction model together with the optimization-based ap-
proach permit to obtain bounds for the gain of specific prediction schemes used
in conjunction with SAC.

For the system model deployed, numerical results show that the information
related to incoming handovers is more relevant than the one related to outgoing
handovers. Additional performance gains can be obtained when more specific
information is provided about the handover time instants, i.e. when their pre-
diction is deterministic instead of stochastic. The gain obtained has been higher
than 30% in the studied scenario even when the prediction uncertainty is 20%.

In a future work we will study the impact that a non-exponential resource hol-
ding time has on the performance of systems which deploy predictive information
in the SAC process. As shown, when the resource holding time is exponential,
deploying the OPA does not improve performance. We will also generalize the
operation of the deterministic prediction agents by considering values for T in-
dependent for the IPA and for the OPA. Another aspect that deserves a closer
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study is the identification of the parameters that affect the optimum value of T
and the study of its sensitivity.
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