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Abstract—This work explores approximate methods to solve
Markov decision processes for large systems through Policy iter-
ation.Two methods, one using an embedded discrete time Markov
chain and the other using time scale separation, are defined
and compared with the solution obtained using traditional Policy
iteration. First step solutions are found and compared for a radio
resource management problem with two radio access technologies
and two service types. The approaches proposed considerably
reduce the computational cost while closely approximate the
optimal solution. The solutions are extended by increasing the
number of steps of policy iteration and results show that it is
possible to reach the performance of the optimal policy when
several steps are required reducing the computational cost.

I. INTRODUCTION

Markov decision processes (MDPs) are widely used for
control problems where revenues depend on episodic actions.
Different solving methods are used, such as dynamic pro-
gramming or reinforcement learning. In problems where the
state space and the transition probabilities are well known,
dynamic programming is a reliable method which allows to
find the optimal solution for a given cost function. Dynamic
programming algorithms such as policy iteration and value
iteration are commonly used, where the former is able to find
the optimal solution in less iterations than the latter, although
some variations of value iteration can be done in order to
reduce the necessary number of iterations as shown in [1].
Different approximate methods have been proposed to reduce
the computation complexity such as state aggregation [2] or
linear approximations [3] applied to MDPs. However, these
methods neither produce solutions that are necessarily close
to the optimal, nor are efficient as it is stated in [4].

In policy iteration, the optimal policy is found by choosing
an initial random policy, evaluating its cost/reward through
policy evaluation and enhancing it through policy improve-
ment. This two-phase iteration is repeated until no further
improvement can be done, i.e. the optimal policy is found.
Although it is well known that policy iteration converges in
a few steps, when the dimensionality (size of the state space)
of the Markov process that models the system dynamics is
large, the computational cost to obtain the optimal policy is
also large.

This work has been supported by the Spanish Government under project
TIN2010-21378-C02-02. Diego Pacheco-Paramo was supported by the Span-
ish Ministry of Economy and Competitiveness under contract BES-2009-
013162.

In [5] a first policy iteration solution is proposed, where the
policy improvement phase is performed only once to obtain
a suboptimal solution. This method drastically reduces the
computational cost for large systems. In [6] a first iteration
policy solution is proposed for a system where the cost to find
a solution for an initial policy is low and it closely resembles
the optimal.

In this work we also make use of the first iteration policy
and compare its performance with the optimal solution for
a radio resource management problem where two types of
services and two radio access technologies are available [7].
The main objective of this work is the proposal and evaluation
of two different methods to perform policy evaluation to
obtain the first iteration policy. The first approach consists
in iterating over the embedded discrete time Markov chain,
which is found using uniformization [8]. The most important
contribution of this work is the second approach. This solution
is a variation of the typical time scale decomposition, since
it relates the steady state probabilities of the fluid regime
with the transitions of the quasi-stationary regime. To the
best of our knowledge this dependance has not been studied
before in the time scale decomposition context. Results for
both approaches are compared with the optimal solution, and
a considerable reduction of the computational cost is achieved,
while obtaining a good precission.

The paper is organized as follows. First we define the system
and the optimization problem. Then, we propose a solution
method using the embedded discrete time Markov chain. In
the next section we define the time scale separation approach
and apply it to the system. Then, we compare both solutions
and its use into the policy iteration context with the optimal
solutions. Finally, we conclude the work with remarks about
these results.

II. SYSTEM DESCRIPTION AND OPTIMIZATION PROBLEM

Let us define a system that supports voice (streaming) and
data (elastic) traffic. We assume that voice (data) call (session)
arrivals follow a Poisson process with rate λv(λd) and that
the service time for voice calls is exponentially distributed
with mean 1/µv . On the other hand, as data sessions generate
elastic traffic, their sojourn time will depend on the available
resources. The size of the flows generated by the data sessions
are exponentially distributed with mean σ (in bits). If BRd
is the data bit rate experienced for a given user, then the
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service time will be exponentially distributed with mean
1/µd = σ/BRd. Clearly, BRd might depend on the system
state as discussed later.

The system state is represented by the 4-tuple
s=(v1,v2,d1,d2), where v1 (d1) represents the voice (data)
calls (sessions) in TDMA, and v2 (d2) represents the voice
(data) calls (sessions) in WCDMA. Therefore, the 4-tuples
must fulfill the capacity conditions given by:

v1 · nc + d1 ≤ nc · C. (1)

v2 · V + d2 ·D ≤ ηul, (2)

where (1) and (2) refer to capacity conditions for TDMA
and WCDMA respectively, nc is the maximum number of
data sessions that can share one channel in TDMA, C is the

total number of channels in TDMA, V =
(
W/BRw,v
(Eb/N0)v

+ 1

)−1
,

D=
(
W/BRw,d
(Eb/N0)d

+ 1

)−1
, W is the chip rate, BRw,x is the bit

rate used for transmitting service x in WCDMA, (Eb/N0)x is
the bit energy to noise density required for service x, and ηul
is the uplink cell load factor. Three metrics are of our interest:
voice (PBv) and data (PBd) blocking probabilities, and the
total throughput. The voice (data) blocking probability refers
to the probability of being in those states where a new voice
(data) call (session) would be blocked. The total throughput
takes into account the different contributions of voice and data
sessions, and the fact that data sessions can share a channel
in TDMA which is reflected in the min (C − v1, d1) term of:

Th =
∑
s∈S

Π(s)
(
v1BRt,v + v2BRw,v

+ min(C − v1, d1)BRt,d + d2BRw,d
)
, (3)

where Π(s) is the steady state probability of being in state s
and BRx,y is the bit rate used for transmitting service y (voice
or data) in technology x (TDMA or WCDMA).

In the context of Markov decision processes (MDPs) a
policy assigns the action as to be performed on each possible
state s whenever a call arrives to the system. Therefore, the
system chooses an option from the action set A defined in
Table I according to the type of the arriving call (voice or
data) and the current state s. Vertical handoff (VH) , which is
the ability to change the access technology of an active call,
is used in actions 3 and 4. However, some conditions must be
fulfilled to perform these vertical handoffs. Action 3 can only
be performed when a voice call arrives to the system and there
is full capacity on WCDMA, where N is the number of data
sessions that have to be switched from WCDMA to TDMA
to allow the voice call to use a WCDMA channel. Therefore,
action 3 promotes that voice calls are served by WCDMA.
On the other hand, action 4 can only be performed when an
arriving data call forces channel sharing on TDMA. Therefore,
this type of VH is used to reduce data channel sharing.

TABLE I
SET OF ACTIONS A

as Description
0 Block call
1 Send call to TDMA
2 Send call to WCDMA
3 VH for N data sessions from WCDMA

to TDMA and the voice call is
sent to WCDMA.

4 VH for 1 voice call from TDMA
to WCDMA and the data call is
sent to TDMA.

The optimization problem consists on finding the optimal
policy Ψ∗ for the blocking function:

FBP = BPv · α+BPd · (1− α), (4)

which is the weighted sum of the voice (PBv) and data (PBd)
blocking probabilities through the value α, which is set as 0.5
unless otherwise stated. The cost function associated to the
objective function for each feasible state s is

c(s) = 1− (α · Fv(as) + (1− α) · Fd(as)), (5)

where Fx(as) =1 if as is 1,2,3 or 4, and 0 otherwise, being x
the service.

Following the policy iteration method, the optimal policy
Ψ∗ is found by choosing an initial random policy Ψini, eval-
uating its relative values through policy evaluation, improving
the actions through policy improvement, and repeating until
no further improvement is possible. In this work we are
interested in first iteration policies, that is, policy improvement
is performed only once. In the following sections two different
methods to perform policy evaluation will be defined: the first
uses iterations over the embedded discrete Markov chain and
the second uses time scale separation.

III. 1ST STEP POLICY ITERATION THROUGH THE
EMBEDDED DISCRETE TIME MARKOV CHAIN

In [7] the continuous time Markov chain (CTMC) is con-
structed according to the arrival and departure rates previ-
ously defined and MDPs are solved using policy iteration
for different scenarios through the LSQR algorithm [9] ,
commonly used for large and sparse matrices. However,
this method requires a large number of iterations and high
internal precision to converge, which greatly increases its
computational cost and thus reduces the scope of possible
implementations. In this section we propose a method that
partially alleviates the high computational cost by using the
first step solution of policy iteration and the properties of the
embedded discrete time Markov chain (eDTMC). The eDTMC
can be obtained by dividing each outgoing transition rate by
a factor γ which should be bigger than the largest aggregated
outgoing transition rate. Then, an loop must be defined to keep
the sum of transition probabilities equal to one. This method
is known as uniformization [8]. The main advantage of the
eDTMC is that the steady state probability distribution (SSPD)
can be easily found iteratively. Once the transition matrix T
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has been defined according to the initial policy Ψini, the SSPD
vector Π can be solved by iterating as follows:

Πi+1
ini = Πi

ini · T (Ψini), (6)

where Π0
ini is a vector of zeros with a 1 in its first position.

Two stopping criteria have been defined: The quadratic error
limit δ, |Πi+1

ini − Πi
ini|2< δ, or the maximum number of

iterations is reached, i = itmax. Having Πini, the mean cost
of the initial policy c̄(Ψini) is found using:

c̄(Ψini) = BPd · (1− α) +BPv · α. (7)

This is needed to iteratively obtain the relative values of the
initial policy ~r(Ψini), through Howard’s equation as:

~ri+1(Ψini) = ~c(Ψini)− c̄(Ψini)~e+ T (Ψini)~r
i(Ψini), (8)

where ~c(Ψini) is a column vector with the cost of being in each
state in S, ~e is a column vector of ones and ~r0(Ψini) is a zeros
vector of proper size. Two stopping criteria have been defined:
The quadratic error limit δ′, |~ri+1(Ψini)− ~ri(Ψini)|2< δ′, or
the maximum number of iterations is reached, i = it′max.

Once we have obtained the relative values of the initial
policy ~r(Ψini), it is straightforward to perform policy improve-
ment to obtain the actions an that define the first step policy
Ψfs using:

Ψfs(an) =

arg min
{
cn(an)− c̄(Ψini) +

∑
m tn,m(an)rm(Ψini)

}
,(9)

where cn(an) is the cost associated to being in state n and
taking action a, tn,m(an) is the probability of going from state
n to state m for the Markov chain that uses policy Ψini with
action a, and rm(Ψini) is the relative value of the destination
state, m.

It should be noted that this method requires the setting of
four parameters that have an important impact in Ψfs, that is,
δ and itmax for Πini, and δ′ and it′max for ~r(Ψini). For very
small values of δ and δ′ or high values of itmax and it′max the
computational cost will increase but the obtained values will
be closer to the real value, and the improved policy will be
better. Therefore, it is necessary to define the values of δ, δ′,
itmax and it′max that can guarantee an acceptable precission.
In our experiments, unless otherwise stated, the chosen values
were: δ = δ′ = 10−3 and itmax = it′max = 500.

IV. 1ST STEP POLICY ITERATION THROUGH TIME SCALE
SEPARATION

Since the rate of events is higher for data users than for
voice users, it is possible to assume that the former can see the
latter as being still. By means of this approximation, a SSPD
can be defined for each combination of data users d=(d1,d2),
where its state space is conditioned by (1) and (2) according
to the combination of voice users (v1,v2), and the initial policy
Ψini chosen. Let us denote these conditional probabilities
as p((d1, d2)|(v1, v2)). Unless otherwise stated, in this work
Ψini is a policy that sends voice calls to WCDMA until it is
full, and then sends them to TDMA. On the other hand, data

(0, 0) (0, 1) · · · (0, b ηul
D
c)

(1, 0) . . .
...

...
. . .

(Cnc, 0) · · · · · · (Cnc, b ηulD c)

λd

λd

λd

λd λd

λd λd

λd

µd 2µd b ηulD cµd

µdµd µd

2µd

µd

Cµd

µd b ηulD cµd
µd

Cµd

Fig. 1. Continuous-time Markov chain for a fast time scale subsystem.

sessions are sent to TDMA until it is full, and then are sent to
WCDMA. Since v1={0,1,...,C} and v2={0,1,...,bηulV c}, a total
of (C+1) · (bηulV c +1) independent two-dimensional systems
must be solved. The CTMC of the fast time scale subsystem
(FTSS) conditioned to v1 = 0 and v2 = 0 is shown in Fig 1.

On the other hand, when the time scale separation is
sufficiently large, data sessions can achieve a permanent
regime between two voice events, and therefore it can be
assumed that its behavior is sufficiently represented by its
mean. However, this approach does not consider the capacity
limitation that data users are imposing over voice users, that
is, a transition between two states of the slow time scale
subsystem (STSS) can only exist if the conditions in (1)
and (2) are fulfilled on both the initial and final states. For
example when TDMA is fully occupied by voice calls, and a
new voice call arrives to WCDMA, being the initial and final
states vo = (C, 0) and vf = (C, 1) respectively, the transition
can only occur when d1=0 and d2 ≤ (ηul - V ) / D, that is,
the voice transition is limited by the subset of data sessions
(d1, d2) that mantain capacity consistency according to (1)
and (2) for both vo = (C, 0) and vf = (C, 1). In order to
model this phenomenon, we use the conditional probabilities
p((d1, d2)|(v1, v2)) that were calculated in the previous step.
Hence, the transition rate of going from an initial STSS state
to a final STSS state is weighted by the sum of probabilities
of being on those FTSS states where both the initial and final
STSS states are feasible according to (1) and (2). For the initial
policy Ψini, the weighting probabilities Φvo,vf for going from
initial state vo to final state vf are:

φW(v1,v2),(v1,v2+1) =

nc(C−v1)∑
d1=0

ηul−(v2+1)V

D∑
d2=0

p((d1, d2)|(v1, v2)), (10)
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φT(v1,v2),(v1+1,v2)
=

nc(C−(v1+1))∑
d1=0

ηul−(v2)V

D∑
d2=0

p((d1, d2)|(v1, v2)), (11)

where φW is used for calls sent to WCDMA and φT is used
for calls sent to TDMA. The resulting CTMC for the STSS
using policy Ψini is shown in Fig. 2, where elements v=(v1,v2)
represent that there are v1 active voice sessions on TDMA and
v2 on WCDMA. It should be noted that voice calls are sent
to WCDMA by default, and when capacity is full they are
sent to TDMA. The STSS probability distribution p (v1,v2) is
easily found by solving the two dimensional CTMC.

Using Ψini, the SSPD for the complete system, Πini, is
obtained by unconditioning p((d1, d2)|(v1, v2)) as follows:

Π(v1, v2, d1, d2) = p(v1, v2) · p((d1, d2)|(v1, v2)). (12)

Having Πini it is possible to obtain the mean cost of the
initial policy c̄(Ψini) using (7) as it was done in the previous
section. Also, we can perform policy evaluation by defining
the discrete Markov chain of the whole system in order to
solve the discrete version of Howard’s equation in (8). To
maintain consistency, the iterative solution uses the same
values of the last section, that is, δ′ = 10−3 and it′max = 500.
The first step of policy iteration is fulfilled by performing
policy improvement as shown in (9) to obtain Ψfi. As it can
be seen, the difference between both methods lies in how
Πini is obtained, in order to perform policy evaluation and
policy improvement. In this method, Πini is found solving
multiple small sized continuous time Markov chains which
are straightforward. While on the previous method, we had to
define specific values for δ and itmax to reduce computational
cost while at the same time maintaining a low error. In this
solution, the influence that data user’s occupancy have over
the system’s remaining capacity for voice users is modeled
through the introduction of SSPD dependant transition rates,
which expands the reach of time scale separation approaches.

V. NUMERICAL ANALYSIS

In previous sections we have defined two methods to find
the steady state probability distribution of the initial policy,
Πini, where the first method uses the embedded discrete time
Markov chain and the second method uses a novel approach
of time scale separation. In this section we compare the 1st
step policy iteration solution of both approaches in terms of
the computational cost and also in accuracy. The system is
defined by the values in Table II.

In Fig. 3 we compare the blocking function for the initial
policy chosen for both approximation methods, with the solu-
tion obtained by the time scale separation approach, the em-
bedded discrete time Markov chain approach and the optimal
solution as λv varies from 0.0996 to 0.4498 and λd = 0.448.
As it can be seen, with the 1st step of policy improvement,
both approximate solutions are close to the optimal for low
values of λv . However, when λv = 0.4498, it is necessary
to perform more iterations in order to find a solution that is

TABLE II
SYSTEM SCENARIO.

WCDMA TDMA
W=3.84 Mcps C = 8

(Eb/N0)v=6.5 dB nc= 3
(Eb/N0)d=5 dB BRt,v=12.2 kbps
BRw,v=12.2 kbps BRt,d=44.8 kbps
BRw,d=44.8 kbps

ηul= 1
Clients
µv= 0.0083
σ= 1 Mb

0.1 0.2 0.3 0.4 0.5
0

0.01

0.02
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0.04

0.05

0.06

λ
v

B
P

v
*0

.5
+

B
P

d
*0

.5

 

 

Optimal Solution

Initial Policy

Time Scale Separation

eDTMC

Fig. 3. Blocking function for various λv .

closer to the optimal. This occurs due to two reasons: First,
when λv is high, the optimal solution will use vertical handoff
as defined in actions 3 and 4 of Table I more often, while the
initial policy does not use vertical handoff. Therefore, it is
necessary to change more actions to get close to the optimal
solution and this can only be done by performing at least three
more policy improvement steps. Secondly, since λv is very
high and voice calls are not allowed to share TDMA channels
as data sessions do, once voice calls have occupied all the
resources on WCDMA, they will tend to use more resources
of TDMA, reducing the ability of data sessions to share and
therefore increasing the blocking function. Hence, in this case
the first step solutions are not limited by the approach we
choose, but by the initial policy, and that is why both solutions
are very similar.

In Fig. 4 we follow the same approach and compare the
blocking function value for the initial policy with the solution
obtained by the time scale separation approach, the embedded
discrete time Markov chain approach and the optimal solution
as λd varies from 0.3584 to 1.792 and λv = 0.0833. In
this case, the 1st step of policy iteration is enough to obtain
solutions that closely resemble the optimal, and this occurs
for the whole range of λd. In this case the impact of vertical
handoff in blocking probability is diminished by the ability of
data sessions to share channels in TDMA.

So far we have seen that the solutions of both approaches
are very similar for all the range of λv and λd. In Table III,
it is shown that the computational cost of both solutions is
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Fig. 2. Continuous-time Markov chain for the slow time scale subsystem.
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Fig. 4. Blocking function for various λd.

also very similar for each point of Figures 3 and 4 using a 2
Quad CPU @2.4GHz, 3.24 GB RAM desktop. Let us recall
that the optimal solution for λv = 0.4998 and λd = 0.448 was
obtained in 9724.99s after 4 steps, using the LSQR algorithm.
Therefore, the proposed methods achieve a reduction to less
than 10% of the original computational cost.

The main advantage that the time scale separation approach
has over the eDTMC approach is that it reduces the parameter
set to be defined from four to two, which is important as was
discussed in Section III, specially if we want to perform more
steps, since a high error in the first step will propagate into the
next steps. In fact, selection of these parameters is so critical
that if we mantain the values of δ = 10−3 and itmax = 500,
and keep performing policy iteration, we will obtain a final
blocking function value of 0.0392185 after three steps. This of
course is far from the optimal solution, and very close to the
value obtained in the 1st step policy, thus no real improvement
has been done. This occurs because δ and itmax are not good

2000 4000 6000 8000 10000
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Time (s)

B
P

v
*0

.5
+

B
P

d
*0

.5

 

 

LSQR solution

Time scale separation 

1st
step

2nd

5th4th3rd 4th3rd

2nd

1st
step

Fig. 5. Computational cost of LSQR in CTMC vs 1st step time scale
separation and eDTMC

enough to accurately perform policy evaluation and therefore
the information used in policy improvement is flawed, and the
error grows on each step performed.

In Fig. 5 we compare the blocking function value on each
step of policy improvement for two solution methods: In the
first solution, we use the 1st step time scale separation to
obtain the initial mean cost and then perform several steps
of policy iteration based on the eDTMC, but in this case the
chosen values are δ′ = 10−6 and it′max = 50000. The second
solution is based on the LSQR algorithm and uses a CTMC
to solve the system. It should be noted that the initial policy
in both cases is the one that will send voice calls to WCDMA
and data sessions to TDMA. The values of λv = 0.4998 and
λd = 0.448 where already used in Fig. 3, and the second
method corresponds to the optimal solution showed there.

Since we increased the number of itmax, the cost of the
1st step policy is 1246.766s, over 70% more than the policies
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TABLE III
SOLUTION TIMES

Time Scale Separation eDTMC solution
λv=0.09996, λd=0.448 716.36 s 717.28 s
λv=0.1999, λd=0.448 719.85 s 687.67 s
λv=0.2999, λd=0.448 726.65 s 696.87 s
λv=0.3998, λd=0.448 723.09 s 678.19 s
λv=0.4998, λd=0.448 715.48 s 720.88 s
λv=0.0833, λd=0.3584 721.01 s 721.36 s
λv=0.0833, λd=0.7168 712.58 s 723.96 s
λv=0.0833, λd=1.075 747.34 s 724.46 s
λv=0.0833, λd=1.434 717.31 s 721.91 s
λv=0.0833, λd=1.792 727.39 s 733.80 s

seen in figures 3 and 4. However, in this case after five steps
we obtain a policy that closely resembles the optimal, with
a blocking function value of 0.01917517 while the optimal
has a value of 0.01917065, which means a relative error
of 2.35 · 10−3%. It is also worth noting that the policy
obtained using the eDTMC reaches in the third step a blocking
function value of 0.01980314, which is very close to the
optimal but it was found in 4076.31s, about 1000s less than
the time than it took to obtain the 1st step policy obtained
using LSQR (5072.51s), which has a blocking function value
of 0.04046063. Therefore, it can be seen that a significant
reduction in computational cost and a close to optimal solution
can be obtained using the proposed methods.

VI. CONCLUSIONS

In this work we have evaluated two approximate methods to
solve a Markov decision process using the first step of policy
iteration. We studied a resource management problem for a
heterogeneous network with two radio access technologies
(WCDMA and TDMA) and two types of services (voice
and data). The first method uses the embedded discrete time
Markov chain to obtain the mean cost of the proposed initial
policy of the system and this result is used to perform policy
improvement. This method requires the definition of four
parameters in order to obtain a required accuracy. The second
method, which is the most important contribution of this
paper, is based on the time scale separation assumption which
states that due to the difference of time scales of data and
voice events, it is possible to approximate the total system
as two separate subsystems solved sequentially. In the first
subsystem, data users see voice users as being still. In the
second subsystem, data users influence is perceived by voice
users affecting the arrival transition rates. The introduction
of these conditional transition rates expands the reach of

traditional time scale separation beyond the quasi-stationary
and flow regimes solutions as boundaries. The mean cost
obtained through this method is used to perform a single step
of policy improvement as in the previous case, but setting only
two parameters for accuracy.

The two solutions are compared against the optimal solution
which was found using several steps of policy iteration based
on the continuous time Markov chain of the system and solved
through the LSQR algorithm. Results showed that the solutions
obtained using the proposed methods are very close to the
optimal solution for most scenarios, except when the arrival
rate of voice calls is high. Also, it was shown that the two
approaches introduced have a similar computational cost, and
therefore its performance is almost identical, although the first
one can use any initial policy and the second can only use
initial policies that respect the time scale separation properties.

Finally, it was shown that thanks to the computational
cost reduction of the methods proposed, it is possible to
perform more steps of policy iteration to obtain solutions that
closely resemble the optimal in less time than the needed
to perform a single step of policy iteration with LSQR. As
future work it would be desirable to extend the time scale
separation approach to the policy improvement step to exploit
the advantages in computational cost reduction that it brings
for the solution of MDPs for large systems.
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