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Abstract

We propose a new methodology and associated algorithm®fopating the optimal configuration of
the Multiple Fractional Guard Channel (MFGC) admissiontoarpolicy in multiservice mobile wireless
networks. Our approach is based on the solution space comtégh discloses a novel insight into the
problem of determining the optimal configuration parametdues of the MFGC policy and provides an
heuristic evidence that the algorithm finds the optimal Sofuand converges in all scenarios, an evidence
that was not provided in previous proposals. Besides, @orihm is shown to be more efficient than
previous algorithms appeared in the literature.

Key words— Land mobile radio cellular systems, gradient methods, Makov processes, modeling, multimedia
systems, optimal control.

1 Introduction

The enormous growth of mobile telecommunication servitagether with the scarcity of radio spectrum has
led to a reduction of the cell size in cellular systems. Senalkll size entails a higher handover rate having
an important impact on the radio resource management anQdBeperceived by customers. Moreover, 3G
networks establish a new paradigm with a variety of servimsng different QoS needs and traffic character-
istics. In these scenarios Admission Control (AC) is a kgyeatin the design and operation of multiservice
mobile networks.

In this paper we propose a new algorithm for computing th@ragdtconfiguration of a trunk reservation
policy named theMultiple Fractional Guard Channel (MFGC) [1, 2]. The configuration of the MFGC policy
specifies the average amount of resources that each seadi@ebess to. The optimal configuration maximizes
the offered session rate that the system can handle whilgngertain QoS requirements, which we call the
system capacity. The QoS requirements are defined as upped$tor the blocking probabilities of both new
setup and handover requests. In a wireless scenario thisctisn is required because a session being forced
to terminate due to a handover failure is considered mommfuhthan the rejection of a new session setup
request. One of the important features of the MFCG polichad it can achieve a system capacity that is very
close to the optimal [3].

To the best of our knowledge only two algorithms for compgitine system capacity of the MFGC policy
have been proposed in the literature [2, 4]. We refer to tladgerithms as HCO and PMC respectively, after
their authors’ initials. Our work is motivated by the facattprevious algorithms did not provide any evidence
supporting that they where finding the optimal solution @t their converged in all scenarios. Our approach
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provides a novel insight into the problem, which we belidvat tby itself it is a significant contribution, but
in addition the algorithm we have developed, based on thghhprovided by our study, offers computational
advantages better than those provided by previous praposal

The HCO algorithm requires the optimalioritization order as input, i.e. a list of session types sorted by
their relative priorities. For a system wiffi services, new session and handover request arrivals ssileosd,
making a total o2\ arrival streams. Therefore, the MFGC policy configuratisméfined by th& N-tuple
t = (t1,...,tan), Where the configuration parameter € R represents the average amount of resources
that streami can dispose of. It,, is the policy setting for which the maximum capacity is avhit the
optimal prioritization order is the permutatiari* € 3, ¥ := {(0y,...,02n) : 0; € N;1 < 0; < 2N},
such thatt(o7) < t(03) < ... < t(o5y) = C, whereC is the total number of resource units of the system.
Selecting the optimal prioritization order is a complichtask as it depends on both QoS constraints and system
characteristics as pointed out in [2]. In general there amad of (2.V)! different prioritization orders. In [2]
the authors give some guidelines to construct a partialfieddist of prioritization orders according to their
likelihood of being the optimal ones. Then a trial and ermwcess is followed using successive elements of
the list until the optimal prioritization order is found. IFeach element the HCO algorithm is run and if after a
large number of iterations it did not converged, anothesrjiization order is tried.

The PMC algorithm does not require any a priori knowledgaletd, after obtaining the optimal policy
configurationt,,,; for which the maximum capacity is achieved, the optimalfization order is automatically
determined as a by-product of the algorithm. Moreover,ugtonumerical examples it is shown in [4] that the
PMC algorithm is still more efficient than the HCO algorithnhen the latter is provided with the optimal pri-
oritization order. In [4] the optimization problem is forftated as a non-linear programming problem, which
attempts to determine the MFGC policy configuration paransah such a way to maximize the session arrival
rates while keeping the blocking probabilities under djetibounds, and an algorithm for solving the non-
linear programming problem is provided. Given that in gahehe blocking probabilities are non-monotonic
functions both of the offered load and the thresholds thati§p the policy configuration, finding the opti-
mal solution is not an easy task and no evidence was proviggobsting that the algorithm converged in all
scenarios.

Our new algorithm is based on tkelution space concept. If for each possible configuration of the MFGC
policy we determine the maximum session rate that can beedffeo the system while satisfying the QoS
constrains, then the result of this study is called the swiigpace. We obtained the solution space for multiple
policies and multiple scenarios and found that a peak faritalways be found and it is the system capacity [3].
Besides, the shape of the solution spaces tend to be mor&y*pfea policies that achieve higher system
capacity, suggesting that a simpid!-climbing algorithm could be deployed.

The remaining of the paper is structured as follows. In $ach the system model is described and its
mathematical analysis is outlined in Section 3. Sectionsfifjas the applicability of a gradient method for
the determination of the optimal configuration of the MFGdiqyo Section 5 describes in detail the new pro-
posed algorithm. Computational complexity of the algaritis comparatively evaluated in Section 6. Finally,
Section 7 concludes the paper.

2 Model Description

The system has a total 6f resource units, being the physical meaning of a unit of nressudependent on the
specific technological implementation of the radio inteefaThe system offerd’ different classes of service.
For each service new and handover session request arriealdistinguished so that there aheé types of
services an@N types of arrival streams. Arrivals are numbered in such an@iatinat for serviceé new session
arrivals are referred to as arrival typewhereas handover arrivals are referred to as arrival ypei.

For the sake of mathematical tractability we make the comassumptions of Poisson arrival processes
and exponentially distributed random variables for cedldence time and session duration.

The arrival rate for new (handover) sessions of service\? (\!). A request of servicé consumes;
resource unitsh; € N. A f; parameter is defined representing the percentage of sém@e session requests
i.e., we suppose that the aggregated rate of new sessioastega\’ = ZfL A2 AT = f;ATL Thisis a
common simplification in the literature [5].

The duration of service sessions is exponentially distributed with rate The cell residence time of a
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servicei customer is exponentially distributed with rgig. Hence, the resource holding time in a cell for
services: is exponentially distributed with rate; = u + pf. The exponential assumption represents a good
performance approximation and indicates general perfocendrends [6]. The exponential assumption can
also be considered a good approximation for the time in tingltnger area [7] and for the interarrival time of
handover requests [8].

The main contribution of this paper is an algorithm to defestthe optimal capacity of the system, which
relies on a method to compute the system blocking prob@silitOur proposal, however, does not depend on
any specific method to find the blocking probabilities anddeeih could be changed (for instance if different
assumptions are made for the underlying model) withouttffg the proposed algorithm.

Letp = (Pi,..., Pan) be the blocking probabilities, where new session blockiafpabilities areP)* = P,
and the handover ones afg“ = Py.;. The forced termination probability of accepted sessiamdeu the
assumption of homogeneous cell [9] is

ft_ P}
Pi ~ ,c/,T h
g/ pi + Pl
The system state is described by/srtuplex = (z1,...,zy), Wherez; represents the number of type

sessions in the system, regardless they were initiated wonéandover sessions. This approximation is
irrelevant when considering exponential distributiong ¢tutheir memoryless property. Ligtr) represent the
amount of occupied resources at staté(x) = vaz 1 Tibj.

A generic definition of the MFGC and Complete-Sharing pekcare now provided. For the MFGC policy,
when a service request founds the system in staiethe following decisions can be taken

< |t accept
b(x) +b; ¢ =[t;] +1 acceptwith probability ¢; — [¢;]
> [t;] +1 reject

where parameters are the policy configuration parameters that are set toeehkigiven QoS objective.
The Complete-Sharing (CS) policy is equivalent to the absefi policy, i.e. a request is admitted provided
there are enough free resource units available in the system

3 Mathematical Analysis

The model of the system is a multidimensional birth-anddd@aocess, which state space is denoted biset
rzy D€ the transition rate frore to y and lete; denote a vector whose entries are(atixcept the i-th one,
which is1.
a(Z) AP +al(z) N ify=x+e,
Ty = § Tilki if Y= —¢
0 otherwise

The coefficients:? (z) anda? (z) denote the probabilities of accepting a new and handoveicsesf service

i respectively. Given a policy configuratidn, . . . , o) these coefficients can be determined as follows
1 if b(x) + b; < |t;]
ai(x) = ¢ ti— [ti] ifb(@) +b; = [ti] +1
0 if b(x) +b; > |ti] +1
and
1 if b(z) +b; < [t;]
af (@) = $ tngi — [tnga] (@) + b = [tna) +1
0 if b(x) +b; > [tngi] +1
From the above, the global balance equations can be writen a
.’IJ) Z Tey = Z ryacp(y) Ve e S (1)
yes yes
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Wherep(x) is the stater stationary probability. The values pfx) are obtained from (1) and the normalization
equation. From the values pfx) the blocking probabilities are obtained as

P=F'=3 (1-al@)p@)  Pyvii=P=3"(1-a(@)p@)

xeS xeS

If the system is in statistical equilibrium the handovervairrates are related to the new session arrival
rates and the blocking probabilities;] through the expression [10]

)\h: n 1—Pzn

/ L 2

The blocking probabilities do in turn depend on the handareral rates yielding a system of non-linear
eguations which can be solved using a fixed point iteratiothotkas described in [9, 10].

4 Determination of the Optimal Policy Configuration

We pursue the goal of computing the system capacity, i.emidgnémum offered session rate that the network
can handle while meeting certain QoS requirements. The&r@guirements are given in terms of upper-
bounds for the new session blocking probabilitiég’Y and the forced termination probabilitieﬁ?{(t). The
common approach to carry out this AC synthesis process itiganlice systems is by iteratively executing
an analysis process. We refer to as synthesis process agithet having as inputs the values of the system
parameters X, A", u;, b; andC) and the QoS requirement&¥ and Bif ", produces as output the optimal
configuration (the thresholds). In contrast the analysis process is a process that hasiimpats the value of
the system parameters and the configuration of the AC potimgytres as output the blocking probabilities for
the different arrival streams.

Given that in general, the blocking probabilities are nomatonic functions both of the offered load and
the thresholds that specify most policy configurations;cibramon approach is to carry out a multidimensional
search using for example meta-heuristics like geneticréfgns which are able to find good configuration
in a reasonable amount of time. It should be pointed out theth @xecution of the analysis process requires
solving the associated continuous-time Markov chain.

Additional insight can be gained by determining the maxinaffared session rate for each possible policy
configuration. The result of this study is called #mbution space, and its peak value is the system capacity
of the AC policy, i.e. the maximum aggregated session drrate (\7 = vazl A2, AR = f;AT) that can be
offered to the system in order to satisfy the QoS requiremenhe surface that defines the solution space is
obtained as follows. At each poimt! . is computed by a binary search process which has as inpuathe v
of the system parameters, b;, C' and the thresholds, and produces as output the blocking probabilitigs (
and P*). The binary search process stops when it findsXfje, that meets the QoS requiremenfs?(and
B/, i=1,...,N.

In order to illustrate our algorithm we have chosen a simghamgle with only two services but without
their associated handover streams. This allows us to mmrése solution space in only three dimensions.
Figure 1 show the solution space when MFGC policy is depldgeal scenario withC' = 10 resource units,
b= (1,2), f =(08,0.2), p = (1,3), B" = (0.05,0.01). The configuration of the policy is defined by two
parameters; andt,. It should be noted that the system capacity is expressededatize value to the capacity
obtained for the CS policy.

The form of the solution space shown in Figure 1 suggestsattdt-climbing algorithm could be an ef-
ficient approach to obtain the optimum configuration for MF@dlicy. The hill-climbing algorithm works as
follows. i) Given a starting point in a/V-dimensional search space (for example, pontthe hill-climbing
algorithm begins by computing the value of the function @izstem capacity” ), and the blocking probabil-
ities for the different arrival stream#>( and P); ii) the steepest dimension is selected as described Kgtow
this case?); iii) the algorithm searches for a maximum point along tliaension (in this cast). Note that
what we have here is actually a maximization problem alonigea &nd iv) return to i) until the local maximum
P is found within the desired precision. For the hill-climgialgorithm explained, two important questions that
arise are: a) how the steepest dimension is selected, armhthie search for a maximum point is performed.
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Figure 1. Example of the use of a hill-climbing algorithm tetermine the optimum configuration for the
MFGC policy.

When applying gradient based methods to our problem, thtitmmust be evaluated for the two adjacent
neighbors in each of the 2N dimensions (poiatd, ¢ andd), selecting then the steepest dimension as the
one for which the function value is largesf)( However, if the binary search process to compute the isyste
capacity is performed with low accuracy, or neighbors afficsently close to the considered point, then this
method is impracticable, mainly because the function &afoe the neighbors are identical to the considered
point, giving no information at all. In these cases addaioimformation is required. We deploy the relative
distance to the QoS objective, more precisely, the arrivahani for which (B; — P;)/B; is the largest is taken
as the steepest dimension.

In its search for the maximum along this steepest dimensimralgorithm makes a number of successive
unitary steps and it stops when it reaches the peak. Whemlimos space is continuous, as with the MFGC
policy, a gradual refinement process is needed to reducezihefsthe step once a promising region has been
found, which is possibly close to the optimal. A further retion of the computation complexity can be ob-
tained by observing that the optimum configuration (p&tpfor any policy is near the CS configuration (point
CS), and therefore it is a good idea to select it as the startiigtpFigure 1 illustrate a typical progression of
the proposed algorithm starting from the CS configuratiaintpCS) towards pointX and ending at the peak
(point P).

5 Hill-Climbing Algorithm

The capacity optimization problem can be formally statetbsws

Given: C,b;, fi, S, uf, B, BI'i=1,... N

Maximize: AT =37 .y AP AP = fid?
by finding the appropriate MFGC parameteéssi = 1,...,2N

Subjectto: P < B P/ <Bf';i=1,... N
We propose an algorithm to work out this capacity optimaatproblem. Our algorithm has a main part

(Algorithm 1 sol veM~GC) from which the procedureapaci ty (see Algorithm 2) is called. The proce-
durecapaci t y does, in turn, call another procedutd=GC) that calculates the blocking probabilities. For
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the sake of notation simplicity we introduce the 2N-tuplgq.. = (BY,...,B%, B}, ..., B%) as the upper-
bounds vector for the blocking probabilities, where themabeZh is given by

ft
Bh _ lulc Bi

i T 3)
pi1— Bl

Following the common convention we used bold-faced fonefwresent array variables in the pseudo-code of
algorithms.

Algorithm 1 (AL, t,,t) =sol VeMFGC( C, Pmaa; b, e, i) (calculates MFGC parameters)

max?

1. &9 :=< desired precision-
2: current, ;=1
3: point:=C
4: direction:= —1
5. step:=(1,1,...,1) <size2N>
6: steepest=0
7: changeOfDirection=FALSE
8: topt = (C, C,,C),t = topt
9: AL =0, \T :=0;
10: pyye =0, p:=0;
11: dp,,; := 0;dp := 0;
12:
130 (\as Popt):=CaPaACHYPmaz, topt, te; pir, b, C)
14: dpopt = (pmaz - popt)/pmam; dp = dpopt
15: currents := maz(dp,,,;)
16: steepest= < the stream which maximizesip,,, (i) >
17:
18: while current, > £, do
19:  point:=t,, (Steepest)
20:  direction:=—1
21:  if step(steepest>1then
22: step(steepest)=0.5
23:  endif
24:  changeOfDirection:= FALSE
25:
26:  repeat
27: if direction= —1 then
28: point=point-step(steepest)
29: else
30: point=point step(steepest)
31: end if
32:
33 t = t,pt; t(Steepest):= point;
34: (\,p) = capacitypmaaz, t; tte; ptr, b, C)
35: dp = (pmam - p)/pmam;
36:
37 if AT >= AT then
38: topt(Steepest):= pointy? = \T;
39: Popt := P; AP, := dp;
40: end if
41:
42: if dp(steepest} e, then
43: if direction= —1 then
44: if changeOfDirectiothen
45; step(steepest)= step(steepest)/2
46: end if
47: else
48: step(steepest)= step(steepest)/2
49: direction:=—1
50: changeOfDirection:= TRUE



51: end if

52: else

53: if AT < AT then

54: if direction:=+1 then

55: if changeOfDirectiothen

56: step(steepest)= step(steepest)/2
57: end if

58: else

59: step(steepest)= step(steepest)/2
60: direction:=+1

61: changeOfDirection:= TRUE

62: end if

63: end if

64: end if

65: until (dp(steepest) e5) AND (AT >= AT
66:

67:  steepest:x the stream which maximizesip,,,, (i) >
68:  currents := max(dp,,;)
69: end while

Algorithm 2 ( )‘;1;7(17'! p) :CapaCi t Y( Pmaz; t7 Hes P, b7 C)

INPUTS:  pmas,t, te, br, b, C
OUTPUTS: AL p

1: g1 :=< desired precision
curreng; ;=1
L:=0
U :=< high value>
meetQoSrequirements:=FALSE

while (current; > 1) OR NOT(meetQoSrequirement)
Aae = (U +L)/2
9.  p:=MFGC(t, An, te, s, b, C)
10:  current; := min((Pmaz — P)/Pmax)
11:  if current; < 0then

12: U:=\ .

13: meetQoSrequirements:= FALSE
14:  else

15: L:=\T

16: meetQoSrequirements:= TRUE
17:  endif

18: end while

The algorithmsol veMFGC, begins computing the CS configuration as the starting fbimds 13-14),
and selects the arrival streanfor which (B; — P;)/B; is the highest as the steepest dimension, (line 16). The
whole hill-climbing loop starts in line 18, and the maxintipa loop along a dimension starts in line 26. Note
(line 21) that the first time a dimension is chosen as the sstephe hill-climbing step equals to 1, however
if a dimension has been chosen previously, initial hilkrdling steps will be reduced to 0.5 because a certain
locality of the optimal configuration is assumed. Lines @%)perform the hill-climbing algorithm along the
steepest dimension. This subroutine perform tasks likagihg the direction of the successive steps and its
refinement once a promising configuration has been founditiet algorithmcapaci t y is basically a binary
search of\” that calls procedureMFGC) in each iteration in order to calculate the blocking pralites.

max

5.1 On the procedureM~GC

The procedurd/FGC, which is invoked in the inner-most loop of our algorithmugsed to obtain the blocking
probabilities p := MFGC(t, Ay, pte, i, b, C)). For this computation a fixed point iteration procedure is
required in order to obtain the value of the handoff requatssr (see the end of Section 3). At each iteration
a multidimensional birth-and-death process must be sol@mdving this process, that in general will have a
large number of states, constitutes the most computaljoegbensive part of the algorithm.
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Table 1: Comparison of the HCO (with known prioritizatiorder) and PMC algorithms with our algorithm for

different mobility factors (in Mflops)
HCO PMC Our algorithm

5 10 20 TOT | 5 10 20 TOT | 5 10 20 TOT
2.00 20.00 156.00 | 178.00 | 0.39 453 46.60 | 51.52 | 0.21 1.17 9.28 | 10.66
208 1754 7433 | 9395035 442 53.64| 5841|027 192 870 | 10.89
2.67 14.06 147.13 | 163.86 | 0.34 3.87 43.01 | 4722 | 026 128 1290 | 14.44
1.12 2454 11041 | 136.07 | 0.38 393 4795 | 5226 | 023 1.74 1236 | 14.33
224 16.86 121.39 | 140.49 | 0.31 393 4592 | 50.16 | 0.26 239 13.56 | 16.21
TOT 28.11 93.00 609.26 | 730.37 | 1.77 20.68 237.12 | 259.57 | 1.23 8.50 56.80 | 66.53

moOaQw>» 0

We make use of the same enhancement explained in [4] to aliethe fixed point iteration to compute the
handover arrival rates. Each runadpaci ty finds a\”  so thatp < p,naz (Within tolerance limit). Thus,

max

instead of using (2) to computé' we use the expression

)\? — ?1_7% (4)
15/ i + B;
Although (2) and (4) look very similar there is a substandidffierence between the two. In Eq. (4%1 is
explicitly defined whereas in (2) it is not & and P* depend om\. Note thatp = pymaz (Within tolerance
limit) only when AL is the system capacity, but using (4) reduces considerhle\computation cost and

max

therefore speeds-up the convergence rate of the algorithm.

6 Numerical Evaluation

In this section we evaluate the computational complexitgwfalgorithm and compare it to the complexity of
the HCO and PMC algorithms.

For the numerical examples we considered a system with tivices (V = 2), and to assess the impact of
mobility on computational complexity, five different sceioa (A,B,C,D and E) were considered with varying
mobility factors (.} /u$). The set of parameters that define scenario A @&e= (1,2), f = (0.8,0.2),

e = (1/180,1/300), p, = (1/900,1/1000), B™ = (0.02,0.02), B/t = (0.002,0.002); all tolerances have
been set ta = 10~2. By (3), B" ~ (0.01002, 0.00668) and thenp,,,qe ~ (0.02,0.02,0.01002, 0.00668).

For the rest of scenarios the parameters have the same aalthesones used in scenario A exgejtwhich
is varied to obtain four different mobility factor combirats: B) p] = 0.2u5, py = 0.2u85; C) puy = 0.2u5,
py = 1ps; D) py = 15, py = 0.2u3; E) pf = 1pf, pg = 1ps.

A comparison of the number of floating point operations (fjopguired by the HCO and PMC algorithms
and our algorithm is shown in Table 1. The three algorithmsewested with the speed-up technique (see
Section 5.1). It is worth noting that, as expected, the ahl#ained for the optimal capacity computed using
the different methods were within tolerance in all testesksa

Note that the HCO algorithm is provided with the prioritipat order as input and therefore it does not
need to search for it as their authors propose, which is aantied advantage in terms of computation cost.
Additionally, in its original version it does not implemettite speed-up technique introduced in [4], without
which the flops count is much higher than the one shown in TablEor example, for scenario A, the HCO
algorithm with speed-up technique requie20 and 156 Mflops for C = 5, 10 and 20 respectively, while
without the speed-up technique it neéds, 60.2 and438 Mflops, i.e. the speed-up technique divides the flop
count by a factor of about three.

Our algorithm performs better than the other algorithmse @in factor ranges frosh9 to 17 with respect
to the HCO algorithm and from.2 to 6.3 with respect to the PMC algorithm, with an average gaimn$ and
2.81 for HCO and PMC algorithms, respectively.



7

Conclusions

We proposed a new algorithm for computing the optimal sgthiithe configuration parameters for the Multiple
Fractional Guard Channel (MFGC) admission policy in meltgce mobile wireless networks. The optimal
configuration maximizes the offered traffic that the systamltandle while meeting certain QoS requirements.

Compared to two recently published algorithms (HCO and PM@}, which is based on a simple and

intuitive hill-climbing approach, is less computatioryadixpensive in all scenarios studied. Besides, the solution
space concept discloses a novel insight into the problenetrahining the optimal configuration parameter
values of the MFGC policy, providing an heuristic evidenkattthe algorithm finds the optimal solution and
converges in all scenarios.
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