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Abstract

We propose a new methodology and associated algorithms for computing the optimal configuration of
the Multiple Fractional Guard Channel (MFGC) admission control policy in multiservice mobile wireless
networks. Our approach is based on the solution space concept which discloses a novel insight into the
problem of determining the optimal configuration parametervalues of the MFGC policy and provides an
heuristic evidence that the algorithm finds the optimal solution and converges in all scenarios, an evidence
that was not provided in previous proposals. Besides, our algorithm is shown to be more efficient than
previous algorithms appeared in the literature.

Key words— Land mobile radio cellular systems, gradient methods, Markov processes, modeling, multimedia
systems, optimal control.

1 Introduction

The enormous growth of mobile telecommunication services,together with the scarcity of radio spectrum has
led to a reduction of the cell size in cellular systems. Smaller cell size entails a higher handover rate having
an important impact on the radio resource management and theQoS perceived by customers. Moreover, 3G
networks establish a new paradigm with a variety of serviceshaving different QoS needs and traffic character-
istics. In these scenarios Admission Control (AC) is a key aspect in the design and operation of multiservice
mobile networks.

In this paper we propose a new algorithm for computing the optimal configuration of a trunk reservation
policy named theMultiple Fractional Guard Channel (MFGC) [1, 2]. The configuration of the MFGC policy
specifies the average amount of resources that each service has access to. The optimal configuration maximizes
the offered session rate that the system can handle while meeting certain QoS requirements, which we call the
system capacity. The QoS requirements are defined as upper bounds for the blocking probabilities of both new
setup and handover requests. In a wireless scenario this distinction is required because a session being forced
to terminate due to a handover failure is considered more harmful than the rejection of a new session setup
request. One of the important features of the MFCG policy is that it can achieve a system capacity that is very
close to the optimal [3].

To the best of our knowledge only two algorithms for computing the system capacity of the MFGC policy
have been proposed in the literature [2, 4]. We refer to thosealgorithms as HCO and PMC respectively, after
their authors’ initials. Our work is motivated by the fact that previous algorithms did not provide any evidence
supporting that they where finding the optimal solution nor that their converged in all scenarios. Our approach
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provides a novel insight into the problem, which we believe that by itself it is a significant contribution, but
in addition the algorithm we have developed, based on the insight provided by our study, offers computational
advantages better than those provided by previous proposals.

The HCO algorithm requires the optimalprioritization order as input, i.e. a list of session types sorted by
their relative priorities. For a system withN services, new session and handover request arrivals are considered,
making a total of2N arrival streams. Therefore, the MFGC policy configuration is defined by the2N -tuple
t = (t1, . . . , t2N ), where the configuration parameterti ∈ R represents the average amount of resources
that streami can dispose of. Iftopt is the policy setting for which the maximum capacity is achieved, the
optimal prioritization order is the permutationσ∗ ∈ Σ, Σ := {(σi, . . . , σ2N ) : σi ∈ N, 1 ≤ σi ≤ 2N},
such thatt(σ∗

1) ≤ t(σ∗
2) ≤ . . . ≤ t(σ∗

2N ) = C, whereC is the total number of resource units of the system.
Selecting the optimal prioritization order is a complicated task as it depends on both QoS constraints and system
characteristics as pointed out in [2]. In general there are atotal of (2N)! different prioritization orders. In [2]
the authors give some guidelines to construct a partially sorted list of prioritization orders according to their
likelihood of being the optimal ones. Then a trial and error process is followed using successive elements of
the list until the optimal prioritization order is found. For each element the HCO algorithm is run and if after a
large number of iterations it did not converged, another prioritization order is tried.

The PMC algorithm does not require any a priori knowledge. Indeed, after obtaining the optimal policy
configurationtopt for which the maximum capacity is achieved, the optimal prioritization order is automatically
determined as a by-product of the algorithm. Moreover, through numerical examples it is shown in [4] that the
PMC algorithm is still more efficient than the HCO algorithm when the latter is provided with the optimal pri-
oritization order. In [4] the optimization problem is formulated as a non-linear programming problem, which
attempts to determine the MFGC policy configuration parameters in such a way to maximize the session arrival
rates while keeping the blocking probabilities under specified bounds, and an algorithm for solving the non-
linear programming problem is provided. Given that in general, the blocking probabilities are non-monotonic
functions both of the offered load and the thresholds that specify the policy configuration, finding the opti-
mal solution is not an easy task and no evidence was provided supporting that the algorithm converged in all
scenarios.

Our new algorithm is based on thesolution space concept. If for each possible configuration of the MFGC
policy we determine the maximum session rate that can be offered to the system while satisfying the QoS
constrains, then the result of this study is called the solution space. We obtained the solution space for multiple
policies and multiple scenarios and found that a peak for it can always be found and it is the system capacity [3].
Besides, the shape of the solution spaces tend to be more “peaky” for policies that achieve higher system
capacity, suggesting that a simplehill-climbing algorithm could be deployed.

The remaining of the paper is structured as follows. In Section 2 the system model is described and its
mathematical analysis is outlined in Section 3. Section 4 justifies the applicability of a gradient method for
the determination of the optimal configuration of the MFGC policy. Section 5 describes in detail the new pro-
posed algorithm. Computational complexity of the algorithm is comparatively evaluated in Section 6. Finally,
Section 7 concludes the paper.

2 Model Description

The system has a total ofC resource units, being the physical meaning of a unit of resources dependent on the
specific technological implementation of the radio interface. The system offersN different classes of service.
For each service new and handover session request arrivals are distinguished so that there areN types of
services and2N types of arrival streams. Arrivals are numbered in such a manner that for servicei new session
arrivals are referred to as arrival typei, whereas handover arrivals are referred to as arrival typeN + i.

For the sake of mathematical tractability we make the commonassumptions of Poisson arrival processes
and exponentially distributed random variables for cell residence time and session duration.

The arrival rate for new (handover) sessions of servicei is λn
i (λh

i ). A request of servicei consumesbi

resource units,bi ∈ N. A fi parameter is defined representing the percentage of servicei new session requests
i.e., we suppose that the aggregated rate of new session requests isλT =

∑N
i=1

λn
i , λn

i = fiλ
T . This is a

common simplification in the literature [5].
The duration of servicei sessions is exponentially distributed with rateµc

i . The cell residence time of a
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servicei customer is exponentially distributed with rateµr
i . Hence, the resource holding time in a cell for

servicei is exponentially distributed with rateµi = µc
i + µr

i . The exponential assumption represents a good
performance approximation and indicates general performance trends [6]. The exponential assumption can
also be considered a good approximation for the time in the handover area [7] and for the interarrival time of
handover requests [8].

The main contribution of this paper is an algorithm to determine the optimal capacity of the system, which
relies on a method to compute the system blocking probabilities. Our proposal, however, does not depend on
any specific method to find the blocking probabilities and hence it could be changed (for instance if different
assumptions are made for the underlying model) without affecting the proposed algorithm.

Letp = (P1, . . . , P2N ) be the blocking probabilities, where new session blocking probabilities arePn
i = Pi

and the handover ones areP h
i = PN+i. The forced termination probability of accepted sessions under the

assumption of homogeneous cell [9] is

P ft
i =

P h
i

µc
i/µ

r
i + P h

i .

The system state is described by anN -tuplex = (x1, . . . , xN ), wherexi represents the number of typei
sessions in the system, regardless they were initiated as new or handover sessions. This approximation is
irrelevant when considering exponential distributions due to their memoryless property. Letb(x) represent the
amount of occupied resources at statex, b(x) =

∑N
i=1

xibi.
A generic definition of the MFGC and Complete-Sharing policies are now provided. For the MFGC policy,

when a servicei request founds the system in statex, the following decisions can be taken

b(x) + bi











≤ ⌊ti⌋ accept

= ⌊ti⌋ + 1 accept with probability ti − ⌊ti⌋

> ⌊ti⌋ + 1 reject.

where parametersti are the policy configuration parameters that are set to achieve a given QoS objective.
The Complete-Sharing (CS) policy is equivalent to the absence of policy, i.e. a request is admitted provided

there are enough free resource units available in the system.

3 Mathematical Analysis

The model of the system is a multidimensional birth-and-death process, which state space is denoted byS. Let
rxy be the transition rate fromx to y and letei denote a vector whose entries are all0 except the i-th one,
which is1.

rxy =











an
i (x)λn

i + ah
i (x)λh

i if y = x + ei

xiµi if y = x − ei

0 otherwise

The coefficientsan
i (x) andah

i (x) denote the probabilities of accepting a new and handover session of service
i respectively. Given a policy configuration(t1, . . . , t2N ) these coefficients can be determined as follows

an
i (x) =











1 if b(x) + bi ≤ ⌊ti⌋

ti − ⌊ti⌋ if b(x) + bi = ⌊ti⌋ + 1

0 if b(x) + bi > ⌊ti⌋ + 1

and

ah
i (x) =











1 if b(x) + bi ≤ ⌊ti⌋

tN+i − ⌊tN+i⌋ if b(x) + bi = ⌊tN+i⌋ + 1

0 if b(x) + bi > ⌊tN+i⌋ + 1

From the above, the global balance equations can be written as

p(x)
∑

y∈S

rxy =
∑

y∈S

ryxp(y) ∀x ∈ S (1)
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Wherep(x) is the statex stationary probability. The values ofp(x) are obtained from (1) and the normalization
equation. From the values ofp(x) the blocking probabilities are obtained as

Pi = Pn
i =

∑

x∈S

(

1 − an
i (x)

)

p(x) PN+i = P h
i =

∑

x∈S

(

1 − ah
i (x)

)

p(x)

If the system is in statistical equilibrium the handover arrival rates are related to the new session arrival
rates and the blocking probabilities (Pi) through the expression [10]

λh
i = λn

i

1 − Pn
i

µc
i/µ

r
i + P h

i

(2)

The blocking probabilities do in turn depend on the handoverarrival rates yielding a system of non-linear
equations which can be solved using a fixed point iteration method as described in [9, 10].

4 Determination of the Optimal Policy Configuration

We pursue the goal of computing the system capacity, i.e. themaximum offered session rate that the network
can handle while meeting certain QoS requirements. These QoS requirements are given in terms of upper-
bounds for the new session blocking probabilities (Bn

i ) and the forced termination probabilities (Bft
i ). The

common approach to carry out this AC synthesis process in multiservice systems is by iteratively executing
an analysis process. We refer to as synthesis process a process that having as inputs the values of the system
parameters (λn

i , λh
i , µi, bi andC) and the QoS requirements (Bn

i andBft
i ), produces as output the optimal

configuration (the thresholdsti). In contrast the analysis process is a process that having as inputs the value of
the system parameters and the configuration of the AC policy produces as output the blocking probabilities for
the different arrival streams.

Given that in general, the blocking probabilities are non-monotonic functions both of the offered load and
the thresholds that specify most policy configurations; thecommon approach is to carry out a multidimensional
search using for example meta-heuristics like genetic algorithms which are able to find agood configuration
in a reasonable amount of time. It should be pointed out that each execution of the analysis process requires
solving the associated continuous-time Markov chain.

Additional insight can be gained by determining the maximumoffered session rate for each possible policy
configuration. The result of this study is called thesolution space, and its peak value is the system capacity
of the AC policy, i.e. the maximum aggregated session arrival rate (λT =

∑N
i=1

λn
i , λn

i = fiλ
T ) that can be

offered to the system in order to satisfy the QoS requirements. The surface that defines the solution space is
obtained as follows. At each point,λT

max is computed by a binary search process which has as input the value
of the system parametersµi, bi, C and the thresholdsti, and produces as output the blocking probabilities (Pn

i

andP h
i ). The binary search process stops when it finds theλT

max that meets the QoS requirements (Bn
i and

Bft
i ), i = 1, . . . , N .

In order to illustrate our algorithm we have chosen a simple example with only two services but without
their associated handover streams. This allows us to represent the solution space in only three dimensions.
Figure 1 show the solution space when MFGC policy is deployedin a scenario withC = 10 resource units,
b = (1, 2), f = (0.8, 0.2), µ = (1, 3), Bn = (0.05, 0.01). The configuration of the policy is defined by two
parameterst1 andt2. It should be noted that the system capacity is expressed as arelative value to the capacity
obtained for the CS policy.

The form of the solution space shown in Figure 1 suggests thata hill-climbing algorithm could be an ef-
ficient approach to obtain the optimum configuration for MFGCpolicy. The hill-climbing algorithm works as
follows. i) Given a starting point in a2N -dimensional search space (for example, point0), the hill-climbing
algorithm begins by computing the value of the function (thesystem capacityλT

max), and the blocking probabil-
ities for the different arrival streams (Pn

i andP h
i ); ii) the steepest dimension is selected as described below(in

this casetn2 ); iii) the algorithm searches for a maximum point along thatdimension (in this case1). Note that
what we have here is actually a maximization problem along a line; and iv) return to i) until the local maximum
P is found within the desired precision. For the hill-climbing algorithm explained, two important questions that
arise are: a) how the steepest dimension is selected, and b) how the search for a maximum point is performed.
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Figure 1: Example of the use of a hill-climbing algorithm to determine the optimum configuration for the
MFGC policy.

When applying gradient based methods to our problem, the function must be evaluated for the two adjacent
neighbors in each of the 2N dimensions (pointsa, b, c andd), selecting then the steepest dimension as the
one for which the function value is largest (c). However, if the binary search process to compute the system
capacity is performed with low accuracy, or neighbors are sufficiently close to the considered point, then this
method is impracticable, mainly because the function values for the neighbors are identical to the considered
point, giving no information at all. In these cases additional information is required. We deploy the relative
distance to the QoS objective, more precisely, the arrival streami for which (Bi −Pi)/Bi is the largest is taken
as the steepest dimension.

In its search for the maximum along this steepest dimension our algorithm makes a number of successive
unitary steps and it stops when it reaches the peak. When the solution space is continuous, as with the MFGC
policy, a gradual refinement process is needed to reduce the size of the step once a promising region has been
found, which is possibly close to the optimal. A further reduction of the computation complexity can be ob-
tained by observing that the optimum configuration (pointP) for any policy is near the CS configuration (point
CS), and therefore it is a good idea to select it as the starting point. Figure 1 illustrate a typical progression of
the proposed algorithm starting from the CS configuration (point CS) towards pointX and ending at the peak
(pointP).

5 Hill-Climbing Algorithm

The capacity optimization problem can be formally stated asfollows

Given: C, bi, fi, µc
i , µr

i , Bn
i , Bft

i ; i = 1, . . . , N

Maximize: λT =
∑

1≤i≤N λn
i , λn

i = fiλ
T

by finding the appropriate MFGC parametersti; i = 1, . . . , 2N

Subject to: Pn
i ≤ Bn

i , P ft
i ≤ Bft

i ; i = 1, . . . , N

We propose an algorithm to work out this capacity optimization problem. Our algorithm has a main part
(Algorithm 1 solveMFGC) from which the procedurecapacity (see Algorithm 2) is called. The proce-
durecapacity does, in turn, call another procedure (MFGC) that calculates the blocking probabilities. For
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the sake of notation simplicity we introduce the 2N-tuplepmax = (Bn
1 , . . . , Bn

N , Bh
1 , . . . , Bh

N ) as the upper-
bounds vector for the blocking probabilities, where the value ofBh

i is given by

Bh
i =

µc
i

µr
i

Bft
i

1 − Bft
i

(3)

Following the common convention we used bold-faced font to represent array variables in the pseudo-code of
algorithms.

Algorithm 1 (λT
max,topt)=solveMFGC(C,pmax, b,µc,µr) (calculates MFGC parameters)

1: ε2 :=< desired precision>
2: currentε2 := 1
3: point := C
4: direction:= −1
5: step := (1, 1, . . . , 1) <size2N>
6: steepest:= 0
7: changeOfDirection:=FALSE
8: topt := (C, C, . . . , C); t := topt

9: λT
max := 0; λT := 0;

10: popt := 0; p := 0;
11: dpopt := 0; dp := 0;
12:
13: (λT

max,popt):=capacity(pmax, topt, µc, µr, b, C)
14: dpopt := (pmax − popt)/pmax; dp := dpopt

15: currentε2 := max(dpopt)
16: steepest:= < the streami which maximizesdpopt(i) >
17:
18: while currentε2 > ε2 do
19: point:=topt(steepest)
20: direction:=−1
21: if step(steepest)<>1 then
22: step(steepest)=0.5
23: end if
24: changeOfDirection:= FALSE
25:
26: repeat
27: if direction= −1 then
28: point=point−step(steepest)
29: else
30: point=point+step(steepest)
31: end if
32:
33: t := topt; t(steepest):= point;
34: (λT ,p) := capacity(pmax, t, µc, µr, b, C)
35: dp := (pmax − p)/pmax;
36:
37: if λT >= λT

max then
38: topt(steepest):= point;λT

max := λT ;
39: popt := p; dpopt := dp;
40: end if
41:
42: if dp(steepest)> ε2 then
43: if direction= −1 then
44: if changeOfDirectionthen
45: step(steepest):= step(steepest)/2
46: end if
47: else
48: step(steepest):= step(steepest)/2
49: direction:=−1
50: changeOfDirection:= TRUE
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51: end if
52: else
53: if λT < λT

max then
54: if direction:=+1 then
55: if changeOfDirectionthen
56: step(steepest):= step(steepest)/2
57: end if
58: else
59: step(steepest):= step(steepest)/2
60: direction:=+1
61: changeOfDirection:= TRUE
62: end if
63: end if
64: end if
65: until (dp(steepest)< ε2) AND (λT >= λT

max)
66:
67: steepest:=< the streami which maximizesdpopt(i) >
68: currentε2 := max(dpopt)
69: end while

Algorithm 2 (λT
max,p)=capacity(pmax, t,µc,µr, b, C)

INPUTS: pmax, t, µc, µr, b, C
OUTPUTS: λT

max,p
1: ε1 :=< desired precision>
2: currentε1 := 1
3: L := 0
4: U :=< high value>
5: meetQoSrequirements:=FALSE
6:
7: while (currentε1 > ε1) OR NOT(meetQoSrequirements)do
8: λT

max := (U + L)/2
9: p := MFGC(t, λn, µc, µr, b, C)

10: currentε1 := min((pmax − p)/pmax)
11: if currentε1 < 0 then
12: U := λT

max

13: meetQoSrequirements:= FALSE
14: else
15: L := λT

max

16: meetQoSrequirements:= TRUE
17: end if
18: end while

The algorithmsolveMFGC, begins computing the CS configuration as the starting point(lines 13–14),
and selects the arrival streami for which (Bi − Pi)/Bi is the highest as the steepest dimension, (line 16). The
whole hill-climbing loop starts in line 18, and the maximization loop along a dimension starts in line 26. Note
(line 21) that the first time a dimension is chosen as the steepest, the hill-climbing step equals to 1, however
if a dimension has been chosen previously, initial hill-climbing steps will be reduced to 0.5 because a certain
locality of the optimal configuration is assumed. Lines (37–64) perform the hill-climbing algorithm along the
steepest dimension. This subroutine perform tasks like changing the direction of the successive steps and its
refinement once a promising configuration has been found out.The algorithmcapacity is basically a binary
search ofλT

max that calls procedure (MFGC) in each iteration in order to calculate the blocking probabilities.

5.1 On the procedureMFGC

The procedureMFGC, which is invoked in the inner-most loop of our algorithm, isused to obtain the blocking
probabilities (p := MFGC(t,λn,µc,µr, b, C)). For this computation a fixed point iteration procedure is
required in order to obtain the value of the handoff request rates (see the end of Section 3). At each iteration
a multidimensional birth-and-death process must be solved. Solving this process, that in general will have a
large number of states, constitutes the most computationally expensive part of the algorithm.
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Table 1: Comparison of the HCO (with known prioritization order) and PMC algorithms with our algorithm for

different mobility factors (in Mflops)

We make use of the same enhancement explained in [4] to eliminate the fixed point iteration to compute the
handover arrival rates. Each run ofcapacity finds aλT

max so thatp ≤ pmax (within tolerance limit). Thus,
instead of using (2) to computeλh

i we use the expression

λh
i = λn

i

1 − Bn
i

µc
i/µ

r
i + Bh

i

(4)

Although (2) and (4) look very similar there is a substantialdifference between the two. In Eq. (4),λh
i is

explicitly defined whereas in (2) it is not asPn
i andP h

i depend onλh
i . Note thatp = pmax (within tolerance

limit) only when λT
max is the system capacity, but using (4) reduces considerably the computation cost and

therefore speeds-up the convergence rate of the algorithm.

6 Numerical Evaluation

In this section we evaluate the computational complexity ofour algorithm and compare it to the complexity of
the HCO and PMC algorithms.

For the numerical examples we considered a system with two services (N = 2), and to assess the impact of
mobility on computational complexity, five different scenarios (A,B,C,D and E) were considered with varying
mobility factors (µr

i /µ
c
i ). The set of parameters that define scenario A are:b = (1, 2), f = (0.8, 0.2),

µc = (1/180, 1/300), µr = (1/900, 1/1000), Bn = (0.02, 0.02), Bft = (0.002, 0.002); all tolerances have
been set toǫ = 10−2. By (3),Bh ≈ (0.01002, 0.00668) and thenpmax ≈ (0.02, 0.02, 0.01002, 0.00668).

For the rest of scenarios the parameters have the same valuesas the ones used in scenario A exceptµr
i , which

is varied to obtain four different mobility factor combinations: B)µr
1 = 0.2µc

1, µr
2 = 0.2µc

2; C) µr
1 = 0.2µc

1,
µr

2 = 1µc
2; D) µr

1 = 1µc
1, µr

2 = 0.2µc
2; E) µr

1 = 1µc
1, µr

2 = 1µc
2.

A comparison of the number of floating point operations (flops) required by the HCO and PMC algorithms
and our algorithm is shown in Table 1. The three algorithms were tested with the speed-up technique (see
Section 5.1). It is worth noting that, as expected, the values obtained for the optimal capacity computed using
the different methods were within tolerance in all tested cases.

Note that the HCO algorithm is provided with the prioritization order as input and therefore it does not
need to search for it as their authors propose, which is a substantial advantage in terms of computation cost.
Additionally, in its original version it does not implementthe speed-up technique introduced in [4], without
which the flops count is much higher than the one shown in Table1. For example, for scenario A, the HCO
algorithm with speed-up technique requires2, 20 and156 Mflops for C = 5, 10 and20 respectively, while
without the speed-up technique it needs5.7, 60.2 and438 Mflops, i.e. the speed-up technique divides the flop
count by a factor of about three.

Our algorithm performs better than the other algorithms. The gain factor ranges from4.9 to 17 with respect
to the HCO algorithm and from1.2 to 6.3 with respect to the PMC algorithm, with an average gain of10.3 and
2.81 for HCO and PMC algorithms, respectively.
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7 Conclusions

We proposed a new algorithm for computing the optimal setting of the configuration parameters for the Multiple
Fractional Guard Channel (MFGC) admission policy in multiservice mobile wireless networks. The optimal
configuration maximizes the offered traffic that the system can handle while meeting certain QoS requirements.

Compared to two recently published algorithms (HCO and PMC)ours, which is based on a simple and
intuitive hill-climbing approach, is less computationally expensive in all scenarios studied. Besides, the solution
space concept discloses a novel insight into the problem of determining the optimal configuration parameter
values of the MFGC policy, providing an heuristic evidence that the algorithm finds the optimal solution and
converges in all scenarios.
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