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Abstract—Using cellular networks for providing M2M connec-
tivity offers numerous advantages regarding coverage, deploy-
ment costs, security, management, among others. Nevertheless,
having a large number of M2M devices activated simultaneously
is difficult to tackle at the eNB and it causes complications in the
connection establishment. The random access channel (RACH) in
LTE-A is adequate for handling H2H communications. However,
for the efficient provision of simultaneous H2H/M2M communi-
cations, it is necessary to optimize the available access control
mechanisms, so that network overload is avoided and a better
QoS can be offered. Access Class Barring (ACB) has shown to
be effective in reducing the number of simultaneous contending
users. However, it is not clear how to dynamically adapt its
parameters, especially in highly dynamic scenarios with bursty
traffic as it can occur when M2M communications are involved.
We propose a reinforcement learning algorithm to adapt the
barring rate parameter of ACB. This algorithm can adapt it to
different traffic conditions, reducing congestion and hence the
number of collisions in the RACH. The results show that our
proposed mechanism increases the access success probability for
all the users while barely impacting H2H users and other KPIs.

Index Terms—Access class Barring (ACB); cellular-systems;
massive machine-to-machine communications; 5G; Mobile Traffic
Analysis.

I. INTRODUCTION

Internet of Things (IoT) is an important technology for the
upcoming generation of wireless systems due to its capacity
to provide connectivity for anyone/anything at any time and
any location. It is anticipated that there will be 29 billion
connected devices by 2022 [1], and the global mobile data
traffic will achieve 49 exabytes (1018 bytes) by 2021 [2].
Machine-to-machine (M2M) communication is one of the
fundamental parts for the realization of the IoT environment,
it makes use of cellular networks, such as LTE/LTE-A, as
they provide ubiquitous coverage thanks to a widely deployed
infrastructure, global connectivity, high QoS, well-developed
charging and security solutions, among others [3]–[5].

The ability to adapt to changing conditions while at the
same time providing new services is a constant challenge that
cellular network operators have to face and one that very
often implies new investments on infrastructure. At the same
time, the high level of success of mobile technologies and
their ability to easily recollect large amounts of information
on users’ behavior allows for a better understanding of the
demand on the network and hence the provision of new
solutions for the optimization of its resources. This type of
approach has been used for different purposes such as access
optimization and improvement of quality of service in 3G

networks [6], [7], or location management optimization [8],
among others.

In LTE-A, when a user equipment (UE) desires to access
the cellular network, it performs a random access procedure.
The random access channel (RACH) is used to signal a
connection request; it is allowed in predefined time/frequency
resources, hereafter random access opportunities (RAOs) [9],
[10]. The evolved Node B (eNB) has a number of preambles
available for initial access to the network. These preambles
are generated by Zadoff-Chu sequences due to their good
correlation properties [9], [11] and are transmitted by the UEs
for attempting the first access to the network, further details
are explained in Section III-A.

An important problem in cellular networks that has received
an important amount of attention is the management of the
massive number of connections of a large number of UEs,
e.g. M2M devices, because the RACH suffers from overload
in these scenarios [12], [13]. Building on this, the access class
barring (ACB) scheme has been included in the LTE-A Radio
Resource Control specification [10] as a viable congestion
control scheme. ACB is an access control scheme that redis-
tributes the UE accesses through time by randomly delaying
the beginning of the UE random access procedure according to
a barring rate and a barring time. The ACB scheme is further
explained in Section III-B.

There is a tradeoff between relieving congestion and the key
performance indicators (KPIs) of the network when the ACB
is operating and its parameters are adjusted adequately [14].
Therefore, the proper tuning of ACB parameters according
with the traffic intensity is extremely important but the 3GPP
does not specify how to do so dynamically. In this work, we
propose a Reinforcement Learning (RL) approach to adjust
dynamically the ACB barring rate. Concretely, we use Q-
learning, a well-known RL technique [15], to tackle the
dynamic tunning of the ACB barring rate so that the eNB
can continuously adapt it to the ever-changing network traffic.

Our main contributions are summarized as follows:

• A Q-learning algorithm is designed to dynamically and
autonomously tune the ACB barring rate in such a way it
can react rapidly to the changes of the traffic using local
information available at the eNB.

• Our proposed scheme is intelligent and does not require
any modification of the network specifications; we evalu-
ate our proposed scheme according with the KPIs defined
in the 3GPP specifications [10].

• Our experiments are based on realistic traffic behavior
by making use of traces from cellular network operators



to enhance the access control of simultaneous H2H and
M2M communications in LTE/LTE-A networks.

The rest of the paper is organized as follows. Section II
performs a review of the related work. Section III describes
in detail the LTE-A random access procedure and the ACB
scheme. Section IV presents the application of Q-learning to
the ACB scheme. Section V describes the experiments and
presents the numerical results. Finally, Section VI draws the
conclusions and presents the future work.

II. RELATED WORK

It is possible to find in the literature several works dealing
with the optimization of the ACB scheme in LTE/LTE-A net-
works both through static and adaptive approaches. However,
most of these works require considerable modifications to the
network specifications. In [16], a self-organizing mechanism
which aims to optimize the performance of the random access
procedure is proposed for M2M and H2H traffic. However,
unlike the standards, the authors assume that a control-loop
for congestion between the UEs and the eNB is available,
which creates more signaling. In [17], a dynamic mechanism
for access control in LTE-A is proposed, for the purpose of
reducing the impact that massive M2M communications can
have on H2H traffic. Also, in this work they differentiate
M2M traffic, allowing prioritization. However, this approach
modifies ACB so it is able to send different parameters
for different classes, in a similar way to extended access
barring [18]. Since the number of UEs trying to access the
cellular network is dynamic, and its number is not known
a priori, any mechanism that aims for an optimization of
ACB has to develop an estimation of this value. In [19], it is
proposed a dynamic scheme for ACB that uses a Kalman filter
and enhances the overall performance. Although in this work
no modifications are done over the ACB mechanism, it is not
possible to estimate the impact that M2M traffic has over H2H
traffic, since only the first one was considered. Also in [20], an
optimal value of the PACB parameter is obtained in the ideal
case where the eNB has all the information about the system,
and some heuristics which resemble this optimal solution are
provided, where one of them changes the parameter PACB and
the other changes both PACB and the number of preambles that
can be acknowledged. Yet, this solution assumes that when a
UE suffers a collision, it will retry in the following RAO,
which is not consistent with the LTE-A specifications.
There have already been proposals based on reinforcement
learning to optimize the access control of M2M UEs in cellular
networks. In [21], the authors propose a Q-learning approach
for a scenario where M2M and H2H traffic coexist. In this
case, the reinforcement learning scheme is performed only on
the M2M UEs to identify the moment on which they should
transmit. Nonetheless, this scheme does not consider ACB, or
the parameters that can enhance access control. In [22], the
authors propose a Q-learning approach that aims to adapt the
PACB as a function of the current traffic. However, they assume
that the eNB knows the total number of contending users on
each RAO to define the state space, which is not realistic.
Also, they only consider a single type of traffic.

III. LTE-A RANDOM ACCESS PROCEDURE

In this section, we provide a general overview of the random
access procedure in LTE-A networks. Then, we explain both
the contention-based random access in Section III-A and the
Access Class Barring in Section III-B.

Two modes were defined for the random access: contention-
free and contention-based. The former is used for critical
situations such as handover, downlink data arrival or position-
ing. The latter is the standard mode for network access; it is
employed by UEs to change the radio resource control state
from idle to connected, to recover from a radio link failure,
to perform uplink synchronization or to send scheduling
requests [23].

The random access attempts of UEs are allowed in pre-
defined time/frequency resources herein called RAOs. Two
uplink channels are required for this purpose; namely, the
physical random access channel (PRACH) for preamble trans-
mission and the physical uplink shared channel (PUSCH) for
data transmission. Particularly, the PRACH is used to signal a
connection request when a UE attempts to access the cellular
network. In the frequency domain, the PRACH is designed to
fit in the same bandwidth as six resource blocks of normal
uplink transmission (6 × 180 kHz); this fact makes it easy
to schedule gaps in normal uplink transmission to allow for
RAOs. In the time domain, the periodicity of the RAOs is
determined by the parameter prach-ConfigIndex, provided by
the eNB; a total of 64 PRACH configurations are available [9].
Thus, the periodicity of the RAOs ranges from a minimum of
1 RAO every two frames to a maximum of 1 RAO every
subframe, i.e., from 1 RAO every 20 ms to 1 RAO every
1 ms [13], [24], [9], [10].

As mentioned before, the PRACH carries a preamble (sig-
nature) for initial access to the network; up to 64 orthogonal
preambles are available per cell. In the contention-free mode,
collision is avoided through the coordinated assignment of
preambles, but eNBs can only assign these preambles during
specific slots to specific UEs. In the contention-based mode,
preambles are selected in a random fashion by the UEs, so
there is a risk of collision, i.e., multiple UEs in the cell might
pick the same preamble signature in the same RAO; therefore,
contention resolution is needed. In the sequel, we focus on the
analysis of the contention-based random access procedure.

A. Contention-Based Random Access Procedure
Before initiating the random access procedure, the UEs must

first obtain some basic configuration parameters such as the
RAOs in which the transmission of preambles is allowed.
The eNB broadcasts this information periodically through the
Master Information Block (MIB) and the System Information
Blocks (SIBs). Once the UE has acquired this information, it
may proceed with the four-message handshake illustrated in
Fig. 1. Next, we describe both the four-message handshake
and the backoff procedure. The interested reader is referred
to [10], [23], [25], [26] for further details.

RACH preamble (Msg1): Whenever a UE attempts trans-
mission, it sends a randomly chosen preamble in a RAO
(Msg1). Due to the orthogonality of the different preambles,
multiple UEs can access the eNB in the same RAO, using
different preambles. The eNB can, without a doubt, decode a
preamble transmitted (with sufficient power) by exactly one
UE and estimate the transmission timing of the terminal. In
this study, we assume that a collision occurs whenever two
or more UEs transmit the same preamble at the same RAO.
This goes in line with the 3GPP recommendations for the
performance analysis of the RACH [27] and with most of the
literature [14], [19], [28]–[31].

Random access response (Msg2): The eNB computes an
identifier for each successfully decoded preamble, ID =



Figure 1. LTE-A contention-based random access procedure.

f(preamble,RAO), and sends the Msg2 through the physical
downlink control channel (PDCCH). It includes, among other
data, information about the identification of the detected
preamble (ID), time alignment (TA), uplink grants (reserved
PUSCH resources) for the transmission of Msg3, the backoff
indicator (BI), and the assignment of a temporary identifier.

Exactly two subframes after the preamble transmission has
ended (this is the time needed by the eNB to process the
received preambles), the UE begins to wait for a time window,
WRAR, to receive an uplink grant from the eNB through Msg2.

There can be up to one RAR message in each subframe, but
it may contain up to three uplink grants. Each uplink grant is
associated to a successfully decoded preamble. The length of
the WRAR, in subframes, is broadcast by the eNB through the
SIB Type 2 (SIB2) [10]. Hence, there is a maximum number
of uplink grants that can be sent within the WRAR. Only the
UEs that receive an uplink grant can transmit the Msg3.

Connection request (Msg3): After receiving the corre-
sponding Msg2, the UE adjusts its uplink transmission time
according to the received TA and transmits a scheduled
connection-request message, Msg3, to the eNB using the
reserved PUSCH resources; hybrid automatic repeat request
(HARQ) is used to protect the message transmission.

Contention Resolution (Msg4): The eNB transmits Msg4
as an answer to Msg3. The eNB also applies an HARQ process
to send Msg4 back to the UEs. If a UE does not receive
Msg4 within the contention resolution timer, then it declares a
failure in the contention resolution and schedules a new access
attempt. For doing so, the failed UEs ramp up their power and
re-transmit a new randomly chosen preamble in a new RAO,
based on a uniform backoff scheme (explained next) that uses
the BI received with Msg2.

Note that each UE keeps track of its preamble transmissions.
When a UE has transmitted a certain number of pream-
bles without success, preambleTransMax notified by the eNB
through the SIB2 [10], the network is declared unavailable by
the UE, an access problem is indicated to upper layers, and

Figure 2. Access class barring scheme.

the random access procedure is terminated.
Backoff procedure: According to the LTE-A standard [23],

if the RA attempt of a UE fails, regardless of the cause, the UE
has to start the RA process all over again. For doing so, the
UE should first perform a backoff procedure. In this procedure,
the UE waits for a random time, TBO [ms], until it can attempt
a new preamble transmission as follows

TBO = U(0, BI), (1)

where U(·) stands for uniform distribution, BI is the backoff
indicator defined by the eNB, and its value ranges from 0 to
960ms. The value of BI is sent in the Msg2, which is read by
all the UEs that sent a RACH preamble in the previous RAO.
This means that every UE that did not get a Msg2, i.e., failed
attempt, receives the BI .

B. Access Class Barring
Access Class Barring (ACB) is a congestion control scheme

designed for limiting the number of simultaneous access
attempts from certain UEs according to their traffic charac-
teristics. For doing so, all UEs are assigned to 16 mobile
populations, defined as access classes (ACs) 0 to 15. The
population number is stored in UE’s SIM/USIM. Each UE
belongs to one out of the first 10 ACs (from ACs 0 to 9) and
can also belong to one or more out of the five special categories
(ACs 11 to 15). Thus, M2M devices may be assigned an AC
between 0 and 9, and if a higher priority is needed, other
classes may be used.

The main purpose of ACB is to redistribute the access
requests of UEs through time to reduce the number of ac-
cess requests per RAO. This fact helps to avoid massive-
synchronized accesses demands to the PRACH, which might
jeopardize the accomplishment of QoS objectives. Fig. 2
illustrates the ACB scheme [10], [18]. Note that ACB is
applied only to the UEs that have not yet begun its RA
procedure explained in Section III-A.

If ACB is not implemented, all ACs are allowed
to access the PRACH. When ACB is implemented,
the eNB broadcasts (through SIB2) mean barring times,
TACB ∈ {4, 8, 16, . . . , 512 s}, and barring rates, PACB ∈
{0.05, 0.1, . . . , 0.3, 0.4, . . . , 0.7, 0.75, 0.8, . . . , 0.95}, that are
applied to ACs 0-9. Then, at the beginning of the RA
procedure, each UE determines its barring status with the
information provided from the eNB. For this, the UE generates
a random number between 0 and 1, U [0, 1). If this number



is less than or equal to PACB, the UE selects and transmits
its preamble. Otherwise, the UE waits for a random time
calculated as follows

Tbarring = [0.7 + 0.6× U [0, 1)]× TACB. (2)

It is worth noting that ACB is only useful for relieving
sporadic periods of congestion, i.e., when a massive number
of UEs attempt transmission at a given time but the system is
not continuously congested. In other words, ACB spreads the
load offered to the system through time, but the total offered
load is not affected.

IV. REINFORCEMENT LEARNING APPROACH

Q-learning belongs to the category of temporal-difference
RL techniques that consist of learning how to map situations
to actions for maximizing a scalar reward. The learning is
achieved through the interaction with the environment, so that
the learner discovers which actions yield the highest reward
by trying them.

Through this approach, the eNB stores a value function
Q(s, a) that measures the expected reward from being on a
given state s and taking a given action a. In our model, the
action set A ={1, 2, .., 16} is composed of the actions that
change PACB to one of its possible values, seen in section
III-B. When the action chosen is a=1, then PACB=0.05, and
the rest of the values are mapped sequentially. When the action
chosen is a=16, then PACB=1 and the ACB mechanism is
turned off. Due to the characteristics of ACB, changes on
PACB can only be received by UEs through SIB2 messages,
being TSIB2 its periodicity. Hence, the Q-learning actions that
change PACB will only be taken before the transmission of
an SIB2. Following the specifications [10], throughout this
work we will use a value of 80 ms for TSIB2. A state s, is
defined as s =

(
NPT , CVNPT

,ΔNPT , PACB

)
, where NPT

is the mean number of preamble transmissions that the eNB
detected on the RAOs during a whole TSIB2, CVNPT

is the
variation coefficient of NPT for the same period, ΔNPT is the
difference of mean number of preamble transmissions between
the current period and the previous one, and PACB is the
ACB probability that affected UEs during this period. The
definition of states could be seen more clearly through Fig. 3.
In time n − 1 (which occurs just before the transmission of
SIB2(n)) the eNB decides to take an action an based on the
state sn−1. The information about the action (i.e PACB) is sent
in the following SIB2, and hence the access of UEs during
the following 16 RAOs will depend on this information. At
time n, just before sending SIB2(n+1), the eNB can calculate
the values of the state sn. For that, it will consider the 16
RAOs that lie between SIB2(n) and SIB2(n+1). It should be
noted that NPT >= WRAR ∗ NRAR, and that NPT only
accounts for the preamble transmissions that the eNB could
detect properly. Hence, it is a convenient indicator of the
load on the access procedure for the eNB. Although there
are 54 preambles available for the UEs, it was observed that
even in very congested scenarios, it was very unlikely that
NPT would grow beyond 30. Therefore, and considering that
these scenarios are related with very high congestion, and that
changes on PACB provide little or no improvement over the
KPIs of the system, we decided to aggregate all states where
NPT > 29. Hence, the possible values for NPT are between 0
and 29. On the other hand, the coefficient of variation values
CVNPT

∈ {0, 0.2, 0.4, 0.6, 0.8} were discretized to reduce the

Figure 3. State definition and TSIB2.

total number of states. Therefore, if the calculation of CVNPT

over the corresponding 16 RAOs lies between 0 and 0.19, the
value that will be considered to define a state will be 0. The
same procedure is done for the other intervals. The parameter
ΔNPT (n) is obtained as NPT (n) − NPT (n− 1). However,
this value is also discretized as follows: if it is higher than
0, then it will be set as 1; if it is equal to zero, it will be
set as 2; if it is smaller than zero, it will be set as 3. And
finally, PACB(n) is the barring factor that affected UEs during
the period n, that is, the value sent in SIB2(n).

As expected, the Q-value is updated according to the Q
function:

Q(s, a) = Q(s, a)+α∗ (R+γ ∗maxa′(Q(s′, a′))−Q(s, a));
(3)

where each one of the parameters in (3) are explained as
follows:
α is the learning rate that affects how aggressive the

algorithm is in adopting a new reward value into its Q-value.
A higher learning rate means the algorithm will adapt to a
new environment faster. For simplicity, we choose a fixed α
with non-zero value.
γ is the discount factor that affects the presence of the sum

of all future rewards in the current time slot. A very small
γ implies that the algorithm is not interested in the future
rewards as they may be irrelevant.
ε is the exploration probability. ε-greedy approach is used in

selecting an action. Let ε be a very small positive real number
and ε ≤ 1. Then, with probability ε, the algorithm chooses
equal-probably an action from the remaining feasible actions.
With probability 1−ε, the algorithm will select the action with
the highest Q-value value.
R is the reward, and it is a function of NPT , CVNPT

,
ΔNPT and PACB. Due to the many possible combinations, we
just show some of the possible state/reward combinations in
Table I. In general terms, we aim to maintain ACB off when
there is low occupation, and to decrease its value as traffic
grows to reduce congestion. According to our observations,
we consider that for NUL=15, a value of NPT ≥10 indicates
congestion, and the penalties/rewards reflect this observation.
The RL-based ACB implementation is shown in Algorithm 1.

V. EXPERIMENTS AND RESULTS

In this section, we evaluate the proficiency of our RL-based
ACB scheme in terms of three KPIs, namely the probability
to successfully complete the random access procedure, Ps; the
number of preambles transmitted by the successfully accessed
UEs, K, and the access delay, D.

A single cell environment is assumed to evaluate the net-
work performance; the system accommodates both H2H and
M2M UEs with different access request intensities. In order
to assess the RL-based ACB scheme based on realistic H2H
traffic behavior, we make use of call detail records (CDRs)
obtained from a telco. Concretely, the italian operator Telecom



Table I
SOME PENALTIES AND REWARDS ASSOCIATED TO ACTIONS ON RL-ACB

Penalty

PACB(s′) = 1, NPT > 10, CVNpt ≥ 0.2, ΔNPT > 0 -100

PACB(s′) ≥ 0.7, NPT > 10, CVNpt ≥ 0.2, ΔNPT > 0 -90

PACB(s′) ≥ 0.5, NPT > 10, CVNpt ≥ 0.2, ΔNPT > 0 -60

PACB(s′) ≥ 0.3, NPT > 10, CVNpt ≥ 0.2, ΔNPT > 0 -50

PACB(s′) ≥ 0.05, NPT < 7, CVNpt ≥ 0.4, ΔNPT > 0 -20

Reward

PACB(s′) = 1, NPT ≤ 3, CVNpt < 0.4, ΔNPT < 0 100

PACB(s′) ≥ 0.7, NPT ≤ 3, CVNpt < 0.4, ΔNPT < 0 80

PACB(s′) ≥ 0.5, NPT < 7, CVNpt < 0.4, ΔNPT < 0 40

PACB(s′) ≥ 0.3, NPT < 7, CVNpt < 0.4, ΔNPT < 0 80

PACB(s′) ≥ 0.05, NPT ≤ 10, CVNpt ≤ 0.2, ΔNPT < 0 40

Algorithm 1: RL-based ACB Scheme

Controller: Q-learning(S,A, γ, α, ε,R)
Input : S is the set of states, A is the set of actions,

γ is the discount factor, α is the learning
rate, ε is the exploration probability, R is the
reward

Local : real array Q[s,a], previous state s, previous
action a

1 Repeat until i = maxRAO
2 Select action a′ from A based on ε
3 if RAO(i) mod TSIB2 = 0 then
4 observe reward R(s, a′, s′) and state s′;
5 update Q(s, a) by (3);
6 else
7 end
8 s = s′

Italia made available in 2014 a set of data from its network
of the cities of Milan and Trento for what it defined as a “big
data challenge” [32]. These data provides an intensity measure
of data traffic for a constrained area, aggregated in periods
of 10 minutes during two months (november and december
of 2013). According to [33], the impact of data traffic on
the RACH procedure can be 50 times higher than that of
voice traffic, due mainly to the short-timed, high-frequency,
low-data volume connections of apps in background mode.
Although the data obtained from Telecom Italia is very useful
to evaluate the temporal and geographical differences of H2H
traffic for a specific service (data, voice, SMS), its values
are only proportional to real measurements, and therefore,
it is necessary to pre-process this data. In [33], it is stated
that a base station (eNB) can support up to 55 eRAB setups
per second in high load scenarios. Hence, we use this value
as a reference, and normalize the original data accordingly.
Since data from H2H traffic is aggregated every 10 minutes,
we assume that during this period the traffic is constant.
Considering H2H traffic as background traffic, we add M2M
traffic in each period and evaluate a heavy-loaded scenario
(30000 M2M UEs). This M2M traffic follows a Beta(3,4)
distribution over 10 seconds (2000 RAOs) as described in [27].
We measure the KPIs once the M2M UEs have completed their
random access procedure.

In this study, we consider the most typical PRACH config-

Table II
RACH CONFIGURATION

Parameter Setting

PRACH Configuration Index prach-ConfigIndex = 6
Periodicity of RAOs 5ms
Subframe length 1ms
Available preambles for
contention-based random access

R = 54

Maximum number of preamble
transmissions

preambleTransMax = 10

RAR window size WRAR = 5 subframes
Maximum number of uplink
grants per subframe

NRAR = 3

Maximum number of uplink
grants per RAR window

NUL = WRAR ×NRAR = 15

Preamble detection probability
for the kth preamble transmission

Pd = 1− 1
ek

[27]

Backoff Indicator BI = 20ms
Re-transmission probability for
Msg3 and Msg4 0.1

Maximum number of Msg3 and
Msg4 transmissions

5

Preamble processing delay 2 subframes
Uplink grant processing delay 5 subframes
Connection request processing
delay

4 subframes

Round-trip time (RTT) of Msg3 8 subframes
RTT of Msg4 5 subframes

uration, prach-ConfigIndex 6, in conformance to the LTE-A
specification [23], [27], where the subframe length is 1 ms
and the periodicity of RAOs is 5 ms. Also R = 54 out of 64
available preambles are used for the contention-based random
access and the maximum number of preamble transmissions
of each UE, preambleTransMax, is set to 10. Table II lists
additional parameters used throughout our analysis (unless
otherwise stated). Although there is a high variation of traffic
in H2H communications according to the day, time, or specific
geographical position of the cell, its intensity is significantly
smaller than that of M2M traffic. Hence, in this paper we focus
on one of the most occupied cells found in the traces (cell
5161) located in the center of the city, near the Milan Cathedral
at 4:20 pm, which is the time with the highest utilization on
november 16.

Fig. 4 depicts the temporal distribution of UE arrivals on
the above mentioned cell with a burst of M2M traffic. As it
can be seen, a congestion control mechanism is necessary;
besides, such a high number of preamble transmissions is
the consequence of the fact that the higher the number of
preamble transmissions in a RAO, the lower the probability
of a successful preamble transmission. This fact, in turn,
increases the probability of preamble re-transmissions in the
following RAOs, hence the probability of a successful pream-
ble transmission is further reduced. In Fig 7, we see the arrivals
per RAO when the static ACB with parameters PACB = 0.5
and TACB = 4 s is implemented. These parameter values were
picked based on a previous work [14] where it was identified
that the combination of low values of TACB with high values
of PACB leads to a reduction in the access delay; particularly,
the lowest access delay for a highly congested scenario given
an access success probability ≥ 0.95, is achieved when
PACB = 0.5 and TACB = 4 s. However, the number of
collisions is still high because the average number of preamble
transmissions surpasses the RACH capacity which is 20.05 in
a scenario with with 54 available preambles like this one [31].

For the experiments associated with Q-learning, unless



otherwise stated, the values used for training were α = 0.15,
γ = 0.7, and ε = 0.9. In this case, the algorithm was
trained for one day (november 15) and tested on november
16 on the cell with the highest occupation. The training
period was considered significant, since it represents around
6 × 105 epochs. Once the system was trained, we tested the
scenario on the day mentioned earlier with different seeds for
the M2M access distribution, which allowed us to test 200
different experiments. The results shown in Fig. 6 represent
the mean of these 200 experiments. As it can be seen, the
number of collisions was greatly reduced, and it is consistently
smaller than number of successful transmissions. This is
due to the fact that in our rewards/penalties system there
was a strong bias towards avoiding congestion. As a result,
the number of successful accesses and the number of first
preamble transmissions are very close for the whole measured
period. Also, the total number of preamble transmissions was
considerably reduced when compared to the LTE-A system,
and to the LTE-A system with static ACB. More importantly,
this reduction was achieved under dynamic conditions and by
adapting PACB accordingly. In Fig. 7 we can see the mean
value of PACB as it adapts to different rates of UE arrivals.
It can be seen that in the first RAO, PACB is equal to 1,
then it quickly decreases to around 0.25 when the number
of total preamble transmissions rises, but then grows again
as the traffic diminishes, until it goes back to 1, where it
settles. It should be noted that PACB changes dynamically with
a granularity of TSIB2, that is 16 RAOs. Hence, through an
appropriate setting of the Q-learning parameters, it is possible
to reduce collisions, although the cost is a higher delay.
In Table III, we can see different statistics for the same cell,
during the same time period, for the three different schemes
for access control. We separate the results for each type of
service (M2M and H2H), and obtain the KPIs defined at the
beginning of section V. Also, we add results corresponding
to the percentiles for K and D. It is evident from the results
that the solution without ACB suffers in terms of Ps and K.
However, it has the smallest delay. On the other hand, our
proposed Q-Learning based ACB reaches the best Ps, with
practically a 100% success. This is consistent with the results
seen earlier on Figure 6 and shows an improvement over
the solution with fixed ACB. Also, the Q-learning solution
reduces the mean number of preambles transmitted for M2M
communications, which are the ones responsible for the bursty
traffic. Also, our solution is able to reduce this KPI without
increasing considerably the mean number of preamble trans-
missions for H2H traffic. This is important, because one of the
main objectives when introducing M2M communications into
an LTE network is that it does not affect the current users.
In fact, the mean access delay for H2H users is lower for
the Q-learning scheme than in the solution with fixed ACB.
However, as expected, there is a trade-off, and this is reflected
on an increment on the delay for M2M communications. This
is expected since as it was shown in Figure 6 the collisions
were considerably reduced.

VI. CONCLUSIONS

In this work, we proposed a dynamic mechanism for the
setting of the ACB barring factor based on reinforcement
learning, in a scenario with both M2M and H2H communi-
cations. In order to provide a more realistic analysis of this
type of scenarios, the H2H traffic is obtained from CDRs. On
the other hand, the M2M traffic follows the structure defined
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Figure 4. Temporal distribution of UE arrivals (first preamble transmissions),
total preamble transmissions, collisions, and successful accesses per RAO, no
access control.
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Figure 5. Temporal distribution of UE arrivals (first preamble transmissions),
total preamble transmissions, collisions, and successful accesses per RAO
when static ACB(0.5,4s) is implemented.
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Figure 6. Temporal distribution of UE arrivals (first preamble transmissions),
total preamble transmissions, collisions, and successful accesses per RAO
when RL-based ACB is implemented.

in the LTE-A specifications. The proposed solution adapts
the ACB barring rate to sudden changes in traffic intensity,
adjusts this traffic to the random access channel capacity
consequently reducing the number of collisions and enhancing
the probability of successful access. Also, our results show that
although the enhancement of Ps can increase the access delay,
it does not have an important impact on H2H traffic, which
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Figure 7. Adaptation of PACB as a function of time using Q-learning

Table III
KPIS OBTAINED WHEN NO ACB IS IMPLEMENTED, WHEN STATIC

ACB(0.5,4S) IS IMPLEMENTED, AND WHEN OUR RL-BASED ACB IS

IMPLEMENTED - MASSIVE M2M + H2H SCENARIO

Key Performance Indicator No ACB ACB(0.5,4s) Learning-based ACB
M2M H2H M2M H2H M2M H2H

Success probability (%) Ps 30.86 60.22 97.12 99.60 99.99 100
Number of preamble
transmissions, K E [K] 3.46 2.38 2.49 1.56 1.85 1.62

K95 1.75 6.71 1.52 2.61 1.25 2.79
K50 1.10 1.22 1.04 0.00 1 0.00
K10 0.00 0.00 0.00 0.00 0.00 0.00

Access delay, D [ms] E [D] 67.94 45.61 4 155.7 3511.9 7757.6 3463.9

D95 182.25 145.13 15 839.0 13 649.0 20 924 15 164
D50 46.95 30.74 2 955 59.66 6 544 45.00
D10 15.00 15.00 17.00 15.00 17.00 15.00

is a necessary condition for the implementation of massive
M2M communications. The Q-learning algorithm is aimed
to reduce collisions, and therefore it has a slight impact on
access delay. In the future, we intend to implement a version
that focuses on optimizing this KPI while at the same time
evaluating the impact that other parameters of Q-learning have
over the performance.
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