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Abstract—Cognitive Radio (CR) networks are envisaged as the
key technology to realize dynamic spectrum access and solving
the scarcity of radio spectrum. Having a temporal characteriza-
tion of the spectrum white spaces in the primary network is a key
element for studying and designing radio resource management
mechanisms in CR networks. In that sense, most of the studies
in the literature rely on an ON-OFF model with exponentially
distributed on and off times. The usage of that model, however,
is principally based on its analytical tractability.

In this paper we propose a versatile Markovian model for
the duration of the spectrum white spaces. Our model builds
on a simple model of the channel holding time (CHT) in the
primary network and then matrix-analytic techniques are applied
to derive and analyze the duration of the white spaces. Despite
its simplicity, the proposed approach is proven to be able to
model very accurately scenarios where the CHT distribution is
of a more complex type not amenable to mathematical analysis.
Our numerical results show that the duration of the white spaces
exhibits a low sensitivity to the distribution of the channel holding
time beyond the mean.

I. INTRODUCTION

Cognitive Radio (CR) networks are envisaged as the key
technology to realize dynamic spectrum access. Such paradigm
shift in wireless communications aims at solving the scarcity
of radio spectrum [1]. The CR concept proposes to boost
spectrum utilization by allowing CR users (secondary users,
SU) to access the licensed wireless channel in an opportunistic
manner so that interference to licensed users (primary users,
PU) is kept to a minimum.

The idea of CR is undoubtedly compelling and its realiza-
tion will induce a huge advance in wireless communications.
However, there are many challenges and open questions that
have to be addressed before CR networks become practically
realizable [2]. Most of the existing studies and proposals rely
on some model of the spectrum availability resulting from PUs
activity. The ON-OFF model with exponentially distributed
on and off times is perhaps the most widely adopted model.
While that model might be adequate for some studies, in
some others it can fail to capture relevant features, which may
have an important impact. Hence, some research is necessary
to both asses the applicability range of simpler models (e.g.
the aforementioned exponential ON-OFF), and develop more
versatile models.

Here we consider a primary network (PN) on which the
channel holding time (CHT) distribution is known, and aim
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at modeling and studying the statistical properties of the
channel idle time. Specifically, we first employ a two-phase
Coxian distribution for the CHT in the PN and derive the
distribution for the duration of the channel idle time. Secondly,
the distribution of the channel idle time when the CHT is
lognormally distributed is computed by means of computer
simulation, and the results are compared with those obtained
analytically. Note that the channel idle time from the PN
viewpoint, is the channel available time from the secondary
network (SN) perspective. The assumption that the CHT
distribution is something known is motivated by the fact that it
has been extensively studied during the last two decades (see,
for instance, [3]–[8] and references there in). Furthermore,
almost all of the references cited above reported the CHT to
be of the lognormal type.

The study in [8] has a quite related motivation and objective
to ours: characterization and modeling of PU spectrum usage
in the cellular band to enable secondary usage of spectrum.
However, our target is the channel idle time which has not
been addressed there as the study focuses on a cellular network
with CDMA air interface. In [9] a statical characterization is
derived for the time interval during which there is at least
one idle channel among a pool of several channels. This is
different from our results as the idle time characterization that
is pursued in this paper refers to one channel. Moreover, in [9]
PUs are modeled by an ON-OFF process with exponential
sojourn times in ON and OFF states, whereas we allow a
more general model for the CHT (ON sojourn time). Finally,
in [10] a WLAN 802.11b is loaded with synthetic traffic and
the channel idle time is statistically characterized. While the
purpose of this work is quite similar to ours, the scenario is
significantly different as it addresses a network with a single
channel which is shared by using a contention based MAC. In
contrast, here the PN has several channels which are assigned
to the PUs during the whole session.

The rest of the paper is structured as follows. In Section II
we consider the case where the CHT is distributed according to
a two-phase Coxian distribution, and a matrix-analytic model
is developed and analyzed. Based on the results obtained in
Section II and on extensive computer simulations, Section III
presents a series of numerical experiments aimed at studying
the statistical properties of the channel idle time and showing
the applicability of our modeling approach. Finally, Section IV
concludes the paper.



II. MODEL DESCRIPTION AND ANALYSIS

We consider a PN that works according to a blocked calls
cleared model, e.g. a cellular network. The PN has a total
of c channels. Each channel can be used to serve exactly one
PU. Secondary users can dynamically access the channels that
are unused by the PN but must vacate the channel if a PU
appears in that particular channel. Upon arrival, a PU request
is assigned a channel from the pool of channels that are not
currently used by PUs (it may be or may not be used by a
SU). For the study carried out in this paper, the way in which
the PN selects a channel from its pool of idle channels will
have an impact on the results. Here we focus on a random
selection scheme, other schemes are left for further research.

We assume that PUs arrive according to a Poisson process
of rate λ. Such assumption has a theoretical support (if the
number of users is sufficiently large and they act indepen-
dently) [11] and has also been empirically confirmed (see, for
instance, [8]). The CHT of PUs is assumed to follow a two-
phase Coxian distribution.

Under the above considerations the PN can be described by
a M/Cox2/c/c model. We focus our attention in one of the c
channels, that will be referred to as the observed channel, and
study the random variable corresponding to the the time that
the channel remains idle (not used by a PU), that we denote
by Toff. Note that since the assignment scheme is random, it
makes no difference which of the c channels is the observed
one.

The distribution of Toff can be derived by considering a
CTMC model of the M/Cox2/c/c system (restricted to those
states with at least one idle channel: the observed channel)
plus an absorbing state that will be visited when an arrival is
assigned the observed channel. Then Toff is the time until the
CTMC reaches the absorbing state, i.e., Toff follows a phase-
type (PH) distribution with representation PH(α,S) [12].

Next, we introduce the parameter representation of the two-
phase Coxian distribution that models the CHT (referred to
as Cox2 hereafter) and then the construction of α and S is
described. The vector α contains the initial (t = 0) state
probabilities for each of the transient states and the matrix
S contains the transition rates among the transient states.

A. Coxian Distribution (Cox2)

The family of Coxian distribution is known to be a subfam-
ily of phase-type distribution. Then our Cox2 rv can be defined
by specifying its phase-type representation PH(αCox2,SCox2),
where αCox2 = [0 1] and

SCox2 =
[
−(µ1 + µ12) µ12

0 −µ2

]
=
[
−γ1 pγ1

0 −γ2

]
.

In the expression above two equivalent parameterizations have
been introduced. The first one employs the transition rates
(µ1, µ2, µ12 ≥ 0) among states, whereas the second one
employs the total outgoing rate from the transient states
(γ1, γ2 ≥ 0) and the probability of the process visiting state 2
after leaving state 1 (p).
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Fig. 1. State transitions.

The average and the variance are then easily found to be

E[Ton] =
1
γ1

+
p

γ2
and σ2 =

1
γ2
1

+
p(2− p)
γ2
2

.

B. State Space

Let us denote the state of the system by (i, j) where i
represents the number of busy channels (occupied by PUs)
and j is the number of these which are at the second stage of
their holding time. Then the set of transient states is

S :=
{
(i, j) : i = 0, 1, . . . , c− 1; j = 0, 1, . . . , i

}
.

The number of transient states is |S| =
∑c−1
i=0 (i+ 1) = c(c+

1)/2. In the sequel, whenever it is required, we assume that the
states in S are sorted in lexicographical order: (0, 0), (1, 0),
(1, 1), . . . , (c− 1, 0), (c− 1, 1), . . . , (c− 1, c− 1).

C. Transition Rates Matrix S

A diagram of the the transition rates is shown in Fig. 1
where the absorbing state is labeled as A.

Setting aside the absorbing state we observe that transitions
from state (i, j) go to states of the form (i ± 1, ·). Thus,
the matrix S has the same structure as the generator Q of a
quasi-birth-and-death (QBD) process [12], i.e., it has a block-
tridiagonal form

S =



A
(0)
1 A

(0)
0

A
(1)
2 A

(1)
1 A

(1)
0

. . . . . . . . .

A
(c−2)
2 A

(c−2)
1 A

(c−2)
0

A
(c−1)
2 A

(c−1)
1


.

The entries in A(i)
2 are the transition rates between states

of the form (i, ·) and (i− 1, ·). In particular the entry (k, l) in
A

(i)
2 ,
[
A

(i)
2

]
(k,l)

, is the transition rate from (i, k) to (i− 1, l).



Therefore A(i)
2 is of size (i+ 1)× i and is given by

A
(i)
2 = µ1


i

. . .
2

1
0 · · · 0 0

+ µ2


0 0 · · · 0
1

2
. . .

i

 .

Similarly,A(i)
0 delineates the transitions rates between states

of the form (i, ·) and (i+1, ·), and
[
A

(i)
0

]
(k,l)

is the transition

rate from (i, k) to (i+1, l). Therefore A(i)
0 is of size (i+1)×

(i+ 2) and is given by

A
(i)
0 =

(
1− 1

c− i

)
λ


1 0

1 0
. . .

...
1 0

 .
Finally, A(i)

1 delineates the transitions rates between states
of the form (i, ·) and (i, ·), and

[
A

(i)
1

]
(k,l)

is the transition

rate from (i, k) to (i, l) if k 6= l, or, if k = l, −
[
A

(i)
1

]
(k,k)

is
the total outgoing rate (including that going to the absorbing
state) from state (i, k). Therefore A(i)

1 is a square matrix of
size (i+ 1)× (i+ 1) and is given by

A
(i)
1 =


−d0 iµ12

. . . . . .
−di−2 2µ12

−di−1 µ12

−di

 ,
where dj = λ+ i(µ1 + µ12) + j(µ2 − µ1 − µ12).

D. Initial Probability Vector α

The initial probability of state (i, j), π0(i, j), is the probabil-
ity that at the beginning of a channel idle period the system is
at state (i, j) or, equivalently, the probability that upon depar-
ture a PU leaves behind the system at state (i, j). Since arrivals
and departures occur one at a time, the state probabilities seen
by arrivals are the same as those seen by departures (level
crossing law [13]) and, since arrivals are Poisson (by virtue
of the PASTA property [13]) the latter (and hence also the
former) are the same as the stationary probabilities. Therefore
the probabilities π0(i, j) can be obtained from the stationary
probabilities of the M/Cox2/c/c queue (denoted by p(i, j))
conditioned to the fact that there is at least one idle channel.

By observing that the M/Cox2/c/c queue is symmetric
(in the sense introduced by Kelly [14]) it follows that: i)
the distribution of the number of customers in the queue is
insensitive to the distribution of the service time (beyond its
mean) and ii) given the number of customers in the queue the
amounts of service effort each of the customers have received
are independent. Thus we can write

p(i, j) =
ai/i!∑c
k=0 a

k/k!

(
i

j

)
pi−j1 pj2,

where a = λE[Ton] and pl (l = 1, 2) is the probability
of being at stage l in the Markov process induced by the
Cox2 distribution. In other words, p1 and p2 are the stationary
probabilities of the CTMC whose generator is given by

QCox2 = SCox2 +
(
− SCox2e

)
αCox2,

where e is a column vector of ones of the appropriate size.
Upon conditioning on the fact that i < c and substituting

the expressions for p1 and p2 we can write

π0(i, j) =
ai/i!∑c−1
k=0 a

k/k!

(
i

j

)(
µ12

µ2

)j(
1 +

µ12

µ2

)−i
.

Finally, the initial probability vector α can be written as

α =
[
π0(0, 0) · · · π0(c− 1, 0) · · · π0(c− 1, c− 1)

]
.

E. Analysis

Phase type distributions is a well studied topic in applied
probability [12], [15]. Thus, having specified Toff as a PH
distribution allows us to study its properties by using well
established results. Specifically, in the next section, we employ
the following results. Recall that the PH representation of Toff
is PH(α,S) where the construction of α and S has been
detailed above.

The distribution function of Toff is given by

F (t) = 1−αetSτ ,

where τ = −Se is a column vector whose entries are the
transition rates to the absorbing state. One of the parameters
we employ in our numerical study is the 99th percentile (t99),
which can be obtained by solving the equation αet99Sτ =
0.01.

The n-th moment is given by E[Tnoff] = n!α(−S−1)ne.
Note, however, that here the derivation of the first moment
E[Toff] can be done in a more simple and general manner by
noting that

E[Ton]
E[Ton] + E[Toff]

=
a

c

(
1− Pb(a, c)

)
,

where Pb(a, c) denotes the blocking probability of a M/G/c/c
queue, which is given by the well-known Erlang-B formula.
Hence,

E[Toff] = E[Ton]
(

c/a

1− Pb(a, c)
− 1
)
. (1)

In order to characterize the tail behavior of Toff we focus
on its asymptotic decay rate defined as

η = − lim
t→∞

logP (Toff > t)
t

, (2)

which is equivalent to P (Toff > t) = 1 − F (t) = Ke−ηt +
o(e−ηt) as t → ∞, for some K > 0. Since Toff is a PH
distribution the above limit exists and −η is the eigenvalue of
S with the largest real part [12].
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III. NUMERICAL STUDY

Here the analysis of the previous section is applied through
a number of numerical experiments in order to study the main
characteristics of the channel idle time (Toff) as a function of
several system parameters.

Additionally, a computer simulation based study is carried
out for the case in which the CHT follows a lognormal
distribution (instead of Cox2). The simulation results are com-
pared with those obtained analytically. The main motivation
for considering a lognormal-distributed CHT is the fact that
there is a significant number of studies ( [3]–[8]) that report
a lognormal-based distribution for the CHT. Moreover, the
lognormal distribution is qualitatively different from the phase-
type distribution, the former is heavy-tailed while the latter
has an exponentially decaying tail. Hence, one may think that
a lognormal CHT could give rise to a Toff which could not
be satisfactorily modeled using an approach that relies on a
phase-type CHT, especially with a small number of phases.

In our results all times are normalized with respect to the
average CHT, i.e., we set E[Ton] = 1. Then we asses the
impact of varying the size, load condition and the variability
of the CHT. The system size is expressed as the number of
channels (c) in the primary network. The load condition is
measured in terms of the blocking probability (Pb) for the PUs.
We considered a typical worst-case target of Pb = 10−2, so
lower values of Pb correspond to a load condition outside the
busy-hour or to an over-provisioned network. The variability
of the CHT is expressed in terms of the coefficient of variation
of Ton, CV (Ton) = σ/E[Ton].

Figure 2 shows the mean value of Ton as a function of
the blocking probability for the different systems sizes. It
has been computed using the expression in (1) which does
not depend on the distribution of Ton beyond its mean. In
particular, the variability of the CHT has no impact and the
results are exactly the same for a Coxian or a lognormal
CHT. As one could expect the mean value of Toff decreases
when the load of primary users grows. More specifically that
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Fig. 3. Coefficient of variation.

trend is roughly linear on a log-log scale. It can also be
observed that, for a fixed value of the blocking probability,
the value of E[Toff] decreases for increasing values of the
number of channels, since resources are used more efficiently
by the primary network as a consequence of the statistical
multiplexing effect.

The rest of the characteristics of Toff that we study here
are its coefficient of variation, the 99th percentile and the
asymptotic decay rate. Unlike the mean value, they are ex-
pected to depend on the distribution of Ton beyond its mean. To
which extent they do depend on higher moments than E[Ton]
is something that we intend to explore here.

If Ton follows a lognormal distribution, which is defined by
two parameters, setting its mean and coefficient of variation
fully specifies the distribution. In contrast, the Cox2 depends
on three parameters (either γ1, γ2, p or µ1, µ2, µ12) and by set-
ting its mean and coefficient of variation γ2 and p are obtained,
while γ1 can vary freely in the interval (1/E[Ton],∞).

Figures 3 through 5 plot, respectively, the coefficient of
variation, the 99th percentile and the asymptotic decay rate
of Toff as a function of the coefficient of variation of Ton for
different values of the PN parameters c and Pb.

Given that we intend to compare the cases where Ton
distribution is lognormal and Cox2, a natural way for setting
γ1 would be to choose its value so that, in addition to the
mean and coefficient of variation, the 3rd or higher moments
of both distributions match. However, a series of numerical
experiments (not shown here due to the lack of space) led
us to the somewhat surprising conclusion that a constant
value for γ1 yields in general better results than setting it
by matching the 3rd or the 4th moment. The value of γ1 has
been determined experimentally for each of the parameters
of interest. For all the values in Figs. 3 and 4 we used
γ1 = 2.5, whereas for the values in Fig. 5 γ1 = 1.25 was
used. With those settings, the relative difference between the
values obtained using the lognormal distribution and the Cox2

was bounded by 1% for the values of Cv (Fig. 3) and t99
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(Fig. 4) and by 7% for the values of η (Fig. 5). For the sake of
clarity, Figs. 3 and 4 only plot the set of curves corresponding
to the Cox2 distribution. In Fig. 5 the curves for the lognormal
distribution are also plotted.

In Fig. 3 we observe that in general the variability of
Toff exhibits itself little variation and rather low values (1 <
Cv(Toff) < 1.11, even though the value of Cv(Ton) was
increased up to 9. Indeed, for values of Cv(Ton) above 6 the
variation of each curve is hardly noticeable. Different curves
show that Cv(Toff) increases when c or Pb increase, although,
as noted, differences are small.

Figure 4 reveals that t99 is approximately insensitive to
Cv(Ton). Again, a larger (higher c) or more loaded (higher Pb)
PN yields worse results from the SN perspective (lower t99).

The asymptotic decay rate depicted in Fig. 5. It can be also
observed here that the variability of Ton has a low impact on
the results.

IV. CONCLUSION

In this paper we have proposed a versatile Markovian model
for the duration of the spectrum white spaces. Our model
builds on a two-phase Coxian distribution for the channel
holding time in the primary network and then matrix-analytic
techniques are applied to derive and analyze the duration
of the white spaces. It is shown that the suggested model
yields highly accurate results when the channel holding time
distribution is of the lognormal type as has been reported in
the literature.

The numerical analysis has shown that the duration of the
white spaces exhibits a low sensitivity to the distribution of
the channel holding time beyond the mean. In contrast, the
size and the load of the primary network have an significant
impact. Larger or more loaded primary networks result in
worse characteristics from the perspective of the secondary
users.
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