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Abstract—We propose a call admission control policy and
prove that the CTMC that models the multiservice wireless
system enforcing the CAC scheme is reversible and its stationary
distribution is insensitive to the channel holding time distribution.

Index Terms—Call admission control, call blocking probability,
quality of service, wireless networks.

I. INTRODUCTION

TWO important quality of service measures for wireless
networks are the fraction of new and handover calls that

are blocked due to the lack of enough free resources. As
handover blocking is more annoying than new call blocking for
subscribers, efficient call admission control (CAC) strategies
can be used to reject new calls in order to reserve resources for
future handovers, while minimizing the impact on the blocking
rate of new calls.

Conventional trunk reservation policies for CAC lead to
continuous-time Markov chains (CTMC) whose state-space
cardinality grows very quickly with the number of channels
and services supported. Then, determining the stationary distri-
bution and parameters derived from it, like new and handover
probabilities, might become an unfeasible task [1].

We propose a probabilistic CAC policy for multiservice
wireless networks that supports different service classes (SCs)
and provides differentiated treatment to each arrival type
(new or handover). The CTMC that models the system is
reversible and its stationary distribution has a product-form,
which greatly simplifies its computation. In addition, the
stationary distribution is insensitive to the channel holding
time (CHT) distribution. An interesting feature of the proposed
policy is that the resource sharing among SCs, and between
new and handover calls of the same SC, can be controlled
independently. Our work has been motivated in part by the
study presented in [2], although we obtain results different
from the ones derived there.

In the next section we prove the reversibility and insensi-
tivity properties. For illustrative purposes, in Section III we
present a numerical example that confirms the insensitivity
property. Finally, in Section IV we present examples of both
reversible and non-reversible CAC policies.
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II. REVERSIBILITY AND INSENSITIVITY

Consider a cellular network with C channels that supports
J SCs. Since new and handover requests are distinguished,
the system handles 2J arrival types. We assume that new and
handover arrivals of the jth SC occur according to a Poisson
process with rates λnj and λhj , respectively. The CHT in a
cell is the minimum of the call duration and the cell residence
(dwell) time. We assume that it is exponentially distributed.
As shown below, this assumption on the CHT has no impact
on the results. We denote by µnj and µhj the CHT rates for
new and handover arrivals of the jth SC.

Let nnj and nhj be the number of ongoing calls of
the jth SC, 1 ≤ j ≤ J , initiated as new or han-
dover requests, respectively. For arrivals of the jth SC,
we define the following admission policy at state n =
(nn1, . . . , nnJ , nh1, . . . , nhJ): i) a new arrival is accepted with
probability aj (nnj) bj (nnj + nhj); ii) a handover arrival is
accepted with probability bj (nnj + nhj); where

aj = [aj (0) , aj (1) , . . . , aj (Mj − 1) , 0] ,
bj = [bj (0) , bj (1) , . . . , bj (Mj − 1) , 0] ,

(1)

0 ≤ aj (m) , bj (m) ≤ 1; 0 ≤ m ≤ (Mj − 1); Mj = bC/cjc;
and cj is the number of channels required to set up a call of
the jth SC. Clearly, aj and bj are vectors of probabilities,
and Mj is the maximum number of ongoing calls of the jth
SC (either initiated as new or handover) in the system.

Let us denote by c (n) =
∑J

j=1 (nnj + nhj) cj the number
of channels occupied in state n. Then, the CTMC {n(t)}t≥0

with state space S := {n | c (n) ≤ C, nnj , nhj ∈ N} is
reversible. For convenience, we prove it by showing that the so
called arrival and service processes of an equivalent queuing
network are reversible [3].

Consider a queuing network with 2J nodes, no waiting
facilities (loss network) and no internal routing, where new
arrivals of the jth SC are offered to node j and handover
arrivals of the jth SC are offered to node j + J . Assume
Poisson arrivals from outside the network with rates λj = λnj

and λj+J = λhj , and exponentially distributed services with
rates µj = µnj and µj+J = µhj , 1 ≤ j ≤ J . Let
x = (x1, . . . , x2J) be the vector whose ith component gives
the number of ongoing calls at node i, 1 ≤ i ≤ 2J . In
state x, an arrival to node j is accepted with probability
aj (xj) bj (xj + xj+J), while an arrival to node j + J is
accepted with with probability bj (xj + xj+J). In addition,
admission decisions are subject to the capacity constraint
c (x) ≤ C.
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Let us define the following transition rates for the CTMC
{x(t)}t≥0: i) q (x,x + ei) = γi (x) , if c (x + ei) ≤
C; ii) q (x,x− ei) = µi (x) pi (x) = µi (x); and iii)
q (x,x− ei + ek) = µi (x) pik (x) = 0, where ei is a 2J-
dimensional vector with component i set to 1 and 0 elsewhere,
µi (x) = xiµi and

γi (x) =

{
ai (xi) bi (xi + xi+J)λi if 1 ≤ i ≤ J ,
bi−J (xi−J + xi)λi if J + 1 ≤ i ≤ 2J .

We consider that after service completion at node i in state x,
a call is routed to node k with probability pik (x) = 0 , and
leaves the network with probability pi (x) = 1. Additionally,
γi (x) is the effective arrival rate to node i in state x, which
takes into account the impact of the admission policy. Then,
the CTMC {x(t)}t≥0 that describes the dynamics of the
queuing network is the same as {n(t)}t≥0, the one that
describes the multiservice wireless system under study.

For the considered queuing network, if there is a positive
function Φ that satisfies ∀i, 1 ≤ i ≤ 2J , and ∀x ∈ S that

Φ (x) = Φ (x + ei)µi (x + ei) , (2)

then the service process is reversible [3]. The function Φ (x) =∏2J
i=1 1/ (xi! µxi

i ) meets condition (2).
Likewise, if there is a positive function Λ that satisfies ∀i,

1 ≤ i ≤ 2J , and ∀x ∈ S that

Λ (x) γi (x) = Λ (x + ei) , (3)

then the arrival process is reversible [3]. Condition (3) is met
by function Λ (x) =

∏2J
i=1 λ

xi
i

∏J
j=1 αj (xj)βj (xj + xj+J),

where αj (u) =
∏u−1

k=0 aj (k) and βj (u) =
∏u−1

k=0 bj (k).
Thus, the stationary distribution of the CTMC that describes

the dynamics of the considered queuing network becomes
P (x) = P (0) Λ (x) Φ (x), x ∈ S\{0}, where P (0) is
obtained by normalization [3]. Equivalently, we obtain

P (n) = P (0)
J∏

j=1

nj−1∏
r=0

bj (r)
nnj−1∏

s=0

aj (s)
ρ

nnj

nj

nnj !
ρ

nhj

hj

nhj !
, (4)

where nj = nnj + nhj , ρnj = λnj/µnj and ρhj = λhj/µhj
1. Then, the blocking probabilities can be determined by

PB
nj = 1−

∑
n∈S

aj (nnj) bj (nnj + nhj)P (n) ,

PB
hj = 1−

∑
n∈S

bj (nnj + nhj)P (n) ,

where aj (Mj) = bj (Mj) = 0 as defined in (1).
When both the arrival and service processes are reversible,

then the queuing network process {x(t)}t≥0, and therefore
{n(t)}t≥0, are also reversible. In addition, their stationary
distributions are insensitive, in the sense that they depend on
the service time distribution at each node through the mean
only. In other words, when arrivals follow Poisson processes,
all key performance indicators obtained from the stationary
distribution, like blocking probabilities, are independent from
all traffic characteristics beyond the traffic intensity [3].

1Expression (4) leads to results different from the ones derived in [2]. For
a single SC system, setting J = 1 in (4) does not yield expression (3) of [2].
Also, expression (11) of [2] is not consistent with (4).
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Fig. 1. Service times are hyperexponentialy distributed with CV = 4.

III. NUMERICAL EVALUATION

For illustrative purposes, we compare the blocking proba-
bilities of the different arrival types obtained by equation (4)
with those obtained by simulation when service distributions
(CHTs) other than the exponential distribution are used, like
Erlang, hyperexponential, lognormal and bounded Pareto. The
results confirm the insensitivity property and the correctness
of (4).

Let the admission probabilities be defined by

aj (k) =

{
Ad

j if 0 ≤ kcj < Kj ,

Au
j if Kj ≤ kcj < Mjcj ,

bj (k) =

{
Bd

j if 0 ≤ kcj < Cj ,

Bu
j if Cj ≤ kcj < Mjcj .

This policy is a subclass of the one defined in Section II,
and therefore all previous results apply. Note that when Ad

j =
Bd

j = 1 and Au
j = Bu

j = 0, the resource sharing between the
SCs can be controlled by configuring {Cj}, while the resource
sharing between arrival types of the same SCs by configuring
{Kj}.

The system we study is defined by: J = 2, C = 30, c1 = 1,
c2 = 6, λn1 = 1/20, λn2 = 1/50, λh1 = 1/25, λh2 = 1/55,
µn1 = 1/100, µn2 = 1/5, µh1 = 1/100 and µh2 is chosen
to achieve that the traffic offered by handover arrivals of the
SC 2 is within the interval 0.1 ≤ Ah2 = λh2/µh2 ≤ 5.0. The
admission policy is defined as above with K1 = 7, K2 = 6,
C1 = 20 and C2 = 30. Then, a new arrival of jth SC in
state n is accepted with probability Ad

jB
d
j = 1, if nnjcj <

Kj and (nnj + nhj) cj < Cj , and rejected otherwise. While
a handover arrival is accepted with probability Bd

j = 1, if
(nnj + nhj) cj < Cj , and rejected otherwise.

In Fig. 1 continuous line curves were obtained using the
distribution in (4). Simulation results overlap the analytical
ones and therefore we only drew the 99% confidence intervals,
which are very narrow and almost inperceptible. Note that
CV refers to the coefficient of variation. Although not shown
here due to lack of space, narrower confidence intervals were
obtained for the Erlang (CV = 0.25), lognormal (CV = 1.0)
and bounded Pareto distributions. More precisely, for blocking
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Fig. 2. State and transition diagram loop.
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Fig. 3. State and transition diagram of a single service system.

probabilities above 1% the relative error defined as the radius
of the confidence interval divided by the blocking probability
value is lower than 3% for the last three distributions, while
it is lower than 5.5% for the hyperexponential one (shown
in Fig. 1). For the bounded Pareto distribution we used the
definition in [4]. We set the shape factor to α = 2.001, the
maximal value to H = 105 and adjusted the minimal value
(L) accordingly to achieve the desired mean, obtaining CVs
in the interval [1.51, 2.33].

IV. DISCUSSION

The CTMC that models the queuing network defined in
Section II is reversible if the Kolgomorov criterion is met for
all possible loops of the transition diagram [5], [6]. From the
loop shown in Fig. 2, the following condition is obtained:

pi (x + ej)
pi (x)

=
pj (x + ei)
pj (x)

, (5)

where pi (x), 1 ≤ i ≤ 2J , is the probability that an arrival to
the ith node in state x is accepted.

The well known multiple Guard Channel policies in mo-
bile networks are threshold type trunk reservation policies,
also known as cutoff priority policies. For them, pi (x) =
I (c (x + ei) ≤ ti), where I is an indicator function that is
1 when the condition is met and 0 otherwise. Then, type-i
arrivals see a system limited to ti channels and are accepted
depending on the occupation at arrival time. It is not difficult
to show that ∀i, k, 1 ≤ i, k ≤ 2J , condition (5) requires
that ti = tk, i.e., all SCs share the same threshold. As
a consequence, no differentiated treatment can be provided,
neither among SCs, nor between new and handover arrivals of
the same SC. In fact, the policy degenerates into a Complete
Sharing policy.

Conversely, if a trunk reservation policy was used, full bidi-
rectional connectivity between adjacent states of the CTMC

might be lost and therefore the detailed balance equations
would not hold. As detailed balance is a necessary condition
for reversibility [6], then the CTMC would not be reversible.
For illustrative purposes, Fig. 3 shows the state diagram of
the CTMC modeling a one cell system enforcing a trunk
reservation policy. The system parameters are: J = 1, C = 4
and c1 = 1. Then, a new arrival is accepted with probability
p (nn1 + nh1) = 1, if (nn1 + nh1) < 3, and rejected oth-
erwise. While handover arrivals are always accepted if free
resources are available. Note that bidirectional connectivity is
lost for the adjacent states inside the discontinuous line boxes.

While trunk reservation policies are classical policies
that take into account the total system occupation, if
{pi (x)} are a function of the total number of active
calls, i.e. {pi (b (x))}, b (x) =

∑J
j=1 (xj + xj+J), then

a new family of reversible policies can be obtained. Let
us define δ (m) = pi (m) /pi (m− 1) and ϕi = pi (0).
Then, γi (x) = λipi (M) = λiϕi

∏M
m=1 δ (m) is the

arrival rate to the ith node in state x, where M =
b (x). Functions Φ (x) =

∏2J
i=1 1/ (xi! µxi

i ) and Λ (x) =∏2J
i=1 (λiϕi)

xi
∏M

m=1 δ (m)M−m, meet conditions (2) and (3),
respectively. Therefore, the CTMC that models the queu-
ing network being considered, and therefore the associated
multiservice wireless network, is reversible and its stationary
distribution

P (x) = P (0)
2J∏
i=1

(ρiϕi)
xi

xi!

M∏
m=1

δ (m)M−m
,

where ρi = λi/µi, is insensitive to the CHT distribution.
Thus, in contrast to what is suggested in [2], trunk reser-

vation policies do not lead to reversible CTMCs unless fur-
ther restrictions are imposed. As an example, the Thinning
Scheme I proposed in [7] requires that ∀j, k, 1 ≤ j, k ≤ J ,
cj = 1 and µnj = µhj = µnk = µhk. These conditions
make the multidimensional CTMC to degenerate into a one
dimensional birth and death process, which is known to be
reversible and for which a product-form solution exists. The
scheme includes the guard channel and the fractional guard
channel schemes as special cases, although this only applies
within the restricted scenario defined above.
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