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Abstract In communication systems that guarantee seamless mobility of users across
service areas, repeated attempts occur as a result of user behavior but also as au-
tomatic retries of blocked requests. Both phenomena play an important role in the
system performance and therefore should not be ignored in its analysis. On the other
hand, an exact Markovian model analysis of such systems has proven to be infeasible
and resorting to approximate techniques is mandatory. We propose an approximate
methodology which substantially improves the accuracy of existing methods with a
negligible increase of the computational time from the human point of view. A nume-
rical evaluation of the model is carried out to investigate the impact on performance
of the parameters related to the retry phenomena. As a result, some useful guidelines
for setting up the automatic retries are provided. Finally, we also show how our model
can be used to obtain a tight performance approximation in the case where reattempts
have a deterministic nature.
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1 Introduction

The retrial phenomenon appears in multiple situations in telecommunications,

computer networking as well as in many other fields. In this paper we focus our

attention in a generic communication network that guarantees seamless mobility

to its customers by means of a cellular architecture. In these type of networks,

the network coverage area is divided into services areas, known as cells, and

customers, even those with an active communication, move across different ser-

vice areas of the network producing handovers. When a customer with an active

communication moves from one cell to another a so-called handover procedure

is executed to allocate the necessary resources in the new cell and release the

unused resources in the former cell. Nowadays, perhaps the most widespread and

popular example of this type of networks are the telephone cellular networks (2G

and 3G) but the current perspective is that in a near future a variety of tech-

nologies fitting into this category will be in place, e.g. Mobile IP, IEEE 802.16

(commercially known as WiMAX), which has recently incorporated mobility

into the standard [IEEE 802.16] and IEEE 802.20 [Bolton et al. 2007] (Mobile

Broadband Wireless Access, MBWA).

The phenomenon of repeated attempts has been studied, at least, since the

early 70’s [Jonin and Sedol 1970]. However the scenario under study in those

works is that of a classical telephone network where the effect of reattempts is

due to the customer’s behavior. In contrast, this paper deals with the case in

which reattempts appear not only when a customer is blocked but also when a

handover is blocked. In this paper we refer to the former as redials and to the

latter as (automatic) retrials and to both types together as reattempts. Blocked

handovers will be automatically retried until a reattempt succeeds or the user

moves outside the handover area. In the former case the session will continue

without the user noticing any disruption, while in the latter the session will

be abruptly terminated. In contrast, persistence of redials depends on the user

patience and an eventual abandonment results in session setup failure. Another

difference is that the maximum number of unsuccessful automatic retrials in a

row has a distribution, which is generally deterministic [Onur et al. 2002], set

by the network operator while redials are affected by the randomness of hu-

man behavior. In general, blocking a new session setup is considered to be less

harmful than blocking a handover attempt. When the session under considera-

tion is of streaming type, blocking a handover produces an abrupt termination

of the ongoing session, which results more annoying from the user perspective

than delaying the initiation of a new session. In the case of an elastic traffic

session [Bonald and Roberts 2003] the effect of tearing down a session is even

worse, as the amount of information transmitted so far is rendered completely

useless. Therefore, both types of reattempts have different characteristics and

should receive different priority by the admission controller, and as a conse-



quence two separate reattempt pools have to be considered in the analysis of the

system.

Although not all the aforementioned technologies include the automatic re-

trial in their technical specifications, we believe it is an option worth considering

in both standardization and network deployment as it reduces considerably the

abrupt termination of ongoing sessions. An example of technology that enables

automatic handover retrials is GSM. In this paper we give some tools and gui-

delines for configuring the automatic retrials properly.

To the best of our knowledge, the first and only paper that has conside-

red the effect on network performance of both types of reattempts (retrials and

redials) is [Onur et al. 2002]. The mathematical model of the system is of the

type of the multiserver retrial queue, for which it is known that an analytical

solution is not available [Artalejo and Pozo 2002] and one must resort to approxi-

mate models. Among the approximate models for the multiserver retrial queue

those based on a generalized truncation [Artalejo and Pozo 2002, Falin 1983,

Neuts and Rao 1990] offer a good tradeoff between precision an computatio-

nal complexity. Unfortunately, in our case a generalized truncation approach

cannot be applied since there are two different reattempt orbits (and conse-

quently an infinite and non-homogeneous state space in two dimensions) and

therefore we are forced to use an approximation based on finite truncated mo-

dels, which is expected to be less accurate than generalized truncated mo-

dels [Artalejo and Pozo 2002]. This type of approximation has already been em-

ployed in the context of cellular networks. Marsan et al. [Marsan et al. 2001]

consider a cellular network with only customer retrials and propose an approxi-

mate technique for its analysis. In [Domenech et al. 2005] a generalization of the

approximate method in [Marsan et al. 2001] is proposed for a system with only

a single retrial orbit showing a substantial improvement in the accuracy at the

expense of an acceptable increase of the computational cost. In this paper we

extend the approximation technique of [Domenech et al. 2005] to a system with

two different reattempt orbits (redials and retrials). The proposed method is em-

ployed to perform a numerical analysis of the system focusing on how redials and

retrials impact on the system performance. As a result of the study we give some

guidelines for setting up the automatic handover retrial capability. Additionally,

we propose an accurate approximation method to analyze the performance of

a system when retrials have a deterministic nature, i.e. the maximum number

of retrials or the time between consecutive reattempts take fixed values. To the

best of our knowledge all previous performance analysis of cellular systems with

retrials [Marsan et al. 2001, Tran-Gia and Mandjes 1997, Domenech et al. 2005]

assumed that the maximum number of retrials is geometrically distributed and

the time between consecutive reattempts is exponentially distributed.

The rest of the paper is structured as follows. [Section 2] describes the system



under study, while [Section 3] discusses the system model and the analysis met-

hodology. In [Section 4] the numerical analysis of the impact of retrials/redials is

carried out. Final remarks and a summary of results are provided in [Section 5].

2 System description

We consider a system with C resource units, being the physical meaning of a unit

of resources dependent on the specific technological implementation. Although

the solution can be extended to multiservice systems increasing the mathematical

complexity, we have considered only one service. More specifically, we consider

an application that uses the conversational bearer service like a voice session,

although it could be extended to an elastic traffic session. Moreover, and wit-

hout loss of generality, we consider that each user occupies one resource unit.

As shown in [Fig. 1] there are two arrival streams: the first one represents new

sessions and the second one handovers from adjacent service areas. Both arri-

vals are considered Poisson processes with rates λn and λh respectively, being

λ = λn + λh. For determining the value of λh we consider that the incoming

handover stream is equal to the outgoing handover stream, due to the system

homogeneity [Marsan et al. 1999]. For the sake of mathematical tractability, the

session duration and the residence time are exponentially distributed with rates

µs and µr, respectively. Hence, the channel holding time is also exponentially

distributed with rate µ = µr + µs and the mean number of handovers per ses-

sion when the number of resources is infinite is NH = µr/µs. Note that, in

order to keep the analytical model tractable, we have considered exponential

distributions for all the rv that describe time magnitudes. While for some of the

involved rv the statistical features may not be properly captured by an exponen-

tial distribution, when it comes to the impact on the performance parameters

of interest the exponential approximation is shown to be reasonable in a wide

range of scenarios [Orlik and Rappaport 2001, Khan and Zeghlache 1997].

Since the loss of a handover request or a retrial is less desirable than the

loss of a new session setup or a redial, we must include any kind of admission

control policy to guarentee a certain degree of Quality of Service (QoS). The most

widespread technique is to reserve some resources to highest priority flows, being

in our case handovers and their associated automatic retrials. This technique can

be generalized including a fractional reservation, and then, is called Fractional

Guard Channel (FGC) admission control policy. The FGC policy is characterized

by only one parameter t (0 ≤ t ≤ C). New sessions and redials are accepted with

probability 1 when there are less than L = ⌊t⌋ resources being used and with

probability f = t − L, when there are exactly L resources in use. If there are

more than L busy resources, new sessions and redials are no longer accepted.

Handovers and automatic retrials are only rejected when the system is completely
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Figure 1: System model.

occupied. Note that to analyze a system in which there is not an admission

control algorithm we must make t = C.

When an incoming new session is blocked, according to [Fig. 1], it joins the

redial orbit with probability (1−P 1
in) or leaves the system with probability P 1

in.

If a redial is not successful, the session returns to the redial orbit with probability

(1−Pin), redialing after an exponentially distributed time with rate µred. Redials

are able to access to the same resources as the new sessions.

Similarly, P 1
ih, Pih and µret are the analogous parameters for automatic re-

trials. Making P 1
ih = 0, at least one retrial will be performed. In that case, if

the system were so loaded that the probability of a successful retrial could be

considered negligible, the time elapsed since the first handover attempt until

the system finally gives up and the session is dropped will be a sum of X iid

exponential rv of mean µ−1
ret. In our model the discrete rv X follows a geome-

tric distribution with mean 1/Pih, hence the total time from the first attempt

until abandonment is described by an exponential rv of rate µ′
r = µretPih. In

the light of the above discussion, our model represents a situation in which the

blocked handover requests will keep retrying while the user remains within the

handover area, being the sojourn time modeled as an exponential rv of rate µ′
r.

In cellular networks, this assumption has been shown to have a low impact on

the performance measures of interest [Pla and Casares-Giner 2002].



Transition Condition Rate

(k, m, s) → (k + 1, m, s) 0 ≤ k ≤ L − 1 λ

k = L λh + fλn

L < k ≤ C λh

(k, m, s) → (k + 1, m, s − 1) 0 ≤ k ≤ C − 1 sµret

(k, m, s) → (k, m, s − 1) k = C sµretPih

(k, m, s) → (k + 1, m − 1, s) 0 ≤ k ≤ L − 1 mµred

k = L mµredf

(k, m, s) → (k, m − 1, s) k = L mµred(1 − f)Pin

L < k ≤ C mµredPin

(k, m, s) → (k − 1, m, s) 1 ≤ k ≤ C kµ

(k, m, s) → (k, m, s + 1) k = C λh(1 − P 1
ih)

(k, m, s) → (k, m + 1, s) k = L λn(1 − P 1
in)(1 − f)

L < k ≤ C λn(1 − P 1
in)

Table 1: Transition rates of the exact model.

3 System model and performance analysis

The model considered can be represented as a tridimensional (k,m, s) Conti-

nuous Time Markov Chain (CTMC), being the first dimension (k) the number

of sessions being served, the second dimension (m) the number of sessions in the

redial orbit and the third dimension (s) the number of sessions in the retrial or-

bit. The transition rates of this model are represented in [Table 3]. Additionally,

in [Fig. 2] we can see the transition diagram. The main mathematical features

of this queueing model are the fact of having two infinite dimensions (the state

space of the model is {0, . . . , C} × Z+ × Z+) and the space-heterogeneity along

them. This heterogeneity is produced by the retrial and redial rates, which res-

pectively depend on the number of customers in the retrial and the redial orbits.

It is known that the classical theory (see, e.g., [Neuts 1981]) is developed

for random walks on the semi-strip {0, . . . , C} × Z+ with infinitesimal transi-

tions subject to conditions of space-homogeneity. When the space-homogeneity

condition does not hold the problem of calculating the equilibrium distribution

has not been addressed beyond approximate methods [Bright and Taylor 1995,

Latouche and Ramaswami 1999]. Indeed, if we focus on the simpler case of mul-

tiserver retrial queues (with only one retrial orbit) it can emphasize the ab-

sence of closed form solutions for the main performance characteristics when

C > 2 [Artalejo and Pozo 2002].

As it is clear that in our case it is necessary to resort to approximate models

and numerical methods of solution, in [Domenech et al. 2005] we developed a
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Figure 2: Transition diagram of the exact model.

generalization of the approximation method proposed in [Marsan et al. 2001].

The new methodology can be applied to both retrial and redial orbits, reducing

the state space to a finite set by aggregating all states beyond a given occupancy

of the orbits: Qn (Qh) defines the occupancy from which the states in the redial

(retrial) orbit are aggregated. By increasing the values of Qn and/or Qh the

considered state space in the approximation is enlarged and the accuracy of the

solution improves at the expense of a higher computational cost.

Due to that aggregation two new parameters for each orbit are introdu-

ced. The parameter Mn denotes the mean number of users in the redial orbit

conditioned to those states where there are at least Qn users in the orbit, i.e.

Mn = E(m|m ≥ Qn). The probability that after a successful redial the number

of users in the redial orbit does not drop below Qn is represented by pn. For the

retrial orbit the parameters Mh and ph are defined analogously.

As a result of the aggregation the state space of the approximate model is

S = {(k,m, s) : 0 ≤ k ≤ C; 0 ≤ m ≤ Qn; 0 ≤ s ≤ Qh} where states of the form

(·, Qn, ·) represent the situation where at least Qn users are in the redial orbit.

Likewise the states of the form (·, ·, Qh) represent the situation where at least

Qh users are in the retrial orbit.

The transition rates for the approximate model are shown in [Table 2]. The



Transition Condition Rate

(k,m,s)→(k+1,m,s) 0≤k≤L−1 m<Qn; s<Qh λ

m<Qn; s=Qh λ+βh

m=Qn; s<Qh λ+βn

m=Qn; s=Qh λ+βn+βh

k=L m<Qn; s<Qh λh+fλn

m<Qn; s=Qh λh+βh+fλn

m=Qn; s<Qh λh+ f(βn+λn)

m=Qn; s=Qh λh+βh+f(βn+λn)

L<k≤C m<Qn; s<Qh λh

m<Qn; s=Qh λh+βh

m=Qn; s<Qh λh

m=Qn; s=Qh λh+βh

(k,m,s)→(k+1,m,s−1) 0≤k≤C−1 1≤s≤Qh−1 sµret

s=Qh αh

(k,m,s)→(k,m,s−1) k=C 1≤s≤Qh−1 sµretPih

s=Qh αhPih

(k,m,s)→(k+1,m−1,s) 0≤k≤L−1 1≤m≤Qn−1 mµred

m=Qn αn

k=L 1≤m≤Qn−1 mµredf

m=Qn αnf

(k,m,s)→(k,m−1,s) k=L 1≤m≤Qn−1 mµred(1−f)Pin

m=Qn αn(1−f)Pin

L<k≤C 1≤m≤Qn−1 mµredPin

m=Qn αnPin

(k,m,s)→(k−1,m,s) 1≤k≤C kµ

(k,m,s)→(k,m,s+1) k=C λh(1−P 1
ih)

(k,m,s)→(k,m+1,s) k=L λn(1−P 1
in)(1−f)

L < k ≤ C λn(1 − P 1
in)

Note: αn =Mnµred(1−pn), βn =Mnµredpn

αh =Mhµret(1−ph), βh =Mhµretph

Table 2: Transition rates of the proposed model.

associated infinitesimal generator, Q, for the proposed analytic model has the

following block tridiagonal structure, whose block size is (Qn + 1)(Qh + 1) ×



(Qn + 1)(Qh + 1):
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Matrices v define the different transitions between blocks, being v+ the matrices

that define transitions k → k+1 users in the system, v− the matrices that define

transitions k → k − 1, and v0 define transitions between states with the same

number of users.

In order to compute the steady-state probabilities of the system (π(k,m, s))

the actual values of the parameters Mn, pn, Mh and ph should be known. By

balancing the probability fluxes and equating the rate of blocked first attempts

that reattempt to the sum of the rates of successful and abandoning reattempts,

parameters Mn, pn, Mh and ph can be expressed in terms of the steady-state

probabilities. Following the procedure shown in Appendix A we obtain:

ph =

Qn
∑

m=0
π(C,m,Qh)

Qn
∑

m=0

[

π(C,m,Qh) + π(C,m,Qh − 1)
]

(1)

Mh =

λh(1 − P 1
ih)

(

Qn
∑

m=0

[

(π(C,m,Qh) + π(C,m,Qh − 1)
]

)

µret

(

C−1
∑

k=0

Qn
∑

m=0
π(k,m,Qh) + Pih

Qn
∑

m=0
π(C,m,Qh)

)
(2)

pn =
ζ1

ζ2
; Mn =

λn(1 − P 1
in)ζ2

µredζ3
(3)

where

ζ1 =

C
∑

k=L+1

Qh
∑

s=0

π(k,Qn, s) + (1 − f)

Qh
∑

s=0

π(L,Qn, s)

ζ2 =

C
∑

k=L+1

Qh
∑

s=0

[

π(k,Qn−1,s)+π(k,Qn, s)
]

+(1−f)

Qh
∑

s=0

[

π(L,Qn−1,s)+π(L,Qn,s)
]

ζ3 =

L−1
∑

k=0

Qh
∑

s=0

π(k,Qn,s)+[f + (1−f)Pin]

Qh
∑

s=0

π(L,Qn,s)+Pin

C
∑

k=L+1

Qh
∑

s=0

π(k,Qn,s)



The global balance equations, the normalization equation and Eqs. (1)–(3)

form a system of simultaneous non-linear equations, which can be solved using —

for instance— the iterative procedure sketched next: set pn = ph = 0, Mn = Qn

and Mh = Qh and compute the steady-state probabilities using the algorithm

defined in [Servi 2002], now compute Mn, pn, Mh, ph using Eqs. (1)–(3) and start

again. In all of our numerical experiments we repeated the iterative procedure

until the relative difference between two consecutive iterations was less than

10−4 for all four parameters.

The most common performance parameters used in communication systems

are the blocking probabilities of both new sessions (Pn
b ) and handovers (Ph

b ),

which are defined as the probability of being the system in a state where new

sessions or handovers are not accepted, respectively. Additionally, it is also used

the probability of having a handover failure, denoted as forced termination pro-

bability (Pft). Notwithstanding, other performance parameters can describe the

behavior of retrial systems more accurately. That performance parameters are

the immediate service probability (P x
is), the delayed service probability (P x

ds)

and the non-service probability (P x
ns), where x denotes new sessions (x = n) or

handover requests (x = h). P x
is is defined as the probability of a session being

served in its first attempt, P x
ds as the probability of obtaining service but not in

its first attempt and P x
ns the probability of leaving the system due to impatience

without having been served. Obviously, it must be met P x
is + P x

ds + P x
ns = 1.

Moreover, we define the mean number of redials (retrials) that performs every

new session (handover), being un (uh) and the mean number of users redialing

(retrying), defined by Nred (Nret).
Therefore, the computation of new session performance parameters is done

by using:

P
n
is =

L−1X
k=0

QnX
m=0

QhX
s=0

π(k, m, s) + f

QnX
m=0

QhX
s=0

π(L, m, s)

P
n
ds = λ

−1
n µred

h L−1X
k=0

Qn−1X
m=0

QhX
s=0

mπ(k, m, s) + Mn

L−1X
k=0

QhX
s=0

π(k, Qn, s)+

+ f

Qn−1X
m=0

QhX
s=0

mπ(L, m, s) + Mnf

QhX
s=0

π(L, Qn, s)
i

P
n
ns = λ

−1
n µredPin

h CX
k=L+1

Qn−1X
m=0

QhX
s=0

mπ(k, m, s) + Mn

CX
k=L+1

QhX
s=0

π(k, Qn, s)+

+ (1 − f)

Qn−1X
m=0

QhX
s=0

mπ(L, m, s) + Mn(1 − f)

QhX
s=0

π(L, Qn, s)
i
+

+ P
1
in

h
(1 − f)

QnX
m=0

QhX
s=0

π(L, m, s) +

CX
k=L+1

QnX
m=0

QhX
s=0

π(k, m, s)
i



P
n
b = P

n
ds + P

n
ns =

CX
k=L+1

QnX
m=0

QhX
s=0

π(k, m, s) + (1 − f)

QnX
m=0

QhX
s=0

π(L, m, s)

un=
µred

λn

(1−Pin)
h CX

k=L+1

Qn−1X
m=0

QhX
s=0

mπ(k, m, s)+Mnζ1 +(1−f)

Qn−1X
m=0

QhX
s=0

mπ(L, m, s)
i
+

+ (1 − P
1
in)
h
(1 − f)

QnX
m=0

QhX
s=0

π(L, m, s) +
CX

k=L+1

QnX
m=0

QhX
s=0

π(k, m, s)
i

Nred =
CX

k=0

Qn−1X
m=0

QhX
s=0

mπ(k, m, s) + Mn

CX
k=0

QhX
s=0

π(k, Qn, s)

And the expressions for handovers are:

P
h
is =

C−1X
k=0

QnX
m=0

QhX
s=0

π(k, m, s)

P
h
ds = λ

−1

h µret

hC−1X
k=0

QnX
m=0

Qh−1X
s=0

sπ(k, m, s) + Mh

C−1X
k=0

QnX
m=0

π(k, m, Qh)
i

P
h
ns =

µret

λh

Pih

h QnX
m=0

Qh−1X
s=0

sπ(C, m, s)+Mh

QnX
m=0

π(C, m, Qh)
i
+P

1
ih

QnX
m=0

QhX
s=0

π(C, m, s)

P
h
b =

QnX
m=0

QhX
s=0

π(C, m, s)

Pft =
NHP h

ns

1 + NHP h
ns

uh=
µret
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4 Results and discussion

In this section a number of numerical examples are presented with the pur-

pose of illustrating the capabilities and versatility of our model and the analysis

methodology. The numerical analysis is also aimed at assessing the impact on

performance of varying the values and/or distributions of the system parameters.

For the numerical experiments a basic configuration is used and then the

different parameters are varied, normally a single variation is introduced in each

experiment. Thus, unless otherwise indicated, the value of the parameters will

be those of the basic configuration: C = 32, NH = µr/µs = 2, µ = µr + µs = 1,

t = 31, Pih = Pin = 0.2, µred = 20, P 1
ih = P 1

in = 0, µ′
r = 10µr and then

µret = 100/3.
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Figure 3: Accuracy of the approximate methodology.

4.1 Accuracy of the proposed methodology

Here we evaluate the accuracy of the approximate analysis as a function of

Qh and Qn. For a given performance indicator I and given values of Qh and

Qn the relative error introduced by the approximate model is estimated by

ǫI(Qn, Qh) =
∣

∣

∣

I(Qn+1,Qh+1)
I(Qn,Qh) − 1

∣

∣

∣
.

In [Fig. 3] the relative error estimate is plotted as a function of Q = Qh = Qn

taking as performance indicators Nred and Nret. We have checked the behavior

of the proposed methodology using the basic configuration with three different

arrival rates, λn = 7, λn = 10.5 and λn = 14 in order to study the system in a

wide range of system load. With these values Pn
b (Ph

b ) takes values from 1.75%

(0.62%) to 44.91% (21.26%) when using λn = 7 and λn = 14 respectively which

should capture most of the scenarios of interest.

As it might be expected, except for a very short transient phase, the value

of ǫI(Qn, Qh) decreases when the values of Qh and Qn increase, and also, that a

higher load (given by λn) results in a poorer accuracy. The curves also show that

a good accuracy can be achieved with relatively low values of Q, having been

observed in all the numerical examples we have carried out. Moreover, in all the

numerical results shown hereafter the values of Qh and Qn have been chosen so

that ǫNred
(Qn, Qh) < 10−4 and ǫNret

(Qn, Qh) < 10−4.

4.2 Redimensioning with redials

Due to the human behavior, users normally redial if a previous attempt has

been blocked. Network operators, however, do not consider redials as such sim-

ply because they are not able to distinguish between first attempts and redials,
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therefore every incoming session is regarded as a first attempt. Without that dis-

tinction, a resource over-provisioning can occur because for each user requesting

a session whose first attempt is blocked several new session requests are actually

accounted (one per attempt). Obviously, the load that redials introduce into the

system must be taken into account but we must not consider them as fresh new

sessions.

In order to evaluate the magnitude of over-provisioning the following experi-

ment was carried out. We start from a basic situation in which the QoS objecti-

ves (Pn
b ≤ 0.05 and Pft ≤ 0.005) are fulfilled and consider several values of load

growth. For each value of the load increment, the amount of resources (C) is

redimensioned in order to meet the QoS objectives. The redimensioning process

is done using the complete model and a simplified model where redials are con-

sidered as added to fresh new calls, i.e. λ′
n = λn + λred, where λred = µredNred.

This last simplified model is shown in [Fig. 4]. [Fig. 5] shows a sample of re-

sults from the redimensioning process which reveal that ignoring the existence

of redials can produce a significant over-provisioning.

4.3 Impact of automatic retrial configuration

If the network operator enables the automatic retrial option the blocked hando-

ver attempts will be automatically retried while the user remains within the

handoff area. We consider a fixed mean sojourn time in the handover area

(µ′
r = 20/3) and study the impact of varying the retrial rate (µret). Note that

for varying µret while µ′
r is kept constant the value of Pih is varied accordingly

using their relationship, µ′
r = µretPih.



0 5 10 15 20
38

40

42

44

46

48

50

Load increase (%)

C

Complete model  
Simplified model

(a) Pin = 0.1.

0 5 10 15 20
35

40

45

50

55

60

65

70

Load increase (%)

C

Complete model  
Simplified model

(b) Pin = 0.

Figure 5: Resource redimensioning with redials.

[Fig. 6] shows that a higher value of µret results in a lower forced termination

probability but also a higher mean number of retrials per session. While the

former is a positive effect the later is not that much as it entails an increased

signaling load. In order to gain a further insight into the existing tradeoff between

Pft and uh we define the overall cost function CT = βλnPft + λhuh. The choice

of the value for β may depend on many factors and a suitable value can vary

widely from one situation to another, thus we have used a wide range of values,

β = {2, 5, 10, 15, 20, 50, 100}. We also explored the effect of varying the mean

sojourn time in the handover area 1/µ′
r (actually a normalized parameter with
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Figure 6: Performance parameters for different retrial configurations.

respect to 1/(Cµ) has been used Γ = Cµ/µ′
r).

The shape of cost curves in [Fig. 7(a)] shows the existence of an optimal

configuration point. Both the relevance of the optimal configuration point and

the value of the retrial rate at which it is attained increase when the weight

factor β is increased. Moreover, [Fig. 7(b)] shows that the optimal value of µret

is rather insensitive to the mean value of the sojourn time in the handover area.

4.4 Distribution of the maximum number and time between

reattemps

In real systems and for simplicity, the time between retrials as well as the ma-

ximum number of retrials per request use to take a deterministic value instead
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of an stochastic one [Onur et al. 2002]. In our model, however, in order to keep

the mathematical analysis tractable, we used an exponentially distributed time

between retrials and a geometric distribution for the maximum number of reat-

tempts. Here we validate these two assumptions with the help of a simulation

model. More concretely, a specific discrete-event simulator has been implemen-

ted in C. The simulation model is the same as the analytical model, except that

the less stringent assumptions necessary in the latter allowed to consider a wider

range of probabilistic distributions, namely: deterministic, erlangian and hype-



rexponential distributions, in addition to exponential distributions. Simulation

results have been obtained generating 107 new session arrivals to the system,

which offer very low confidence intervals in the performance parameters of in-

terest.

4.4.1 Time distribution between redials/retrials

We analyze the values of Pn
b , Ph

b , un and uh when the distribution of the time

between redials, retrials, or both are switched from exponential to deterministic,

keeping constant its mean value. From the results in [Figs. 8, 9] and other that

show the same conclusions, we determine that assuming an exponential distri-

bution for the time between redials and/or retrials has a negligible impact in all

the performance parameters of interest.

In addition to the exponential (CV = 1) and deterministic (CV = 0) dis-

tributions we also considered the hyperponential and erlang distributions. Note

that the coefficient of variation (CV ) of random variable X is the ratio of its

standard deviation to its mean, CVX = σX/E[X]. The variability, i.e. the CV ,

of the erlang distribution lies between that of the deterministic and the exponen-

tial distribution, 0 < CV < 1. In turn, the hyperponential distribution allows

a higher variability, CV > 1. Using the aforementioned distributions, we ran a

series of simulations covering a wide range of scenarios in order to evaluate the

impact that the variability of the time between redials has on the performance

parameters. In all cases, the mean of the distribution was the same, i.e. 1/µred.

[Figs. 10, 11] show a typical example of the results obtained. In general it can

be concluded that in practice, for all the performance parameters studied, the

sensitivity to the distribution of the time between redials is negligible. Obviously,

similar conclusions can be drawn for retrials.

As it can be noted in [Fig. 10] we have varied the system load to obtain a

wide range of blocking probabilities. Although blocking probabilities above 20%

are not acceptable working points, we have considered them because it is in this

situation when the retrial phenomenon becomes more noticeable and then it is

suitable for evaluation purposes. Besides, such severe overloads appear in some

scenarios, like emergency situations or in special dates.

4.4.2 Distribution of the maximum number of reattempts

We compare a geometric distribution (after each unsuccessful attempt the user

decides to abandon the system with probability Pi) with a deterministic distri-

bution (the users leave the system after d unsuccessful attempts). For making

these two options comparable the mean number of reattempts must be the same

in both cases. Note it is not the same as both distributions having the same
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Figure 8: Distribution of the time between reattempts: impact on Pn
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b .

Legend: XY , X (Y ) ≡ distribution for redials (retrials); M ≡ exponential, D ≡
deterministic.

mean as the distributions refer to the maximum number of reattempts and not

to the actual number of reattempts.

While the following discussion deals only with retrials it can be easily exten-

ded to redials as well. Let q denote the blocking probability for retrials (note

that in general q 6= Ph
b ), the average number of retrials is, in the geometric case,

uGeo
h =

∑

n≥1

Ph
b (1 − P 1

ih)((1 − Pih)q)n−1(1 − (1 − Pih)q) =
(1 − P 1

ih)Ph
b

1 − (1 − Pih)q
(4)
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and in the deterministic case,

uD
h = (1 − q)Ph

b [1 + 2q + 3q2 + . . . + (d − 1)qd−2] + dPh
b qd−1 = Ph

b

1 − qd

1 − q
(5)

If we assume that both q and Ph
b take approximately the same value in both

cases, by equating the right hand side of Eq. (4) and Eq. (5) we obtain

Pih =
1 − q

q(1 − qd)
(qd − P 1

ih) (6)

For a given value of d, by using the expressions for Ph
b and uh (see the end of
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[Section 3]) and Eqs. (4) and (6), the value of Pih that yields uGeo
h = uD

h can

be iteratively computed. The results shown in [Fig. 12] demonstrate that using

the adjusting procedure described above, our model can provide an excellent

approximation for the performance analysis of a system in which the maximum

number of retrials is a fixed number.
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5 Conclusions

In mobile communication systems like cellular networks, Mobile IP or the re-

cently defined IEEE 802.16e and IEEE 802.20 networks, mobile operators must

guarantee seamless mobility to its customers. In these networks, repeated at-

tempts occur due to user redials when their session establishments are blocked

and also due to automatic retries when a handover fails. The impact of both

phenomena plays an important role in the system performance and, therefore, it

should not be ignored. However, the main feature of the Markovian model des-

cribing such a complex system is the space-heterogeneity along the two infinite
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Figure 12: Analytical approximation of a deterministic maximum number of

retrials; d = 5, P 1
ih = 0.

dimensions. Due to this fact, we have developed an approximate methodology

that aggregates users in the retrial/redial orbit beyond a given occupancy and

that is able to get as much accuracy as desired.

A numerical evaluation of the system has been performed in order to evaluate

the impact of the reattempt phenomena in the system performance. We have

studied the effect of automatic retrials for handovers while the user remains into

the handover area, giving some guidelines to the network operators in order to

configure this behavior optimally.

Finally, we have shown how our model can be used to obtain a tight perfor-

mance approximation when the time between reattempts and maximum number



of reattempts are deterministic. Results of this approximate method are compa-

red against those obtained by simulation, concluding that the proposed method

is very accurate.
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TEC2004-06437-C05-01 and by Cátedra Telefónica de Internet y Banda Ancha
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A Computation of the approximate model parameters

By balancing the probability flux into and out of a particular set of states we

can compute Mn, pn, Mh and ph. In general, we define two sets of states Sa and

Sb and equate the transition rates between them, i.e. the balance equations:

∑

x∈Sa,y∈Sb

qxyπx =
∑

x∈Sa,y∈Sb

qyxπy

To compute parameters Mn and pn we define Qn different values for Sa and

Sb, being

S(i)
a = {(k,m, s) : 0 ≤ k ≤ C;m = i − 1; 0 ≤ s ≤ Qh}

S
(i)
b = {(k,m, s) : 0 ≤ k ≤ C;m = i; 0 ≤ s ≤ Qh}

for i ∈ [1, Qn]. Using these sets of states we will obtain a different balance

equation for each value of i:

– i = 1:

µred

L−1X
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QhX
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π(k,2,s)+fµred
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QhX
s=0

π(L,2,s)+

+µredPin

CX
k=L+1

QhX
s=0

π(k,2,s)=λn(1−f)(1−P
1
in)

QhX
s=0

π(L,0,s)+λn(1−P
1
in)

CX
k=L+1

QhX
s=0

π(k,0,s)

– i = 2:

2µred
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QhX
s=0

π(k,1,s)+2fµred

QhX
s=0

π(L,1,s)+2µred(1−f)Pin

QhX
s=0
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+2µredPin

CX
k=L+1

QhX
s=0

π(k,1,s)=λn(1−f)(1−P
1
in)

QhX
s=0

π(L,1,s)+λn(1−P
1
in)

CX
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QhX
s=0

π(k,1,s)



– ...

– i = Qn:

αn
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QhX
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QhX
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Summing all the balance equations:

µred
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Reordering the last equation and taking into account that the rate of blocked

first new sessions attempts is equal to the sum of the rates of successful and

abandoning redials, we obtain

λn(1−f)(1−P
1
in)

QhX
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in)
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QhX
s=0

π(k, Qn, s)=

=pnMnµred

L−1X
k=0

QhX
s=0

π(k, Qn, s)+pnfMnµred

QhX
s=0

π(L, Qn, s)+

+pnMnµred(1−f)Pin

QhX
s=0

π(L, Qn, s)+pnMnµredPin

CX
k=L+1

QhX
s=0

π(k, Qn, s) (7)



From the last balance equation (i = Qn):

λn(1−f)(1−P
1
in)

QhX
s=0

π(L, Qn − 1, s)+λn(1−P
1
in)

CX
k=L+1

QhX
s=0

π(k, Qn−1, s)=

=Mnµred

L−1X
k=0

QhX
s=0

π(k, Qn, s)+fMnµred

QhX
s=0

π(L, Qn, s)+Mnµred(1−f)Pin

QhX
s=0

π(L, Qn, s)+

+MnµredPin

CX
k=L+1

QhX
s=0

π(k, Qn, s)−pnMnµred

L−1X
k=0

QhX
s=0

π(k, Qn, s)−

−pnfMnµred

QhX
s=0

π(L, Qn, s)−pnMnµred(1−f)Pin

QhX
s=0

π(L, Qn, s)−

−pnMnµredPin

CX
k=L+1

QhX
s=0

π(k, Qn, s)

(8)

Summing Eqs. (7) and (8) we obtain:

λn(1−P
1
in)
h CX

k=L+1

QhX
s=0

�
π(k,Qn−1,s)+π(k,Qn,s)

�
+(1−f)

QhX
s=0

�
π(L,Qn−1,s)+π(L,Qn,s)

�i
=

= Mnµred

h L−1X
k=0

QhX
s=0

π(k, Qn, s)+f

QhX
s=0

π(L, Qn, s)+(1−f)Pin

QhX
s=0

π(L, Qn, s)+

+Pin

CX
k=L+1

QhX
s=0

π(k, Qn, s)
i

Finally, we can obtain the desired values for pn and Mn:

pn =
ζ1

ζ2
; Mn =

λn(1 − P 1
in)ζ2

µredζ3

where

ζ1 =
CX

k=L+1

QhX
s=0

π(k, Qn, s) + (1 − f)

QhX
s=0

π(L, Qn, s)

ζ2 =
CX

k=L+1

QhX
s=0

�
π(k,Qn−1,s)+π(k,Qn, s)

�
+(1−f)

QhX
s=0

�
π(L,Qn−1,s)+π(L,Qn,s)

�
ζ3 =

L−1X
k=0

QhX
s=0

π(k,Qn,s)+[f + (1−f)Pin]

QhX
s=0

π(L, Qn,s)+Pin

CX
k=L+1

QhX
s=0

π(k, Qn,s)



The computation of Mh and ph is similar, considering the following values

for Sa and Sb:

S(j)
a = {(k,m, s) : 0 ≤ k ≤ C; 0 ≤ m ≤ Qn; s = j − 1}

S
(j)
b = {(k,m, s) : 0 ≤ k ≤ C; 0 ≤ m ≤ Qn; s = j}

for j ∈ [1, Qh]. Using these sets of states we will obtain the next balance equa-

tions:

– j = 1:

µret

C−1X
k=0

QnX
m=0

π(k, m, 1) + µretPih

QnX
m=0

π(C, m, 1) = λh(1 − P
1
ih)

QnX
m=0

π(C, m, 0)

– s = 2:

2µret

C−1X
k=0

QnX
m=0

π(k, m, 2) + 2µretPih

QnX
m=0

π(C, m, 2) = λh(1 − P
1
ih)

QnX
m=0

π(C, m, 1)

– ...

– j = Qh:

αh

C−1X
k=0

QnX
m=0

π(k, m, Qh) + αhPih

QnX
m=0

π(C, m, Qh) = λh(1 − P
1
ih)

QnX
m=0

π(C, m, Qh − 1)

The sum of these balance equations is

λh(1−P
1
ih)

QnX
m=0

Qh−1X
s=0

π(C, m, s)=µret

C−1X
k=0

QnX
m=0

Qh−1X
s=0

sπ(k, m, s)+µretPih

QnX
m=0

Qh−1X
s=0

sπ(C, m, s)+

+Mhµret(1−ph)

C−1X
k=0

QnX
m=0

π(k, m, Qh)+Mhµret(1−ph)Pih

QnX
m=0

π(C, m, Qh)

and reordering the last expression:

λh(1−P
1
ih)

QnX
m=0

QhX
s=0

π(C, m, s)−λh(1−P
1
ih)

QnX
m=0

π(C, m, Qh)=µret

C−1X
k=0

QnX
m=0

Qh−1X
s=0

sπ(k, m, s)+

+Mhµret

C−1X
k=0

QnX
m=0

π(C, m, Qh)−phMhµret

C−1X
k=0

QnX
m=0

π(k, m, Qh)+µretPih

QnX
m=0

Qh−1X
s=0

sπ(C, m, s)+

+MhµretPih

QnX
m=0

π(C, m, Qh)−phMhPihµret

QnX
m=0

π(C, m, Qh)

Reordering the last equation and taking into account that the rate of blocked

first attempts of handover sessions is equal to the sum of the rates of successful

and abandoning automatic retrials, we obtain



λh(1−P
1
ih)

QnX
m=0

π(C, m, Qh)=phMhµret

C−1X
k=0

QnX
m=0

π(k, m, Qh)+phMhPihµret

QnX
m=0

π(C, m, Qh)

(9)

From the last balance equation:

λh(1−P
1
ih)

QnX
m=0

π(C, m, Qh− 1)=µret

h
Mh

C−1X
k=0

QnX
m=0

π(k, m, Qh)−phMh

C−1X
k=0

QnX
m=0

π(k, m, Qh)+

+MhPih

QnX
m=0

π(C, m, Qh)−phMhPih

QnX
m=0

π(C, m, Qh)
i

(10)

Summing Eqs. (9) and (10):

λh(1−P
1
ih)
� QnX
m=0

π(C, m, Qh)+

QnX
m=0

C, m, Qh−1
�
=

=Mhµret

�C−1X
k=0

QnX
m=0

π(k, m, Qh)+Pih

QnX
m=0

π(C, m, Qh)
�

Now, we are able to obtain the values for ph and Mh:

ph =

QnP
m=0

π(C, m, Qh)

QnP
m=0

�
π(C, m, Qh) + π(C, m, Qh − 1)

�
Mh =

λh(1 − P 1
ih)
h QnP

m=0

�
π(C, m, Qh) + π(C, m, Qh − 1)

�
µret

hC−1P
k=0

QnP
m=0

π(k, m, Qh) + Pih

QnP
m=0

π(C, m, Qh)
i


