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a b s t r a c t

In communication networks that guarantee seamless mobility of users across service
areas, reattempts occur as a result of user behavior but also as automatic retries of
blocked handovers. A multiserver system with two reattempt orbits is obtained when
modeling these networks. However, an exact Markovian model analysis of such systems
has proven to be infeasible and resorting to approximate methods is mandatory. To the
best of our knowledge all the existing methods are based on computing the steady state
probabilities. We propose another approach based on the relative state values that appear
in the Howard equations. We compare the proposed method with the most well-known
methods appeared in the literature in awide range of scenarios. The results of the numerical
evaluation carried out show that this solution outperforms the previous approaches
in terms of both accuracy and computation cost for the most common performance
parameters used in retrial systems.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The retrial phenomenon appears in multiple situations in telecommunications, computer networking as well as in many
other fields. An in-depth study of the bibliography on retrial queues can be found in [1]. In this paper we focus our attention
on a generic communication network that guarantees seamlessmobility to its customers bymeans of a cellular architecture.
In these types of networks, the network coverage area is divided into services areas, known as cells and customers canmove
across different cells of the network. When a customer with an active communication moves from one cell to another a so-
called handover procedure is executed to allocate the necessary resources in the new cell and release the unused resources
in the former cell. Nowadays, perhaps the most widespread and popular example of this type of network is the telephone
cellular networks — 2G and 3G. But the current perspective is that in the near future a variety of technologies fitting into this
category will be in place, e.g. Mobile IP, IEEE 802.16 [2] – commercially known asWiMAX –which has recently incorporated
mobility into the standard [2] and IEEE 802.20 [3] (Mobile Broadband Wireless Access, MBWA).
The phenomenon of repeated attempts in telecommunication systems has been studied, at least, since the 50s [4].

However the scenario under study in those works is that of a classical telephone network where the effect of reattempts
is due to the customers’ behavior. In contrast, this paper deals with the case in which reattempts appear not only when a
customer is blocked but also when a handover is blocked. An example of technology that enables handover reattempts is
GSM [5]. To the best of our knowledge, the first and only paper that has considered the effect on network performance of
both types of reattempts simultaneously is [6].
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Now, in this paper we refer to the former as redials and to the latter as (automatic) retrials, while we use the concept of
reattempt to refer to any of them. Blocked handovers will be automatically retried until a reattempt succeeds or the user
moves outside the handover area. In the former case the sessionwill continuewithout the user noticing any disruption,while
in the latter the session will be abruptly terminated. In contrast, persistence of redials depends on the user patience and
an eventual abandonment results in session setup failure. Another difference is that the maximum number of unsuccessful
automatic retrials is set by the network operatorwhile redials are affected by the randomness of human behavior. Therefore,
both types of reattempts have different characteristics and as a consequence two separate retrial pools have to be considered
in the analysis of the system.
The modeling of repeated attempts has been the subject of numerous investigations [7–9]. Two functional blocks are

typically distinguished in models which consider reattempts: a block that accommodates the servers and possibly a waiting
queue, and a block where users that reattempt are accommodated, usually called reattempt orbit. More concretely, the
mathematical model of the system under consideration is a multiserver retrial queue. Themost important characteristics of
the state space of this model are its two infinite dimensions due to the orbits and the non-homogeneity along them as the
reattempt rates dependon the number of users in the orbits. It is known that the classical theory [10] is developed for random
walks on the semi-strip {0, . . . , C}×Z+with infinitesimal transitions subject to conditions of space-homogeneity. Therefore
it is clear that in this case it is necessary to resort to approximate methods, even in a single reattempt orbit case. These
methods are usually grouped into three categories: approximations, finite truncated methods and generalized truncated
methods [11,12]. Although all the mentioned categories are in fact approximations, the first category is usually devoted
to methods that can be useful only in a certain domain of the system parameters or in special extreme cases [12, Section
2.8], [13]. Therefore we will direct our attention only to finite and generalized truncated methods. The finite truncated
methods replace the original infinite state space by a finite one, where steady state probabilities can be computed [14]. On
the other hand, generalized truncatedmethods replace the original infinite state space by another infinite but solvable state
space. This last type of method usually outperform the other two types [15], offering a good tradeoff between precision and
computational complexity.
All the approaches presented so far rely on the numerical solution of the steady state Kolmogorov equations of

the Continuous Time Markov Chain (CTMC) that describes the system under consideration. Very recently, however, an
alternative approach for evaluating infinite state space Markov processes has been introduced by Leino et al. [16–18]. The
new method, named Value Extrapolation (VE), does not rely on solving the global balance equations, but considers the
system in its Markov Decision Process (MDP) setting and solves the expected value from the Howard equations written for
a truncated state space. So far VE has been applied to simple retrial systems, being able to obtain very promising results in
comparison with the most widespread approximation methods used in the solution of retrial systems [19].
The main objective of this work is to tailor the VE method to a system with two reattempt orbits and compare its

performancewith the performance of other possible approximatemethods. This performance evaluation is done in a cellular
network scenario that guarantees seamless mobility to its users. We conclude that VE greatly outperforms the rest of the
methods throughout a wide range of scenarios not only in terms of accuracy, but also in terms of computation cost, so its
use is highly recommendable.
The rest of the paper is structured as follows. First, we describe the cellular network under study and its associatedmodel,

focusing on the reattempt behavior under consideration. In Section 3 we enumerate and explain the main features of the
methods we compare VE with. Section 4 is devoted to the description of VE and how it has been applied to the model under
study. A numerical study is performed in Section 5 and finally, a summary of the paper and some concluding remarks are
given in Section 6.

2. System description and model

We consider a cellularmobile networkwith a fixed channel allocation scheme andwhere each cell is served by a different
base station, being C the number of resources in the cell. The physical meaning of a unit of resource is dependent on the
specific technological implementation of the radio interface. Moreover, and without loss of generality, we consider that
each user occupies one resource unit. As shown in Fig. 1 there are two arrival streams: the first one represents new sessions
and the second one handovers from adjacent cells. Both arrivals are considered to be Poisson processes with rates λn and
λh respectively, being λ = λn + λh. For the sake of mathematical tractability, the channel holding time is assumed to
be exponentially distributed with rate µ. Moreover, in order to keep the analytical model tractable, we have considered
exponential distributions for all the randomvariables that describe timemagnitudes.While for some of the involved random
variables the statistical features may not be properly captured by an exponential distribution, when it comes to the impact
on the performance parameters of interest the exponential approximation is shown to be reasonable in a wide range of
scenarios [20,21].
In general, blocking a new session setup is considered to be less harmful than blocking a handover attempt. When the

sessionunder consideration is of streaming type, blocking ahandover produces an abrupt termination of the ongoing session,
which results more annoying from the user perspective than delaying the initiation of a new session. In the case of an elastic
traffic session [22] the effect of tearing down a session is even worse, as the amount of information transmitted so far
is rendered completely useless. Therefore we must include an admission control policy to guarantee the prioritization of
handovers – and retrials – over new sessions – and their associated redials – and therefore assure a certain degree of Quality
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Fig. 1. System model.

of Service (QoS). The most widespread technique is to reserve some resources to highest priority flows, being in our case
handovers and their associated automatic retrials. This technique can be generalized to a fractional reservation, the so-
called Fractional Guard Channel (FGC) admission control policy [23]. The FGC policy is characterized by only one parameter
defined by a real number t (0 ≤ t ≤ C). New sessions and redials are accepted with probability 1 when there are less than
L = btc1resources being used and with probability f = t − L, when there are exactly L resources in use. If there are more
than L busy resources, new sessions and redials are no longer accepted. Handovers and automatic retrials are only rejected
when the system is completely occupied. Note that to analyze a system inwhich there is not an admission control algorithm
we must make t = C .
When an incoming new session is blocked, according to Fig. 1, it joins the redial orbit with probability (1− P1in) or leaves

the system with probability P1in. If a redial is not successful, the session returns to the redial orbit with probability (1− Pin),
redialing after an exponentially distributed time with rate µred. Redials are able to access to the same resources as the
new sessions. Note that P1in and Pin model the impatience phenomenon of leaving the system without having been served.
Similarly, P1ih, Pih and µret are the analogous parameters for automatic retrials. Making P

1
ih = 0, at least one retrial will be

performed. In that case, if the systemwere so loaded that the probability of a successful retrial could be considered negligible,
the time elapsed since the first handover attempt until the system finally gives up and the session is dropped will be a sum
of X independent and identically distributed exponential random variables of mean µ−1ret . In our model the discrete random
variable X follows a geometric distributionwithmean 1/Pih, hence the total time from the first attempt until abandonment is
described by an exponential random variable. In the light of the above discussion, our model represents a situation in which
the blocked handover requests will keep retrying while the user remains within the handover area, being the sojourn time
modeled as an exponential random variable. In cellular networks, this assumption has been shown to have a low impact on
the performance measures of interest [24].
There are several performance parameters that are generally used to describe the behavior of these types of cellular

systems with retrials and redials. On the one hand, the widely used blocking probabilities for both new sessions (Pnb ) and
handovers (Phb ). On the other hand, the mean number of users redialing (Nred) and handovers retrying (Nret ) can describe
more accurately the reattempt phenomenon in this type of network.
The considered model can be represented as a tridimensional (k,m, o) CTMC, being the first dimension (k) the number

of sessions being served, the second dimension (m) the number of sessions in the redial orbit and the third dimension (o)
the number of sessions in the retrial orbit. The state space can be represented by:

S := {(k,m, o) : k ≤ C;m ∈ Z+; o ∈ Z+}.
The transition rates of this model are represented in Table 1. Additionally, in Fig. 2 we can see the transition diagram.

The main mathematical features of this queueing model are the fact of having two infinite dimensions – the state space of
the model is {0, . . . , C}×Z+×Z+ – and the space-heterogeneity along them. This heterogeneity is produced by the retrial
and redial rates, which respectively depend on the number of customers in the retrial and the redial orbits.

3. Solving methods

It is known that the classical theory – see, e.g., [10] – is developed for random walks on the semi-strip {0, . . . , C} × Z+
with infinitesimal transitions subject to conditions of space-homogeneity.When the space-homogeneity condition does not
hold the problem of calculating the equilibrium distribution has not been addressed beyond approximate methods [25,26].
Indeed, if we focus on the simpler case of multiserver retrial queues – with only one retrial orbit – it can be emphasized the
absence of closed-form solutions for the main performance characteristics when C > 2 [11].

1 For a real number x, bxc is the largest integer not greater than x.
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Table 1
Transition rates of the exact model.

Transition Condition Rate

(k,m, o)→ (k+ 1,m, o) 0 ≤ k ≤ L− 1 λ

k = L λh + f λn
L < k < C λh

(k,m, o)→ (k+ 1,m, o− 1) 0 ≤ k ≤ C − 1 oµret
(k,m, o)→ (k,m, o− 1) k = C oµretPih
(k,m, o)→ (k+ 1,m− 1, o) 0 ≤ k ≤ L− 1 mµred

k = L mµredf
(k,m, o)→ (k,m− 1, o) k = L mµred(1− f )Pin

L < k ≤ C mµredPin
(k,m, o)→ (k− 1,m, o) 1 ≤ k ≤ C kµ
(k,m, o)→ (k,m, o+ 1) k = C λh(1− P1ih)
(k,m, o)→ (k,m+ 1, o) k = L λn(1−P1in)(1−f )

L < k ≤ C λn(1− P1in)

Fig. 2. Transition diagram of the exact model.

Obviously to solve the system under study it will also be necessary to resort to approximate models and numerical
methods of solution. Although other approaches exist, for the comparison against VE we have chosen the three most well-
known methods that are able to solve the problem under study, being:
1. Double Truncation (DT): this method consists of a simple truncation for each orbit. Although it is expected to have low
accuracy, it is also the simplest method possible.

2. Double FM (DFM): this belongs to the family of finite truncated methods and was successfully applied to a system like
the one under study in [27].

3. Truncation and generalization (TNR): this method is a hybrid between a finite truncated and a generalized truncated
method, as it performs a truncation in the redial orbit and a generalization like the proposed in [28] for the automatic
retrial orbit. Note that we cannot use a generalization in both orbits simultaneously because the resulting model is not
solvable.

3.1. Double truncation (DT)

The easiest and more intuitive method to solve the proposed model lies in the truncation of the infinite dimensions of
the state space. The first time this method was applied to approximate the retrial phenomenon was in [29], where it was
applied to a single retrial orbit. In our case, it must be applied to both the redial and retrial orbits, truncating them beyond
levels Qn and Qh respectively and obtaining the next state space:

S := {(k,m, o) : k ≤ C;m ≤ Qn; o ≤ Qh}.
Obviously, by increasing the values of Qn and/or Qh the considered state space in the approximation is enlarged and the
accuracy of the solution is expected to improve at the expense of a higher computational cost.
The stationary probability distribution can be obtained by solving πQ = 0 along with the normalization condition. As

Q is a finite matrix this system can be solved by any of the standard methods defined in classical linear algebra. However,
we can exploit the block tridiagonal structure of Q using the algorithm 0 defined in [30], which allows us to reduce the
computational cost, although there are other proposals useful for that purpose like [31,32].
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3.2. Double FM (DFM)

As DT, DFMbelongs to the family of finite truncatedmethods [11]. Thesemethods consist of replacing the original infinite
state space by a finite one. However, DFM is more sophisticated than DT as it introduces in some sense the effect of the
truncated states.
In [33]we developed FM, a generalization of the approximationmethod proposed in [34]. Although developed initially for

a single orbit scenario, FMwas applied to a system like the one under study in [27]. In this case FM has been applied to both
retrial and redial orbits – resulting in DFM – reducing the state space to a finite set by aggregating all states beyond a given
occupancy of the orbits: Qn (Qh) defines the occupancy from which the states in the redial (retrial) orbit are aggregated. As
in DT, by increasing the values of Qn and/or Qh the considered state space in the approximation is enlarged and the accuracy
of the solution improves at the expense of a higher computational cost.
Due to that aggregation two new parameters for each orbit are introduced. The parameterMn denotes the mean number

of users in the redial orbit conditioned to those states where there are at least Qn users in the orbit, i.e.Mn = E(m|m ≥ Qn).
The probability that after a successful redial the number of users in the redial orbit does not drop below Qn is represented
by pn. For the retrial orbit the parametersMh and ph are defined analogously.
Therefore the aggregation of states produces the same approximate state space as DT:

S := {(k,m, o) : k ≤ C;m ≤ Qh; o ≤ Qh}.

However, in DFM states of the form (·,Qn, ·) represent the situation where at least Qn users are in the redial orbit. Likewise
the states of the form (·, ·,Qh) represent the situation where there are Qh or more users in the retrial orbit. The introduction
of the effect of the truncated states assures a better accuracy than the obtained by DT.
In order to compute the steady state probabilities of the system (π(k,m, o)) the actual values of the parametersMn, pn,

Mh and ph should be known. Following the procedure shown in [27] we can express parametersMn, pn,Mh and ph in terms
of the steady state probabilities:

ph =

Qn∑
m=0

π(C,m,Qh)

Qn∑
m=0

[
π(C,m,Qh)+ π(C,m,Qh − 1)

] . (1)

Mh =
λh(1− P1ih)

(
Qn∑
m=0

[
π(C,m,Qh)+ π(C,m,Qh − 1)

])
µret

(
C−1∑
k=0

Qn∑
m=0

π(k,m,Qh)+ Pih
Qn∑
m=0

π(C,m,Qh)
) . (2)

pn =
ζ1

ζ2
; Mn =

λn(1− P1in)ζ2
µredζ3

, (3)

where

ζ1 =

C∑
k=L+1

Qh∑
o=0

π(k,Qn, o)+ (1− f )
Qh∑
o=0

π(L,Qn, o).

ζ2 =

C∑
k=L+1

Qh∑
o=0

[
π(k,Qn − 1, o)+ π(k,Qn, o)

]
+ (1− f )

Qh∑
o=0

[
π(L,Qn − 1, o)+ π(L,Qn, o)

]
.

ζ3 =

L−1∑
k=0

Qh∑
o=0

π(k,Qn, o)+ [f + (1− f )Pin]
Qh∑
o=0

π(L,Qn, o)+ Pin
C∑

k=L+1

Qh∑
o=0

π(k,Qn, o).

The global balance equations, the normalization equation and Eqs. (1)–(3) form a system of simultaneous non-linear
equations, which can be solved using – for instance – the iterative procedure sketched next: set pn = ph = 0, Mn = Qn
and Mh = Qh and compute the steady state probabilities using the algorithm defined in [30], now compute Mn, pn, Mh, ph
using Eqs. (1)–(3) and start again. In all of our numerical experiments we repeated the iterative procedure until the relative
difference between two consecutive iterations was less than 10−3 for all four parameters.

3.3. Truncation and generalization (TNR)

While the two previous approximations consider a finite truncated method for each retrial orbit, this method considers
the use of a generalized truncated method in one of the two orbits. Obviously, we cannot use a generalized method for both
orbits as the resultingmodel would not be solvable. For this reason, we have applied a generalized truncatedmethod for the
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automatic retrial orbit and a finite truncatedmethod for the redial orbit. More specifically, we have used a simple truncation
as the finite truncated method for the redial orbit. This way the system considers only the states in which m ≤ Qn. On the
other hand, the method chosen for the retrial orbit is the method proposed by Neuts and Rao in [28]. This method, which
was proved to converge to the original model in [35], is based on the homogenization of the model beyond a given level Qh,
which supposes to restrict the maximum automatic retrial rate, i.e.

µret(o) =
{
oµret if o < Qh
Qhµret if o ≥ Qh.

Therefore, the resulting space state is defined by
S := {(k,m, o) : k ≤ C;m ≤ Qn; o ∈ Z+}.

With these two approximations we have to solve a systemwhich state space presents two finite dimensions and an infi-
nite one, being the infinite dimension homogeneous beyond a given levelQh. So,we can solve the resulting systemandobtain
the steady state probabilities making use of thematrix-geometric solutions for stochastic models proposed by Neuts in [10].

4. Proposed method: Value extrapolation

All the approximatemethods described in the previous sections compute the steady state probabilities using the balance
equations in order to obtain the desired performance parameters, i.e. they solve the linear system of equations:

π(s)
∑
s′
qss′ =

∑
s′
π(s′)qss′ ∀ s,

along with the normalization condition
∑
s π(s) = 1, where qss′ represents the transition rate from state s to s

′.
Very recently, however, an alternative approach for evaluating infinite state spaceMarkov processes has been introduced

by Leino et al. [16–18]. This approach, named Value Extrapolation (VE), does not rely on the probability of being in a certain
state, but in a newmetric called relative state values, that appear whenwe consider the system in its MDP setting. Formally,
anMDP can be defined as a tuple {S,A,P ,R}, where S is a set of states,A is a set of actions,P is a state transition function
andR is a revenue function. The state of the system can be controlled by choosing actions a fromA, influencing in this way
the state transitions. The transition functionP : S×S×A→ R+ specifies the transition rate to other states when a certain
action is taken at a given state. The first characteristic of VE is the necessity of the definition of a revenue function that must
be a function of the system state, i.e., r(s). Following the definition of the revenue function for every state, we will also have
a mean revenue rate of the entire process (r), which will be the performance metric we want to compute.
Once defined the MDP framework as well as the revenue function we are in a position to define the relative state values.

It is obvious that after performing an action in state s the system will collect a revenue for that action (r(s)), but, as the
number of transitions increases, the average revenue collected converges to r . The relative state value (v(s)) tells howmuch
is the difference between the total revenue incurred when the system starts at state s and the total revenue incurred in a
system for which the cost rate at all states is r . If we denote by tn the time instants in which there is a change in the system
state, then

v(s) = E

[
∞∑
n=0

(r(S(tn))− r)|S(t0) = s

]
.

The equations that relate revenues, relative state values and transition probabilities are the Howard equations defined
by:

r(s)− r +
∑
s′
qss′(v(s′)− v(s)) = 0 ∀ s.

There will be as many Howard equations as number of states, |S|. The number of unknowns will be the |S| relative state
values plus the expected revenue r , i.e., |S|+1 unknowns. As only the differences in the relative values appear in the Howard
equations, we can set v(0) = 0, so we will have a solvable linear system of equations with the same number of equations
as unknowns.
However, a finite number of Howard equations are needed to solve the system and, therefore, we need to truncate the

state space. Whereas the traditional truncation consists of doing qss′ = 0 ∀ s′ 6∈ Ŝ, VE performs a more efficient truncation.
Basically, VE considers the relative state values outside Ŝ that appear in the Howard equations as an extrapolation of some
relative state values inside Ŝ. The objective of VE is to find a function f (s) that interpolates some points (s, v(s)) for s ∈ Ŝ

so that it approximates also (s, v(s)) for s 6∈ Ŝ. It is important to choose a fitting function that makes the Howard equations
remain a closed systemof linear equations. Themost common fitting functions that accomplish that fact are the polynomials.
We can use all (s, v(s))-pairs of the state space into the fitting procedure – global fitting – or only a subset (Sf ) of them –
local fitting. The choice of Sf will highly depend on the relative state value we want to extrapolate. Note also that function
f (s) and set Sf need to be chosen so that parameters have unambiguous values, i.e. in the case of choosing a polynomial
as the fitting function, the number of different points in Sf has to be equal or greater than the number of coefficients in
the polynomial. Note that if the relative values outside Ŝ were correctly extrapolated, the results obtained by solving the
truncated model would be exact.
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Fig. 3. Transition rates when k < L.

Fig. 4. Transition rates when k = L.

Fig. 5. Transition rates when L < k < C .

4.1. Howard equations of the system

To obtain the Howard equations for a certain state of the system under study, we can classify these states into four
different cases depending on the number of sessions being served (k). We next describe such cases and their corresponding
Howard equations.

1. k < L: states in which both new sessions and handovers are accepted. The transition rates that go out from these states
are represented in Fig. 3. Therefore, the Howard equations related to these states are:

r(k,m, o)− r + λ[v(k+ 1,m, o)− v(k,m, o)] + kµ[v(k− 1,m, o)− v(k,m, o)]
+mµred[v(k+ 1,m− 1, o)− v(k,m, o)] + oµret [v(k+ 1,m, o− 1)− v(k,m, o)] = 0.

2. k = L: states in which handovers are accepted but new sessions are only accepted with probability f = t − L, being t
the parameter that characterizes the FGC admission control policy. Fig. 4 represents the transition rates going out from
these states, obtaining the next Howard equation:

r(L,m, o)− r + (λh + λnf )[v(L+ 1,m, o)− v(L,m, o)] + Lµ[v(L− 1,m, o)− v(L,m, o)]
+mµredf [v(L+ 1,m− 1, o)− v(L,m, o)] +mµred(1− f )Pin[v(L,m− 1, o)− v(L,m, o)]
+ λn(1− f )(1− P1in)[v(L,m+ 1, o)− v(L,m, o)] + oµret [v(L+ 1,m, o− 1)− v(L,m, o)] = 0.

3. L < k < C: states where handovers are accepted but new sessions are blocked, as shown in Fig. 5. That leads to the
Howard equation:

r(k,m, o)− r + λh[v(k+ 1,m, o)− v(k,m, o)] + kµ[v(k− 1,m, o)− v(k,m, o)]
+mµredPin[v(k,m− 1, o)− v(k,m, o)] + λn(1− P1in)[v(k,m+ 1, o)− v(k,m, o)]
+ oµret [v(k+ 1,m, o− 1)− v(k,m, o)] = 0.
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Fig. 6. Transition rates when k = C .

Table 2
Revenue function definition.

Performance parameters Symbol Value

Handover blocking probability Phb
r(k,m, o) = 1 for k = C , ∀m, ∀o
r(k,m, o) = 0 otherwise

New session blocking probability Pnb
r(k,m, o) = 1− f for
k = L, ∀m, ∀o
r(k,m, o) = 1 for k ≥ L, ∀m, ∀o
r(k,m) = 0 otherwise

Mean number of handovers retrying Nret r(k,m, o) = o ∀k, ∀m, ∀o
Mean number of users redialing Nred r(k,m, o) = m ∀k, ∀m, ∀o

4. k = C: states where both new sessions and handovers are blocked, being the transition rates as shown in Fig. 6 and their
corresponding Howard equations:

r(C,m, o)− r + λh(1− P1ih)[v(C,m, o+ 1)− v(C,m, o)] + Cµ[v(C − 1,m, o)− v(C,m, o)]

+mµredPin[v(C,m− 1, o)− v(C,m, o)] + λn(1− P1in)[v(C,m+ 1, o)− v(C,m, o)]
+ oµretPih[v(C,m, o− 1)− v(C,m, o)] = 0.

4.2. Revenue function

As performance parameters are not computed from the steady state probabilities as usual, it is important to explainmore
carefully how they are computed. For that purpose wemust set the inputs r(s) in the Howard equations properly in order to
make that the revenue rate of the entire process r is equal to the performance parameter we want to compute. In a nutshell,
r will be the parameter we want to compute if we let r(s) to be the value of that parameter when the system is in state s.
Table 2 gives several examples on how r(s) can be set in order to obtain certain performance parameters such as blocking
probability of handover requests, blocking probability of new session requests, mean number of handovers in the automatic
retrial orbit and mean number of new sessions in the redial orbit.
As an example, for the blocking probability of handover requests we define the revenue function to be one in those states

in which a handover is blocked, i.e. when r(C,m, o) = 1, ∀m,∀o, and zero otherwise.

4.3. Polynomial fitting and solution

Note that in the system under study the number of states is infinite because bothm and o can take any value in Z+, thus
some truncation is needed.We havemade a truncation similar to DT and DFM, obtaining a truncated state space defined by:

Ŝ := {s = (k,m, o) : k ≤ C;m ≤ Qn; o ≤ Qh}.
Therefore, in the system under study, we have truncated the state space beyond a value of Qn (Qh) for the occupancy

of the redial (automatic retrial) orbit. However, in the Howard equations of the truncated state space appear the relative
state value of some states that do not belong to the truncated state space, being v(C,m,Qh + 1)∀m and v(k,Qn + 1, o)
for k ≥ L and ∀o. Therefore, we must extrapolate these two sets of states to obtain a closed system of equations. We have
used a (ph − 1)th degree polynomial that interpolates the ph points in {(j, vj)|vj = v(C,m, j),∀m,Qh − ph < j ≤ Qh} to
extrapolate v(C,m,Qh+1). To extrapolate v(k,Qn+1, o) for k ≥ Lwe interpolate the pn points in {(i, vi)|vi = v(k, i, o), k ≥
L,Qn − pn < i ≤ Qn,∀o}. Note that including value extrapolation neither increase the computational cost nor increase the
number of Howard equations, remaining in |Ŝ| = (C + 1)× (Qn + 1)× (Qh + 1).
After some algebra, and using the Lagrange basis to reduce the complexity of the procedure, we obtain a simple closed-

form expression for the extrapolated value of both sets

v(C,m,Qh + 1)(ph) =
ph−1∑
j=0

(−1)j
(
ph
j+ 1

)
v(C,m,Qh − j), ∀m,
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and

v(k,Qn + 1, o)(pn) =
pn−1∑
i=0

(−1)i
(
pn
i+ 1

)
v(k,Qn − i, o), for k ≥ L and ∀ o.

As stated above, including VE for the truncated states into the original Howard equations we obtain a closed system
of linear equations, which can be expressed in its matrix form for simplicity reasons. Therefore the system can be seen as
xT = b, where x is a vector with the (C + 1)× (Qn + 1)× (Qh + 1) unknowns (r and the relative state values v(s)), b are
the negative relative state values for the different states and matrix T represents the matrix of coefficients.
Unfortunately, unlike DT, DFM and TNR methods, in order to solve the system xT = b, we cannot utilize methodologies

thatmake use of the block tridiagonal structure [30,31] to effectively solve such systems. Sowemust use a general procedure
to solve the linear system of equations, such as Gauss–Seidel, Gauss–Jordan or LU factorization methods.
A drawback of VE is that it is only able to compute one performance parameter each time we solve the system.

Notwithstanding we can overcome this drawback in the following way. In a general manner, the solution of the system
xT = b can be obtained using the inverse matrix of T by doing x = bT−1. Note also that choosing a different performance
parameter to solve will only affect to the values in b. Therefore, computing a second performance parameter will only
increase the computation expenses by the cost of the product bT−1, as the rest of the process – specially the computation
of the inverse matrix T−1 – is solved only once. Similarly, we can compute several performance parameters with a marginal
increase in the computation cost using LU factorization, as the first part of the procedure – the factorization, which is
supposed to be the most computation consumption part – is done only once for the matrix T.

5. Results and discussion

In this section a number of numerical examples are presented with the purpose of illustrating the capabilities and versa-
tility of our model and the analysis methodology. The numerical analysis is also aimed at assessing a comparison between
the proposed methodology and previous approaches not only in terms of accuracy but also in terms of computation cost.
For the numerical experiments a basic configuration is used and then the different parameters are varied, normally a

single variation is introduced in each experiment. Thus, unless otherwise indicated, the value of the parameters will be
those of the basic configuration: C = 10, t = 9, µ = 1, P1ih = P

1
in = 0, Pih = Pin = 0.2 and µred = µret = 1. The values of λn

and λh have been modified by means of the offered traffic ρ = λ/Cµ, being λ = λn + λh and taking λh = 2λn in all cases.

5.1. VE performance

5.1.1. Accuracy
The objective of this section is to study the performance of different extrapolation polynomials in a wide range of

scenarios. In Table 3 we show four numbers in each cell which correspond, from top to bottom, to the ‘‘exact’’ values of
Pnb , P

h
b , Nred and Nret . Obviously, as stated in Section 3, for the system under study we are not able to compute the exact

values of the most common performance parameters. For this reason, the first step is to assume that the exact value can
be obtained choosing increasing and sufficiently high values of the truncation level. More specifically, we ran all methods
presented in Section 3 and VE until the value of all the performance parameters under study had stabilized up to the 8th
decimal digit. It must be noted that, due to the introduction of the impatience phenomenon modeled by P1in, Pin, P

1
ih and Pih,

we will be able to consider values of ρ > 1.
Just the same as in the case of a single retrial orbit [15], the general trend is that the higher value of the truncation level,

the lower the relative error is. This is due to the fact that the system under consideration becomes more similar to the exact
model as truncation level increases. However, in the system under study, there are two different truncation levels that must
be specified, namely Qn and Qh. The purpose will be to determine the pair (Qn,Qh) that makes the cardinality of the problem
((C + 1)× (Qn + 1)× (Qh + 1)) as small as possible while a certain accuracy criterion is met. To fulfill these requirements
wemust define a direction of search to determine the desired (Qn,Qh) pair. To avoid an exhaustive search we have followed
the next algorithm in order to determine (Qn,Qh), similar to the one proposed in [36].

Algorithm: Calculation of the pair (Qn,Qh).
Step 0. Let Qn = 0 and Qh = 0.
Step 1. Increase successively Qn and Qh following the diagonal, i.e. Qn → Qn + 1 and Qh → Qh + 1, until it is satisfied that

|Ψ approx − Ψ exact |

Ψ exact
< 10−4,

being Ψ any of the values {Pnb , P
h
b ,Nret ,Nred}.

Let (QN ,QH) be the final values.
Step 2. Starting with (QN ,QH), decrease successively Qn (Qn → Qn−1) while

|Ψ approx − Ψ exact |

Ψ exact
< 10−4.

LetW1 = (a+ 1)(QH + 1), where a is the final value of Qn.
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Table 3
Exact values.

µred = 1 µred = 2 µred = 0.5 µred = 0.5
µret = 1 µret = 0.5 µret = 2 µret = 0.5

ρ = 0.4

0.0188 0.0190 0.0187 0.0184
0.0041 0.0041 0.0042 0.0040
0.0311 0.0177 0.0568 0.0555
0.0124 0.0234 0.0069 0.0225

ρ = 0.6

0.1394 0.1392 0.1385 0.1364
0.0434 0.0425 0.0440 0.0415
0.4046 0.2282 0.7292 0.7097
0.2091 0.3835 0.1159 0.3722

ρ = 0.8

0.4067 0.4029 0.4066 0.4113
0.1654 0.1613 0.1676 0.1642
2.0402 1.1027 3.7475 3.7703
1.1788 2.1649 0.6497 2.1943

ρ = 1.0

0.6873 0.6833 0.6876 0.7034
0.3481 0.3436 0.3493 0.3547
5.8427 3.0394 11.119 11.551
3.5960 6.7727 1.9276 7.0124

ρ = 1.2

0.8443 0.8438 0.8420 0.8539
0.5047 0.5043 0.5016 0.5119
10.986 5.6097 21.344 22.115
7.2880 14.115 3.7957 14.403

Table 4
Minimum complexity (Ω) to obtain relative errors lower than 10−4 in Pnb /P

h
b .

{µred, µret } ρ VE1 VE2 VE3 VE4 VE5 VE6

{1, 1}
0.4 25/30 12/12 16/16 25/25 36/36 49/49
0.8 144/144 49/72 64/72 49/35 36/36 49/49
1.2 484/506 342/342 240/36 98/120 121/132 99/120

{2, 0.5}
0.4 20/25 12/12 16/16 25/25 36/36 49/49
0.8 130/90 45/55 56/64 36/30 36/36 49/49
1.2 -/- 432/336 280/170 99/136 126/144 135/168

{0.5, 2}
0.4 20/25 12/12 16/16 25/25 36/36 49/49
0.8 160/160 66/110 80/100 56/49 36/42 49/49
1.2 -/- -/- 400/- 154/189 144/187 162/198

{0.5, 0.5}
0.4 25/30 9/9 16/16 25/25 36/36 49/49
0.8 224/160 100/121 90/100 48/35 36/36 49/49
1.2 -/- -/- -/- 168/280 195/196 441/378

Step 3. Starting with (QN ,QH), decrease successively Qh (Qh → Qh − 1) while
|Ψ approx − Ψ exact |

Ψ exact
< 10−4.

LetW2 = (QN + 1)(b+ 1), where b is the final value of Qh.
Step 4. IfW1 < W2 then the result of the algorithm is (a,QH). Otherwise, the result is (QN , b).
In short, we increase (Qn,Qh) along the diagonal until we obtain a system that fulfills the desired accuracy and later

we decrease both parameters separately following descendent directions of the coordinate axis and finally take the best
solution in terms of the cardinality of the problem. The rationale behind this last horizontal or vertical movement is the fact
that, generally, Qn 6= Qh, and this cannot be accomplished only with the diagonal movement, so the solution with this last
movement improves the initial diagonal movement.
In Tables 4 and 5 we show the minimum complexity of the problem needed to fulfill a relative error lower than 10−4

for different performance parameters, for different loads (ρ) and reattempt rates ({µred, µret}) and for different orders
of the extrapolation polynomial. More specifically, Table 4 refers to parameters Pnb and P

h
b and Table 5 is its equivalent

for parameters Nred and Nret . Note that VEx denotes the use of an extrapolation polynomial of order x for both orbits
(pn = ph = x + 1). Note also that the numbers shown in each cell represent the product (Qn + 1) × (Qh + 1) which
defines the complexity and it is denoted byΩ , although the cardinality of the problem should also include the factor (C+1).
Notwithstanding, we have omitted this factor as it is common to all cases. Therefore, the best order for the extrapolation
polynomial will be the one that has the lowestΩ , which is in bold in the table. Moreover, we denote by ‘‘-’’ those cases in
which the computer could not obtain a result because of lack of memory.2
From the results in Tables 4 and 5 we can conclude that there is not a clear choice in the order of the extrapolation

polynomial that can get the lowestΩ in all cases. Neither the lowest nor the highest orders offer the best results. When the

2 Results have been obtained using Matlab running in an Intel Core 2 Quad Q6600 with 4GB RAMmemory.
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Table 5
Minimum complexity (Ω) to obtain relative errors lower than 10−4 in Nred/Nret .

{µred, µret } ρ VE1 VE2 VE3 VE4 VE5 VE6

{1, 1}
0.4 36/35 12/15 16/16 25/25 36/36 49/49
0.8 117/132 110/90 72/48 35/25 42/36 49/49
1.2 380/81 255/272 160/180 196/156 64/90 121/121

{2, 0.5}
0.4 30/30 12/16 16/16 25/25 36/36 49/49
0.8 121/144 99/55 64/48 35/25 42/36 49/49
1.2 –/– 81/– 221/220 204/64 160/84 98/117

{0.5, 2}
0.4 36/35 12/15 16/16 25/25 36/36 49/49
0.8 171/56 105/120 48/60 45/36 48/49 49/49
1.2 –/– –/– –/275 230/120 240/162 140/144

{0.5, 0.5}
0.4 36/36 12/12 16/16 25/25 36/36 49/49
0.8 180/182 168/132 42/70 45/25 48/36 49/49
1.2 —/— –/– 375/425 396/336 285/168 506/506

Fig. 7. Computation cost when solving g performance parameters simultaneously.

load is not high (ρ = 0.4), VE2 offers the lowest complexities, due to the fact that VE3-VE6 offer the result of the minimum
Ω they require towork – e.g. to extrapolatewith VE4 at leastQn = Qh = 4 is needed and therefore theminimumΩ required
to use VE4 is (4+ 1)× (4+ 1) = 25. When the retrial orbits are more heavily loaded, VE4 is a good choice, as it offers low
values ofΩ and requires less points for the extrapolation than, for example, VE5. Moreover, in many cases in which VE4 is
not the best polynomial, theΩ that is able to get is not far from the optimal. Therefore, hereafter wewill use the polynomial
of order 4 (VE4) andwewill simply denote it as VE. Regarding the results obtained for the different performance parameters,
we can conclude that results are quite similar in all of them at least qualitative and, in many cases, also quantitatively.

5.1.2. Computation cost
Initially, a drawback of VE is that it is only able to compute a performance parameter each time the system is solved.

However, as sketched in Section 4, by solving several performance parameters simultaneously the computation cost is not
expected to increase linearly with the number of parameters. In Fig. 7 we show in dotted lines the computation time needed
to obtain a different number (g) of performance parameters. Moreover, as the different curves are very close to each other,
we also show in solid lines the relative value of the time with regard to the curve g = 1. Observing Fig. 7 it follows that
for a fixed value ofΩ the computation cost growth is negligible as we compute more performance parameters, having cost
growths lower than 3%whenwe compute four performance parameters instead of only one. However, it must also be noted
that the total computing time is, in all cases, very low. Finally, it is worth noting that the computation cost in VE does not
depend on the order of the extrapolation polynomial as it does not affect the size of the resulting system.

5.2. Comparison among different methods

5.2.1. Accuracy
The objective of this section is to compare the performance of VE with the methods described in Section 3 (DT, DFM and

TNR), which are based on the traditional approach of solving the steady state probabilities using the balance equations for
computing the performance parameters of interest.
In Table 6 we show the minimum values ofΩ needed to obtain a relative error lower than 10−4 for Nred. The results for

the rest of performance parameters have been omitted as Nred is usually the worst case for all methods and results are found
to be qualitatively equivalent for all performance parameters. We have studied a wide range of scenarios, modifying not
only the offered traffic ρ = λ/Cµ, but also the retrial rates and the proportion between these rates. We show in bold the
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Table 6
Minimum complexity (Ω) to obtain relative errors lower than 10−4 in Nred .

{µred, µret } ρ DT DFM TNR VE

{1, 1}

0.4 64 48 48 25
0.6 143 72 91 25
0.8 324 208 180 35
1.0 550 360 400 110
1.2 930 324 651 196

{2, 0.5}

0.4 56 49 48 25
0.6 132 100 99 25
0.8 304 176 182 35
1.0 522 378 196 108
1.2 – – 640 204

{0.5, 2}

0.4 63 40 45 25
0.6 150 112 90 25
0.8 325 242 225 45
1.0 – – – 72
1.2 – – – 230

{0.5, 0.5}

0.4 63 56 54 25
0.6 180 126 135 25
0.8 528 352 240 45
1.0 – – – 195
1.2 – – – 396

Table 7
Minimum complexity (Ω) to obtain relative errors lower than 10−4 in Nred .

Pi DT DFM TNR VE

0.0 – – – 95
0.2 324 208 180 35
0.4 196 100 126 25
0.6 156 99 108 25
0.8 121 90 88 25
1.0 110 90 80 25

Table 8
Minimum complexity (Ω) to obtain relative errors lower than 10−4 in Nred .

C DT DFM TNR VE

5 195 132 135 25
10 324 208 180 35
15 378 252 189 48
20 462 300 264 56
25 – 294 – 56

best results, i.e. those that offer the minimum complexity Ω . Results show that VE clearly outperforms classical methods
as it needs a much lower value of Ω to achieve the desired accuracy in all the scenarios under study. Moreover, and what
is probably more important, there are some scenarios where VE is the only method that is able to get a result due to the
complexity of those scenarios, produced by having low reattempt rates. Comparing the rest of the methods among them
we conclude that DT is the worst method, as it could be expected. The comparison between DFM and TNR is not so clear
because the number of cases where one outperforms the other is not far from the opposite.
Tables 7 and 8 show the comparison when other system parameters are modified. In these cases for fixed values of

ρ = 0.8 and µred = µret = 1 we have taken different values for the abandoning probability Pi = Pin = Pih in Table 7, and
for the system capacity, C , in Table 8.
In the case of considering different values for Pi we observe that VE outperforms the others methods in all cases. We

can also observe that the requiredΩ decreases as Pi increases, since the number of users retrying decreases as we increase
the abandoning probability Pi, and therefore we require a lower value of Qn/Qh to obtain a good accuracy. Moreover, VE
is the only method that is able to solve the scenario in which we do not consider the impatience phenomenon, i.e. where
Pi = 0. Note also that the complexity required by VE method is constant for values of Pi ≥ 0.4. We can conclude from this
observation that VE is being limited by the order of the extrapolation polynomial chosen – fixed to 4 as stated in the previous
section – and not by the system configuration.
In the case of modifying the value of C , we have also modified t accordingly using t = C − 1 in order to assure some

handover prioritization. The results show that VE also outperform the rest of the methods under study in all the studied
cases.
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Table 9
Time (s) needed to obtain relative errors lower than 10−4 in Nred .

{µred, µret } ρ DT DFM TNR VE

{1, 1}

0.4 0.086 0.125 0.106 0.047
0.6 0.339 0.310 0.435 0.047
0.8 1.255 3.710 1.368 0.098
1.0 3.577 15.33 4.798 0.448
1.2 8.875 11.36 11.17 1.111

{2, 0.5}

0.4 0.085 0.128 0.125 0.047
0.6 0.276 0.604 0.368 0.047
0.8 1.059 2.479 0.998 0.114
1.0 2.535 17.55 1.513 0.248
1.2 – – 5.709 0.669

{0.5, 2}

0.4 0.106 0.113 0.139 0.047
0.6 0.398 0.758 0.530 0.047
0.8 1.819 4.425 2.794 0.246
1.0 – – – 0.256
1.2 – – – 12.44

{0.5, 0.5}

0.4 0.104 0.167 0.150 0.047
0.6 0.500 0.975 0.732 0.047
0.8 3.282 14.47 3.790 0.246
1.0 – – – 1.583
1.2 – – – 9.908

Fig. 8. Computation time for different methods.

5.2.2. Computation cost
Although it is shown that VE clearly outperforms the other methods in terms of accuracy, it is also interesting to study

their associated computation cost. In Table 9 we plot the time needed to achieve a relative error of 10−4 for Nred using the
different methods under study. Results should be interpreted carefully, because computation cost highly depend on the
algorithm used to solve the resulting system of equations. More concretely, in order to computematrix R that appear in TNR
we have used the logarithmic reduction algorithm as proposed in [26, Section 8.4], using a precision of 10−6 for the iterative
procedure.Moreover, for solving the systems obtainedwith the DT, DFM and TNRmethodswe havemade use of the efficient
algorithm described in [30] that takes advantage of the block tridiagonal structure that presents the infinitesimal generator.
Unfortunately, the linear system of equations obtained in VE has no longer such a block tridiagonal structure, and therefore
wemust use a more general algorithm. More concretely, we have used LU factorization. Moreover, for VE we show the time
needed to compute four performance parameters simultaneously, i.e. g = 4. Table 9 shows that VE is faster than the other
methods under study.
From a practical perspective, it is perhaps more interesting to consider accuracy along with computation time. Fig. 8

shows a joint representation of both parameters. As the figure shows, VE yieldsmuch higher accuracy than any othermethod
for a given computation time. In Fig. 9 we show a similar result but now in terms of the number of floating point operations
(flops) instead of the computation time.
Therefore, the application of the VE approach can be strongly recommended, especially in those caseswhere computation

time is a concern. However it can be seen that in the system under study the computation times needed for any of the
methods are not very high from a human point of view. For that reason, the time results should be compared qualitatively,
as the time units may be different from just seconds when we solve more complex systems or when we have to solve the
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Fig. 9. Number of floating point operations (flops) for different methods.

basic retrial system several times – for example to balance the incoming handover rate to the outgoing handover rate, as
shown in [37].

6. Conclusions

In mobile communication systems like cellular networks, Mobile IP or the recently defined IEEE 802.16e and IEEE 802.20
networks, mobile operators must guarantee seamless mobility to its customers. In these networks, repeated attempts occur
due to user redials when their session establishments are blocked and also due to automatic retries when a handover fails.
The impact of both phenomena plays an important role in the system performance and, therefore, it should not be ignored.
The Markovian model describing such a complex network is a multiserver retrial system that presents space-heterogeneity
along two infinite dimensions. However,when the number of servers is higher than two the absence of closed-form solutions
for the main performance characteristics can be emphasized, so it is mandatory to develop approximate methods. To the
best of our knowledge, all the methods studied in the literature to solve these systems are based on their steady state
probabilities. In this paper we propose an alternative method based on a different metric: the relative state values and the
Howard equations that relate them. This method performs an efficient truncation of the state space, because the relative
state values just outside the truncated state space are extrapolated using some known relative state values.
We have compared the proposed method with the most well-known approaches appeared in the literature so far. The

results show that the proposed method greatly outperforms previous approaches not only in terms of accuracy, but also
in terms of computation cost. Moreover, we have shown that in some scenarios the proposed method is the only one that
is able to guarantee a certain accuracy. For all those reasons the proposed method is highly recommendable to solve these
types of systems.
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