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Abstract

In this paper we study the impact of incorporating handover prediction information into the session
admission control process in mobile cellular networks. The objective is to compare the performance of
optimal policies obtained with and without the predictive information. A prediction agent classifies mobile
users in the neighborhood of a cell into two classes, those that will probably be handed over into the cell and
those that probably will not. We consider the classification error by modeling the false-positive and non-
detection probabilities. Two different approaches to compute the optimal admission policy were studied:
dynamic programmingandreinforcement learning. Results show significant performance gains when the
predictive information is used in the admission process.

1 Introduction

Future mobile communication systems are expected to support broadband multimedia services with diverse
Quality of Service (QoS) requirements. The cellular architecture is used in wireless networks to utilize the
radio spectrum efficiently. Since mobile users may change cells a number of times during the lifetime of their
sessions, availability of wireless network resources at the session setup time does not necessarily guarantee that
will be available throughout the lifetime of a session. Thus users may experience a performance degradation
due to their mobility. This problem is magnified by the current trend to reduce the cell size to accommodate
more mobile users in a given area as handover events will occur at a much higher rate [1].

Session Admission Control (AC) is a key aspect in the design and operation of multiservice cellular net-
works that provide QoS guarantees. The design of the AC system must take into account not only packet level
issues (like delay, jitter or losses) but also session level issues (like blocking probabilities of both session setup
and handover requests) [2]. This paper explores the second type of issues from a novel optimization perspective.

AC in single service cellular systems has been thoroughly studied, see for instance the seminal work by
Hong and Rappaport [3] or more recent papers like [4–6] and references therein. While most of these papers
provide intuitive reservation schemes for AC a more insightful approach is adopted in [7] and [8], where AC in
single service scenarios is regarded as an optimization problem. Admission control in the presence of mobility
and multiple services is not that well studied although some contributions in this direction can be found in the
literature [9–12].

Most of the proposed AC policies take the admission decision using only state information local to the cell,
such as the number of active sessions per service. However, mobile cellular networks permit to have some antic-
ipated knowledge about forthcoming requests, and more importantly, this predictive information concerns the
most sensitive requests, namely, the handover attempts. Following that observation, several mobility prediction
schemes and associated AC policies have appeared for single service scenarios, see for example [2, 13–16] and
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references therein. A common feature of these studies is the proposal of heuristic AC policies which exploit
the specific information provided by each mobility prediction scheme.

In this paper we study AC policies that make use of predictive information from an optimization perspective,
in both single service and multiservice scenarios. Our goal is to obtain the optimal policy for a given amount
of information provided by the mobility prediction scheme. We consider that such approach has not been
sufficiently explored. The deployment of classical optimization techniques applied to this type of scenario
provide results that help to define theoretical limits for the gain that can be expected, which could not be set by
simply deploying heuristic approaches.

For a single service scenario, in [17] the authors determine a near-optimal policy by means of a genetic
algorithm that takes into account not only the cell state but also the state of neighboring cells. However, results
in [17] show that the performance gain obtained when using these additional information is rather insignificant.
We reached the same conclusion using a different optimization method. These disappointing results suggest
that the prediction of possible forthcoming handovers obtained from the occupancy state of the neighboring
cells is not sufficiently specific.

Here we go a step further and evaluate the performance gain that can be obtained when the AC process
is provided with more specific information. In our study the total population of active terminals in the sur-
roundings of a cell is divided into two classes: those that will handover into the cell with high probability and
those that will not. Our model of the prediction agent (PA) does not provide information about the time instant
at which the handover will occur. We postpone the study of this scenario for a future work. Obviously, the
more information is provided by the PA the better the performance of the AC policy will be. Unfortunately, the
complexity of the PA and the optimization process increases as more information is provided.

The rest of the paper is structured as follows. In Section 2 we describe the model of the system and of the
PA. The optimization approaches, both in single service and multiservice scenarios, are presented in Section 3.
The numerical evaluation of the proposed model is introduced in Section 4. Finally, a summary of the paper
and some concluding remarks are given in Section 5.

2 Model Description

We consider a single cell system and its neighborhood, where the cell has a total ofC resource units, being
the physical meaning of a unit of resource dependent on the specific technological implementation of the radio
interface. A total ofN different services are offered by the system. For each service new and handover session
arrivals are distinguished so that there areN services and2N types of arrivals.

For the sake of mathematical tractability we make the common assumptions of Poisson arrival processes
and exponentially distributed random variables for cell residence time and session duration. The arrival rate for
new (handover) sessions of servicei is λn

i (λh
i ) and a request of servicei consumesbi resource units,bi ∈ N.

For servicei, the session duration and cell residence rates areµs
i andµr

i respectively. The resource holding
time in a cell for servicei is also exponentially distributed with rateµi = µs

i + µr
i .

2.1 Prediction Agent

Two main types of prediction systems have been studied in the literature [18]: history-based and positioning-
based. Schemes of the first group compute movement patterns to determine movement predictions statistically,
like for example estimation of the handover arrival rate to a cell. Given that mobile terminals (MTs) having
a similar movement history are more likely to have common movement patterns, measurement data can be
aggregated into groups, improving in this way the performance of the prediction system [2]. For schemes
of the second group [19], the probability of reserving resources for a handover session increases as the MT
approaches the cell. A further enhancement can be achieved by estimating the direction and speed of the MT
and extrapolate this information to determine future movements [16]. It is clear that both methods can be
combined to improve performance even further .

Given that the focus of our study was not the design of the PA we used a generic model of it instead. The
PA informs the AC system about the number of active terminals in the neighborhood that are forecasted to
produce a handover into the cell. The amount of time elapsed since an active MT is deemed as ”probably
producing a handover” until the handover actually occurs is not predicted by the PA and we model it by an
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(a) Basic operation of the prediction scheme
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(b) Proposed model of the PA

Figure 1: Model of the PA.

exponential random variable, which is an approximation widely used in the literature. The exponential assump-
tion has been considered a good approximation for the cell dwell times [20], where in the worst case indicates
general performance trends, for the time in the handover area [21] and for the inter-arrival time of handover
requests [22].

An active MT entering the cell neighborhood is labeled by the PA as “probably producing a handover” (H)
or the opposite (NH), according to some of its characteristics (position, trajectory, velocity, historic profile,
. . . ) and/or some other information (road map, hour of the day, . . . ). After an exponentially distributed time,
the actual destiny of the MT becomes definitive and either a handover into the cell occurs or not (for instance
because the session ends or the MT moves to another cell). The AC system is aware at any time of the number
of MTs labeled as H. In general, the classification into H or NH is not completely accurate and therefore our
model incorporates the probabilities of non-detection and false-positive. We assume that only one session is
active per MT.

Our model of the PA is characterized by three parameters: the average sojourn time of the MT in the
predicted stageµ−1

p , the probabilityp of producing a handover if labeled as H and the probabilityq of producing
a handover if labeled as NH. Note that in generalq 6= 1 − p. The basic operation of the prediction model is
shown in Fig. 1(a). The values ofp andq relate to each other through the specific model of the PA, which is
shown in Fig. 1(b). In the figure there is a square (with a surface equal to one) representing the population of
MTs that is going to be classified by the PA. The shaded area represents the fraction of active MTs that will
ultimately move into the cell, while the white area represents the rest of active MTs. It should be pointed out
that those active MTs that will ultimately move into the cell might do so after the session has terminated. The
classifier sets a threshold, which is represented by a vertical dashed line, to discriminate between those MTs that
will likely produce a handover and those that will not. MTs falling on the left side of the threshold are labeled
as H and those on the right side as NH. There exists an uncertainty zone, which is represented by the slope
of the line separating the shaded and white areas. Parameterx represents the relative position of the classifier
threshold. This uncertainty produces classification errors: the white area on the left of the threshold and the
shaded area on the right of the threshold. Although for simplicity we use a linear model for the uncertainty
zone it would be rather straightforward to consider a different model. Let us introduce the following notation
referring to the areas in Fig. 1(b):SH denotes the shaded area and represents the fraction of active MTs in the
cell neighborhood that will ultimately move into the cell, while the white area represents the rest of active MTs;
ŜH denotes the surface on the left of the threshold and represents the fraction of MTs labeled as H;Ŝe

H denotes
the white surface on the left of the threshold and represents the fraction of MTs labeled as H that will not
produce a handover;̂Se

NH denotes the shaded surface on the right of the threshold and represents the fraction
of MTs labeled as NH that will produce a handover. From Fig. 1(b) it follows that

1− p =
Ŝe

H

ŜH

=
x2

2U(a + x)
; q =

Ŝe
NH

1− ŜH

=
(U − x)2

2U(1− a− x)

Parametersa andb can be expressed in terms of the fraction of MTs moving into the target cellSH and the
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degree of uncertainty in the predictionU ,

a = SH − U/2 ; b = 1− SH − U/2

and then

1− p =
Ŝe

H

ŜH

=
x2

U(2SH − U + 2x)
; q =

Ŝe
NH

1− ŜH

=
(U − x)2

U(2− 2SH + U − 2x)

Referring to Fig. 1(a), the value of the session rate entering the classifierλ is chosen so that the system is
in statistical equilibrium, i.e. the rate at which handover sessions enter a cell (λin

h ) is equal to the rate at which
handover sessions exit the cell (λout

h ). Omitting the subscript referring to the service, we can write

λin
h = λSH

µp

µp + µs

λout
h =

µr

µr + µs
[(1− Pn)λn + (1− Ph)λin

h ] (1)

wherePn (Ph ) is the blocking probability of new (handover) requests.
Makingλin

h = λout
h , substitutingPh by

Ph =
Pft

1− Pft
· µs

µr

wherePft is the probability of forced termination of a successfully initiated session, and after some algebra we
get

λ = (1− Pn)(1− Pft)λn(µr/µs + µr/µp)(1/SH)

3 Optimization of the Admission Policy

The information provided by the PA and the state of the cell (number of active sessions) is used to find the
optimal admission policy and its performance. The generic definition of the system state space is

S :=
{
x = (x1, . . . , xN , xN+1, . . . , x2N )

}
.

wherexi is the number of ongoing sessions of servicei, 1 ≤ i ≤ N , in the cell under study,xi+N is the number
of ongoing sessions of servicei in the cell neighborhood which are labeled as H.

We make use of the theory ofMarkov decision processes(MDPs) [23] to find a policy that minimizes
the average expected cost rate. A MDP can be viewed as a stochastic automaton in which an agent’s actions
influence the transitions between states, and costs are imputed depending on the states visited by an agent.
Formally, a MDP can be defined as a tuple{S,A,P, C}, whereS is a finite set of states,A is a finite set of
actions,P is a state transition function andC is a cost function. The agent can control the state of the system by
choosing actionsa fromA, influencing in this way the state transitions. The results of an action are stochastic in
that the actual transition cannot be predicted with certainty. The transition functionP : S ×A → S specifies
the effect of taking an action at a given state. We denote bypxy(a) the transition probability from statex
to statey when actiona is taken at statex, and require that0 ≤ pxy(a) ≤ 1 ∀x, y ∈ S, ∀a ∈ A and∑

y∈S pxy(a) = 1.
The agent knows the state of the systemx at any time and it chooses actions based only on the current

state. We consider deterministic stationary Markovian policies,π : S → A, which defines the next action of
the agent based only on the current statex, i.e. an agent adopting this policy performs actionπ(x) in statex.
For the problems we consider, optimal stationary Markovian policies always exist.

We assume a bounded, integer-valued cost functionC : S → N, and denote byc(x, a) the finite cost for
executing actiona in statex. Different optimality criteria can be adopted to measure the cost of a policyπ,
all measuring in some way the cost accumulated by the agent as it follows policyπ. In this work we focus on
the average cost criterion because is more appropriate for the problem under study than other discounted cost
approaches [24].
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When the agent minimizes a discounted cumulative sum of costs, and we suppose that starting from state
x0 and using policyπ the system evolves through states{x0, x1, . . . , xt} in interval[0, t], then the discounted
cost of policyπ is defined as

vπ(x0) = lim
t→∞E

( t∑

m=0

γmc
(
xm, π(xm)

)

whereγ ≤ 1 is the discount factor. This allows simpler computational methods to be used, as discounted
total reward will be finite. Note that an agent minimizingvπ(x) will prefer actions that generate an immediate
cost reduction instead of those ones generating the same cost reduction some steps into the future, due to the
discounted factor. In many situations, discounted methods can be justified by the nature of the problem, like
in economics or when the tasks terminate. Notwithstanding, a more natural measure of optimality exists for
infinite-horizon tasks like the one studied in this work, based on minimizing the average cost per action. We
define the total cost accumulated in the interval[0, t] as

wπ(x0, t) =
t∑

m=0

c
(
xm, π(xm)

)

If the environment is stochastic thenwπ(x0, t) is a random variable. Under the average cost criterion we
seek to minimize the average expected cost rate over timet, ast → ∞. When the system starts at statex and
follows policyπ, the average expected cost rate is denoted bygπ(x) and is defined as:

gπ(x) = lim
t→∞

1
t
E [wπ(x, t)]

In this work we minimize a weighted sum of loss rates and therefore the average cost criterion is more
appropriate for the problem under study than other discounted cost approaches. In a system like ours, it is not
difficult to see that for every deterministic stationary policy the embedded Markov chain has a unichain tran-
sition probability matrix, and therefore the average expected cost rate does not vary with the initial state [25].
We call it the ”cost rate” of the policyπ, denote it bygπ and consider the problem of finding the policyπ∗ that
minimizesgπ, which we name the optimal policy.

It can be shown that for our system

gπ =
N∑

i=1

(βn
i Pn

i λn
i + βh

i P h
i λh

i )

whereβn
i (βh

i ) is the relative weight associated to the blocking of a new (handover) request andPn
i (P h

i ) is the
blocking probability of new (handover) requests, both of servicei. In general,βn

i < βh
i to account for the fact

that the blocking of a handover request is less desirable than the blocking of a new session request.
Two different optimization approaches have been used to find the optimal policy. The first approach is based

on dynamic programming(DP) [23], specifically we used a policy improvement method [25]. This approach
is applied to a single service scenario. The second is an automatic learning approach based on the theory
of reinforcement learning(RL) [26], more specifically we used the average reward reinforcement learning
algorithm proposed in [27]. This approach is applied to a multiservice scenario. DP gives an exact solution and
allows to evaluate the theoretical limits of incorporating movement prediction in the AC problem, whereas RL
tackles more efficiently the curse of dimensionality and offers the important advantage of being a model-free
method, i.e. transition probabilities and average costs are not needed by the method. As a consequence, in the
RL approach, neither the numerical values of the PA parameters (p, q, µp) nor the arrival rates and holding times
need to be known beforehand. Moreover, the learning algorithm can adapt to variations of those parameters.

3.1 Single Service

In this section we describe the optimization approach based on DP. Since there is only one service through this
section we simplify notation by omitting the subscript referring to the service, i.e.λn = λn

1 , λh = λh
1 , µs = µs

1,
µr = µr

1, µ = µ1. Without loss of generality, we assume thatb1 = 1.
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Figure 2: Transition rates.

Let us represent the system state by(i, j) wherei is the number of active sessions in the cell andj is the
number of MTs in the cell neighborhood labeled as H. The set of possible states of the system is

S :=
{

x = (i, j) : 0 ≤ i ≤ C; 0 ≤ j ≤ Cp

}

whereCp represents the maximum number of MT that can be labeled as H at a given time. We use a large
value forCp so it has no practical impact on our results. At each state(i, j), i < C, the set of possible actions
is defined byA := {a : a = 0, 1}, beinga = 0 the action that rejects an incoming new session anda = 1 the
action that accepts an incoming new session. Handover sessions have priority over new sessions and they are
accepted as long as resources are available (i < C). At state(C, j) only the actiona = 0 is possible.

Figure 2 shows the transition rates from and to state(i, j). Note that some of the transition rates depend on
the actiona = 0, 1. In the figure we introducedλ′h which is the average arrival rate of handovers that have not
been predicted, and it is given by

λ′h = (1− ŜH)
µp

µp + µs
qλ

whereλ is the input rate to the PA.
The model described is a continuous-time Markov chain, which we convert to adiscrete time Markov chain

(DTMC) by applying uniformization (see [28, Section 4.7]). It can be shown thatΓ = Cp(µp + µs) + C(µr +
µs) + λ + λn is an uniform upper-bound for the outgoing rate of all the states. Ifrxy(a) denotes the transition
rate from statex to statey when actiona is taken at statex, then the transition probabilities of the resulting
DTMC are given by

pxy(a) =
rxy(a)

Γ
if y 6= x and pxx(a) = 1−

∑

y∈S

pxy(a)

We define the incurred cost rate at statex when actiona is taken by

c(x, a) =





0, i < C, a = 1
λn, i < C, a = 0
λn + β(λ′h + jpµp), i = C, a = 0

The weighting factorβ (typically) accounts for the fact that blocking a handover request is less desirable than
blocking of a new session request. Costs are defined so that the average expected cost rategπ equals a weighted
sum of the average loss rate of new sessions (Pnλn) and handover attempts (Phλh), i.e.

gπ = lim
n→∞E

[
1

n + 1

n∑

t=0

c
(
x(t), π(x(t))

)]
= Pnλn + βPhλh
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wherex(t) is the state visited at timet when policyπ is deployed. Loss rates are given by

Pnλn =
∑

x: π(x)=0

λnp(x) ; Phλh =
∑

x=(C,j)
0≤j≤Cp

(
λ′h + jpµp

)
p(x)

wherep(x) is the stationary probability of statex. Thus, the optimization problem pursues to find the policy
π∗ that minimizesgπ. Since state(0, 0) can be reached from any other state regardless of the policy deployed,
by virtue of theCorollary 6.20and the subsequent remark, both in [23], we know that an optimal stationary
policy exists.

If we denote byh(x) the relative cost rate of statex under policyπ, then we can write

h(x) = c(x, π(x))− gπ +
∑
y

pxy(π(x))h(y) ∀x (2)

from which we can obtain the average cost and the relative costsh(x) up to an undetermined constant. Thus
we arbitrarily seth(0, 0) = 0 and then solve the linear system of equations (2) to obtaingπ andh(x), ∀x.
Having obtained the average and relative costs under policyπ an improved policyπ′ can be calculated as

π′(x) = arg min
a=0,1

{
c(x, a)− gπ +

∑
y

pxy(a)h(y)
}

so that the following relation holdsgπ′ ≤ gπ. Moreover, if the equality holds thenπ′ = π = π∗, whereπ∗

denotes the optimal policy, i.e.gπ∗ ≤ gπ ∀π.
If we repeat iteratively the solution of system (2) and the policy improvement until we obtain a policy which

does not change after improvement. This process is calledPolicy Iteration[25, Section 8.6] and it leads to the
average optimal policy in a finite — and typically small — number of iterations.

3.2 Multiservice

In this section we study a scenario in which the information available to the AC system is also the state of
the cell and the state of the cell neighborhood. The state could be conceptually represented by a vector with
2N elements, each of them being the number of ongoing sessions initiated either as new or handover requests.
However, we adopt a more compact representation of the state space, including only the number of resource
units occupied in the cell and in its neighborhood. This is motivated by the fact that reducing the state space
helps the RL algorithm to find better solutions and by the conclusions of previous studies [12], which show that
the performance of policies which base their decisions only on the number of resource units occupied (trunk
reservation policies), are close to the performance of the optimum policy.

We formulate the optimization problem as an infinite-horizon finite-state semi-Markov decision process
(SMDP) under the average cost criterion. It is evident that we search for policies that minimizegπ. Decision
epochs correspond to time instants at which arrivals occur. Given that no actions are taken at session departures,
then only the arrival events are relevant to the optimization process. At each decision epoch the system has to
select one action from the set of possible actionsA := {0 = reject, 1 = admit}.

The state space is defined as

S := {x = (x0, x1, k) : x0, x1, k ∈ N; x0 ≤ C; x1 ≤ Cp, 1 ≤ k ≤ (2N − 1)}

wherex0 is the number of resource units occupied in the cell under study,x1 is the number of resource units
occupied in the cell neighborhood by ongoing sessions labeled as H by the PA andk, 1 ≤ k ≤ (2N − 1), is
the arrival type. We select one of the2N arrival types as the highest priority one, being its requests always
admitted while free resources are available, and therefore no decisions are taken for them.

The cost structure is defined as follows. At any decision epoch, the cost incurred by accepting any arrival
type is zero and by rejecting a new (handover) request of servicei is βn

i (βh
i ). With this framework, further

accrual of cost occurs when the system has to reject requests of the highest priority arrival type between two
decision epochs.
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We denote byh(x) the relative cost rate of statex, which can be interpreted as the expected long-term
advantage in total cost for starting in statex in addition tot ·gπ, the expected total cost at timet on the average.
The Bellman optimality recurrence equations for an SMDP under the average cost criterion have the form

h∗(x) = min
a∈Ax

{
c(x, a)− g∗τ(x, a) +

∑

x∈S

pxy(a)h∗(y)
}

whereh∗(x) is an optimal state dependent relative value function andc(x, a) andτ(x, a) are the average cost
and the average sojourn time when taking decisiona in statex. The greedy policyπ∗ defined by selecting
actions that minimize the right-hand side of the above equation is gain-optimal [27].

If the parameters of the model can be derived, then the solution to the Bellman equations can be obtained
through dynamic or linear programming techniques. In multiservice scenarios, where the number of states can
be large, the derivation of the model parameters can be complex and make the problem intractable (course
of dimensionality). We propose an alternative approach based on a reinforcement learning algorithm named
Semi-Markov Average Reward Technique (SMART) [27].

The Bellman equations can be rewritten as

h∗(x, a) = min
a∈Ax

{
c(x, a)− g∗τ(x, a) +

∑

x∈S

pxy(a) min
a′∈Ay

h∗(y, a′)
}

whereh∗(x, a) is the average expected relative value of taking the optimal actiona in statex and then contin-
uing indefinitely by choosing actions optimally. Then, the optimal policy is

π∗(x) = arg min
a∈Ax

h∗(x, a)

The SMART algorithm estimatesh∗(x, a) by simulation, using a temporal difference method (TD(0)). If
at the(m− 1)th decision epoch the system is in statex, actiona is taken and the system is found in statey at
themth decision epoch, then we update the relative state-action values as follows:

hnew(x, a) = (1− αm)hold(x, a) + αm

{
cm(x, a, y)− gmτm(x, a,y) + min

a′∈Ay

hold(y, a′)
}

wherecm(x, a, y) is the actual cumulative cost incurred between the two successive decision epochs,τm(x, a, y)
is the actual sojourn time between the decision epochs,αm is the learning rate parameter at themth decision
epoch, andgm is the average cost rate estimated as:

gm =

∑m
k=1 ck

(
x(k), a(k), y(k)

)

∑m
k=1 τk

(
x(k), a(k), y(k)

)

4 Numerical Evaluation

We evaluated the performance gain when introducing prediction by the ratiogπ
wp/gπ

p , wheregπ
p (gπ

wp) is the
expected average cost rate of a policy that is optimal in a system with (without) prediction. We assume a
circular-shaped cell of radior and a dick-shaped neighborhood with inner (outer) radio1.0r (1.5r).

The values of the parameters that define the scenario are:C = 10 andCp = 60 resource units,Nh =
µr

i /µs
i = 1, µr

i /µp
i = 0.5, SH = 0.4, x = U/2. For the single service scenario (N = 1) we useb1 = 1,

λn
1 = 1, µ1 = µs

1 + µr
1 = 1, βn

1 = 1, andβh
1 = β = 20. As mentioned in Section 2.1, the value ofλ is

chosen so that the system is in statistical equilibrium, i.e. the rate at which handover sessions enter a cell equals
the rate at which handover sessions exit the cell. For small values ofPn

1 (≈ 10−2) andP ft
1 (≈ 10−3), we

make the approximationλ = 0.989λn
1 (Nh + µr

1/µp
1)(1/SH). For the multiservice scenario we useN = 2

services,b1 = 1 andb2 = 2 resource units. The arrival rates of new sessions to the cell areλnc
1 = 0.8λT ,

λnc
2 = 0.2λT , whereλT = 2. The ratio of arrival rates of new sessions to the cell neighborhood (ng) and to

the cell (nc) is made equal to the ratio of their surfaces,λng
i = 1.25λnc

i . The ratio of handover arrival rates to

P44/8



the cell neighborhood from the outside of the system (ho) and from the cell (hc) is made equal to the ratio of
their perimeters,λho

i = 1.5λhc
i . From equation (1) it follows thatλhc

i = (1− Pn
i )(1− P ft

i )Nhλnc
i , which we

approximate byλhc
i = 0.989Nhλnc

i . We also setµ1 = µs
1 + µr

1 = 1, µ2 = µs
2 + µr

2 = 3, βn
1 = 1, βn

2 = 20,
βh

1 = 10 andβh
2 = 200.

In regards to the reinforcement learning algorithm, we use a constant learning rateαm = 0.01 but the
exploration ratepm is decayed to zero by using the following rulepm = p0/(1 + u), whereu = m2/(γ + m).
We usedγ = 1.0 · 1011 and the algorithm starts with an exploration ratep0 = 0.1.

4.1 Single Service

When no predictive information is used in the single service scenario, the optimization is carried without
considering the second component of the system state, i.e. the number of MT labeled as H, and the optimal
policy results to be of theguard channeltype [7].

The curves in Fig. 3 represent the quotient between the average expected cost rate of the optimal policy
when no prediction is deployed and the optimal policy deploying prediction. As expected, using prediction
induces a gain in all cases and that gain decreases as prediction uncertainty (U ) increases. In Fig. 3(a) we varied
the average number of handovers per session. In Fig. 3(b) we varied the weighting factorβ which quantifies the
priority of handover requests over new sessions: the higher the value ofβ the lower the blocking probability
of handover sessions compared to the blocking probability of new sessions. It is observed that higher values
of β lead to higher performance gains. The position of the decision threshold within the uncertainty zone is
evaluated in Fig. 3(c), the curves indicate that a threshold in the middle of the uncertainty zone is the best
choice. Finally, Fig. 3(d) shows the effect of the elapse time since an MT is classified as H until it is handed
over into the target cell or it moves to another cell. Both, short and long prediction periods, have a negative
effect on the performance gain.

In all the cases that we examined the optimal policy when prediction is deployed had adynamic guard
channelstructure, in which the number of reserved channels increases with the number of MTs labeled as H.
More formally, letp(i, j) be the probability of accepting a new session when the system is at state(i, j), then

p(i, j) =

{
1, if i ≤ ith(j)
0, if i > ith(j)

and ith(j) ≤ ith(j′) if j > j′.

whereith(j) is the threshold for a givenj.

4.2 Multiservice

When no predictive information is used in the multiservice scenario, the optimization is carried without con-
sidering the second component of the system state, i.e. the number of resources occupied in the neighborhood
by sessions labeled as H.

Figure 4(a) displays the variation of the ratiogπ
wp/gπ

p with different values of the uncertaintyU in multiser-
vice scenarios. As a reference, the same figure also shows the variation of the ratiogπ

wp/gπ
p for single service

scenarios. In the multiservice scenario, for each value ofU we run 10 simulations with different seeds and we
display the averages. As expected, using prediction induces a gain in all cases and that gain decreases as the
prediction uncertainty (U) increases.

Finally it is worth noting that the main challenge in the design of efficient bandwidth reservation tech-
niques for mobile cellular networks is to balance two conflicting requirements: reserving enough resources
to achieve a low forced termination probability and keeping the resource utilization high by not blocking
too many new setup requests. Figure 4(b), which shows the variation of the utilization gain, i.e. the ratio
utilizationwp/utilizationp, for different values of U, justifies the efficiency of our optimization approach.

5 Conclusion

In this paper we analyzed the performance gain that can be obtained when handover prediction information is
considered in order to optimize the admission control policy in a mobile cellular network. Predictive informa-
tion is provided by a prediction agent that labels the active mobile terminals in the neighborhood of the cell
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Figure 4: Performance comparison in the multiservice scenario.

which will probably produce a handover into the cell. The policy optimization has been performed in a Markov
or semi-Markov decision process framework and two optimization methods have been applied: policy iteration
and a model free reinforcement learning methods. Our numerical results show that typical performance gains
are around 10% although improvement ratios up to 30% have also been observed in some specific scenarios. In
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future work we will consider a more sophisticated model of the prediction agent including, for instance, a more
precise estimation of the time instant at which a handover will occur.
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