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SUMMARY We study the impact of incorporating handoff
prediction information in the session admission control process
in mobile cellular networks. We evaluate the performance of op-
timal policies obtained with and without the predictive informa-
tion, while taking into account possible prediction errors. Two
different approaches to compute the optimal admission policy
were studied: dynamic programming and reinforcement learn-
ing. Numerical results show significant performance gains when
the predictive information is used in the admission process.
key words: cellular mobile networks, multiservice, optimiza-
tion, admission control with prediction

1. Introduction

Session Admission Control (AC) is a key aspect in the
design and operation of multiservice cellular networks
that provide QoS guarantees. Terminal mobility makes
it very difficult to guarantee that the resources available
at the time of session setup will be available in the
cells visited during the session lifetime. The design of
the AC system must take into account not only packet
level issues (like delay, jitter or losses) but also session
level issues (like loss probabilities of both session setup
and handoff requests). This paper explores the second
type of issues from a novel optimization approach that
exploits the availability of information related to the
number of handoff requests that will be executed in the
near future.

In systems that do not have predictive information
available, both heuristic and optimization approaches
have been proposed to improve the performance of the
AC at the session level. The optimization approach in
single service systems is well studied [1, 2], while the
study of multiservice systems has only received atten-
tion recently [3, 4]. On the other hand, in systems that
have predictive information available, most of the pro-
posed approaches to improve performance are heuristic
and only in single service scenarios, see for example [5]
and references therein.

In [6] the authors determine a near-optimal policy
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in a single service scenario by means of a genetic al-
gorithm that takes into account not only the cell state
but also the state of neighboring cells. However, re-
sults in [6] show that the performance gain when us-
ing this additional information is rather insignificant.
We reached the same conclusion using a different opti-
mization method. These disappointing results suggest
that the prediction of possible forthcoming handoffs ob-
tained from the occupancy state of the neighboring cells
is not sufficiently specific.

In this paper we go a step further and evaluate the
performance gain that can be obtained when the AC
process is provided with more specific information, both
in single and multiservice scenarios. In particular, our
model includes a prediction agent (PA) that provides
the AC system with the information of the number of
mobile terminals (MTs) that will “probably produce a
handoff”. We assume that only one session is active
per MT.

The rest of the paper is structured as follows. In
Section 2 we describe the models of both the system and
the PA. The two optimization approaches are presented
in Section 3. A numerical evaluation of the expected
performance of the system is provided in Section 4. Fi-
nally, a summary of the paper and some concluding
remarks are given in Section 5.

2. Model Description

We consider a single cell system and its neighborhood,
where the cell has a total of C resource units, being the
physical meaning of a unit of resources dependent on
the specific technological implementation of the radio
interface. A total of N different classes of service are
offered by the system. For each type of service, new
and handoff session arrivals are distinguished so that
there are N types of services and 2N types of arrivals.

For the sake of mathematical tractability we make
the common assumptions of Poisson arrival processes
and exponentially distributed random variables for cell
residence time and session duration. The arrival rate
for new (handoff) sessions of service i is λn

i (λh
i ) and

a request of service i consumes bi resource units, bi ∈
N. The duration of a service i session is exponentially
distributed with rate µs

i . The cell residence time of a
service i session is exponentially distributed with rate
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Fig. 1 Proposed model of the PA.

µr
i . Hence, the resource holding time for a service i

session in a cell is exponentially distributed with rate
µi = µs

i + µr
i .

Given that the focus of our study was not the de-
sign of the PA, we used a model of it instead. An active
MT entering the cell neighborhood is labeled by the PA
as “probably producing a handoff” (H) or the oppo-
site (NH), according to some of its characteristics (po-
sition, trajectory, velocity, historic profile,...) and/or
some other information (road map, hour of the day,...).
After an exponentially distributed time, the actual des-
tiny of the MT becomes definitive and either a handoff
into the cell occurs or not (for instance because the ses-
sion ends or the MT moves to another cell). The AC
system is aware of the number of MTs labeled as H at
any time.

The model of the PA is shown in Fig. 1 where
the square (with a surface equal to one) represents the
population of active MTs to be classified by the PA.
The shaded area represents the fraction of MTs (SH)
that will ultimately move into the cell, while the white
area represents the rest of active MTs. Notice that
part of the MTs that will move into the cell can finish
their active sessions before doing so. The classifier sets
a threshold, which is represented by a vertical dashed
line, to discriminate between those MTs that will likely
produce a handoff and those that will not. The frac-
tion of MTs falling on the left side of the threshold
(ŜH) are labeled as H and those on the right side as
NH. There exists an uncertainty zone, which is repre-
sented by the slope of the line separating the shaded
and white areas. Parameter x represents the relative
position of the classifier threshold. This uncertainty
produces classification errors: the white area on the
left of the threshold (Ŝe

H) and the shaded area on the
right of the threshold (Ŝe

NH). The model of the PA is
characterized by three parameters: the average sojourn
time of the MT in the predicted stage µ−1

p , the proba-
bility p of producing a handoff if labeled as H and the
probability q of producing a handoff if labeled as NH.
Note that in general q 6= 1 − p. It can be shown that
1−p = Ŝe

H/ŜH = x2/ (U(2SH − U + 2x)) and that q =

Ŝe
NH/(1− ŜH) = (U − x)2 / (U(2− 2SH + U − 2x)).

3. Optimizing the AC Policy

We make use of the theory of Markov decision process
to find a policy that minimizes the average expected
cost rate. When the system stars at state x and fol-
lows policy π then the average expected cost rate over
time t, as t → ∞, is denoted by gπ(x) and defined as:
gπ(x) = limt→∞ 1

t E [wπ(x, t)], where wπ(x, t) is a ran-
dom variable that expresses the total cost incurred in
interval [0, t] . For the systems we are considering, it is
not difficult to see that for every deterministic station-
ary policy the embedded Markov chain has a unichain
transition probability matrix, and therefore the aver-
age expected cost rate does not vary with the initial
state [7]. We call it the “cost” of the policy π, denote it
by gπ and consider the problem of finding the policy π∗

that minimizes gπ, which we name the optimum policy.
It can be shown for our systems that gπ =∑N

i=1(ω
n
i Pn

i λn
i +ωh

i Ph
i λh

i ), where ωn
i (ωh

i ) is the relative
weight associated to the loss of a new (handoff) request
and Pn

i (Ph
i ) is the loss probability of new (handoff)

requests, both of service i. In general, ωn
i < ωh

i to
account for the fact that the loss of a handoff request
is less desirable than the loss of a new session setup
request.

Two different optimization approaches have been
used to find the optimal policy. The first approach is
based on dynamic programming, specifically we used a
policy iteration method [7]. This approach is applied
to a single service scenario. The second is an auto-
matic learning approach based on the theory of rein-
forcement learning, more specifically we used the aver-
age reward reinforcement learning algorithm proposed
in [8]. This approach is applied to a multiservice sce-
nario. Dynamic programming gives an exact solution
and allows to evaluate the theoretical limits of incor-
porating handoff prediction in the AC system, whereas
reinforcement learning tackles more efficiently the curse
of dimensionality.

3.1 Single Service

Let us represent the system state by (i, j) where i is the
number of active sessions in the cell and j is the number
of MTs labeled as H in the cell neighborhood. The set
of possible states of the system is S := {x = (i, j) :
0 ≤ i ≤ C; 0 ≤ j ≤ Cp}, where Cp is the maximum
number of MT that can be labeled as H at a given time.
We use a large value for Cp so that it has no practical
impact in our results. At each state (i, j), i < C, the
set of possible actions is defined by A := {a : a = 0, 1},
being a = 0 the action that rejects an incoming new
session and a = 1 the action that accepts an incoming
new session. Handoff sessions have priority over new
sessions and they are accepted as long as resources are
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available (i < C). At state (C, j) only the action a = 0
is possible.

For this system, loss rates are given by

Pn
1 λn

1 =
∑
x

π(x)=0

λn
1p(x) Ph

1 λh
1 =

∑

x=(C,j)
0≤j≤Cp

(
λ′h + jpµp

)
p(x)

where p(x) is the stationary probability of state x, λ′h =
qλ(1 − ŜH)µp/(µp + µs

1) is the average arrival rate of
handoffs that have not been predicted and λ is the input
rate to the PA. The optimization problem pursues to
find the policy (π∗) that minimizes gπ. Starting from
any policy, for example the complete sharing policy,
and deploying the Policy Iteration method [7, Section
8.6] the optimal policy can be found in a finite — and
typically small — number of iterations.

3.2 Multiservice

We formulate the optimization problem as an infinite-
horizon finite-state semi-Markov decision process
(SMDP) under the average cost criterion, which is more
appropriate for the problem under study than other
discounted cost approaches. The decision epochs cor-
respond to the time instants at which an arrival oc-
curs. Given that no actions are taken at session de-
partures, then only the arrival events are relevant to
the optimization process. Additionally, we select one
of the 2N arrival types as the highest priority one, be-
ing its requests always admitted while free resources
are available, and therefore no decisions are taken for
them. The generic definition of the state space is
S := {x = (x0, x1, k) : x0, x1, k ∈ N;x0 ≤ C; x1 ≤
Cp, 1 ≤ k ≤ (2N − 1)}, where x0 is the number of
resource units occupied in the cell under study, x1 is
the number of resource units occupied by sessions la-
beled as H and k is the arrival type. At each decision
epoch the system has to select an action from the set
of possible actions A := {0 = reject, 1 = admit}.

The cost structure is defined as follows. At any de-
cision epoch, the cost incurred by accepting any arrival
type is zero and by rejecting a new (handoff) request
of service i is ωn

i (ωh
i ). With this framework, further

accrual of cost occurs when the system has to reject re-
quests of the highest priority arrival type between two
decision epochs.

The Bellman optimality recurrence equations for
an SMDP under the average cost criterion can be
written as h∗(x, a) = mina∈Ax{w(x, a) − g∗τ(x, a) +∑

x∈S pxy(a)mina′∈Ay h∗(y, a′)}, where h∗(x, a) is the
average expected relative value of taking the optimal
action a in state x and then continuing indefinitely by
choosing actions optimally, w(x, a) is the average cost
of taking action a in state x, τ(x, a) is the average so-
journ time in state x under action a and pxy(a) is the
probability of moving from state x to state y under

action a = π(x). The greedy policy π∗ defined by se-
lecting actions that minimize the right-hand side of the
above equation is gain-optimal [8].

If the parameters of the model can be derived, then
the solution to the Bellman equations can be obtained
through dynamic or linear programming techniques. In
systems where the number of states can be large, like
multiservice scenarios, reinforcement learning tackles
more efficiently the curse of dimensionality and offers
the important advantage of being a model-free method,
i.e. transition probabilities and average costs are not
needed in advance.

We deploy a reinforcement learning algorithm
named Semi-Markov Average Reward Technique
(SMART) [8]. The SMART algorithm estimates
h∗(x, a) by simulation using a temporal differ-
ence method (TD(0)). If at the (m − 1)th de-
cision epoch the system is in state x, action a
is taken and the system is found in state y at
the mth decision epoch then we update the rela-
tive state-action values as follows: hnew(x, a) =
(1−αm)hold(x, a) + αm{wm(x, a,y)− gmτm(x, a, y) +
mina′∈Ay hold(y, a′)}, where wm(x, a,y) is the ac-
tual cumulative cost incurred between the two suc-
cessive decision epochs, τm(x, a, y) is the actual so-
journ time between the decision epochs, αm is the
learning rate parameter at the mth decision epoch
and gm is the average cost rate estimated as: gm =∑m

k=1 wk

(
x(k), a(k), y(k)

)
/

∑m
k=1 τk

(
x(k), a(k), y(k)

)

4. Numerical Evaluation

We evaluated the performance gain when introducing
prediction by the ratio gπ

wp/gπ
p , where gπ

p (gπ
wp) is the

average expected cost rate of a policy that is optimal
in a system with (without) prediction. We assume a
circular-shaped cell of radio r and a holed-disk-shaped
neighborhood with inner (outer) radio 1.0r (1.5r).

The values of the parameters that define the sce-
nario are: C = 10 and Cp = 60 resource units,
Nh = µr

i /µs
i = 1, µr

i /µp
i = 0.5, SH = 0.4, x = U/2.

For the single service scenario (N = 1) we use
b1 = 1, λn

1 = 1, µ1 = µs
1 + µr

1 = 1, wn
1 = 1, and

wh
1 = 20. The value of the input rate to the PA λ is cho-

sen so that the system is in statistical equilibrium, i.e.
the rate at which handoff sessions enter a cell is equal
to the rate at which handoff sessions exit the cell. It
can be easily shown that for our single service scenario
λ = (1 − Pn

1 )(1 − P ft
1 )λn(Nh + µr

1/µp
1)(1/SH), where

P ft
1 = Ph

1 /(Ph
1 +µs

1/µr
1) is the probability of forced ter-

mination. Note that in our numerical experiments the
values of the arrival rates are chosen to achieve realis-
tic operating values for Pn

i and P ft
i . For such values

of Pn
1 (≈ 10−2) and P ft

1 (≈ 10−3), we make the approx-
imation λ ≈ 0.989λn(Nh + µr

1/µp
1)(1/SH).

For the multiservice scenario we use N = 2 ser-
vices, b1 = 1 and b2 = 2 resource units. The ar-
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Fig. 2 Performance gain of introducing handoff prediction.

rival rates of new sessions to the cell are λnc
1 = 0.8λT ,

λnc
2 = 0.2λT , where λT = 2. The ratio of arrival

rates of new sessions to the cell neighborhood and to
the cell is made equal to the ratio of their surfaces,
λng

i = 1.25λnc
i . The ratio of handoff arrival rates to the

cell neighborhood from the outside of the system and
from the cell is made equal to ratio of their perimeters,
λho

i = 1.5λhc
i . Using the flow equilibrium property, we

can write λhc
i = (1−Pn

i )(1−P ft
i )(µr

i /µs
i )λ

nc
i which we

approximate by λhc
i ≈ 0.989(µr

i /µs
i )λ

nc
i . We also set

µ1 = µs
1 + µr

1 = 1, µ2 = µs
2 + µr

2 = 3, wn
1 = 1, wn

2 = 20,
wh

1 = 10 and wh
2 = 200.

In regards to the reinforcement learning algorithm,
we use a constant learning rate αm = 0.01 but the
exploration rate pm is decayed to zero by using the
following rule pm = p0/(1+u), where u = m2/(γ +m).
We used γ = 1.0 · 1011 to obtain pm = 1 · 10−3p0 when
m = 1 ·107. We start with an exploration rate p0 = 0.1.

Figure 2 shows the gain when introducing predic-
tion for different values of the uncertainty U . In the
multiservice scenario, for each value of U we run 10
simulations with different seeds and display the aver-
ages. As expected, using prediction induces a gain in
all cases and that gain decreases as the prediction un-
certainty (U) increases.

Finally it is worth noting that the main challenge
in the design of efficient bandwidth reservation tech-
niques for mobile cellular networks is to balance two
conflicting requirements: reserving enough resources to
achieve a low forced termination probability and keep-
ing the resource utilization high by not blocking too
many new setup requests. Figure 3, which shows the
utilization gain for different values of U, justifies the
efficiency of our optimization approach.

5. Conclusion

In this paper we analyze the performance gain that
can be obtained when handoff prediction information
is considered in order to optimize the admission con-
trol policy in a mobile cellular network. The policy
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Fig. 3 Impact on utilization of introducing handoff prediction.

optimization has been performed in a Markov or semi-
Markov decision process framework and two optimiza-
tion methods have been applied: policy iteration and a
model free reinforcement learning algorithm. Our nu-
merical results show that typical performance gains are
around 10% although improvement ratios up to 30%
have also been observed in some specific scenarios.

In a future work we will consider a more sophisti-
cated model of the prediction agent including, for in-
stance, a more precise estimation of the time instants
at which handoffs will occur and not only the incom-
ing handoffs to the cell but also the outgoing hand-
offs. This last consideration could be relevant to in-
crease performance as taking into account only incom-
ing handoffs could lead the AC system to reserve too
many resources.
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