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Abstract. This paper proposes an approximate methodology for solving
Markov models that compete for limited resources and retry when access
fails, like those arising in mobile cellular networks. We limit the number
of levels that define the system by aggregating all levels beyond a given
one in order to manage curse of dimensionality issue. The developed
methodology allows to balance accuracy and computational cost. We
determine the relative error of different typical performance parameters
when using the approximate model as well as the computational savings.
Results show that high accuracy and cost savings can be obtained by
deploying the proposed methodology.

1 Introduction

A common assumption when evaluating the performance of communication sys-
tems is that users that do not obtain an immediate service leave the system
without retrying. However, due to the increasing number of users and the com-
plexity of current systems the impact of retrials is no longer negligible.

This perception has triggered an increasing interest in introducing the phe-
nomenon of retrials in telecommunication systems. Different models have been
proposed to evaluate the impact of blocked subscribers retrying after a relative
short delay, both in wire line telephone networks [1] and in cellular networks
[2]. The retrial phenomenon can also be observed in web browsing, where users
try to reload a web page in case of congestion. Retrials do not only appear as
a consequence of user behavior, but also due to the operation of some proto-
cols like random access protocols [3]. For an interesting overview of the retrial
phenomenon, please refer to [4] and references therein.

In real systems, the population can be very large or even infinite, so the
numerical computation can become extremely large in terms of memory space
and CPU time, or even impossible in many cases. So approximate methodologies
are needed like the one proposed in [5], which is studied in a mobile cellular
network scenario. It is based on grouping states according to the presence or not
of users in the retrial orbit. Our work is motivated by the perception that this
seems a gross approximation in overloaded systems, where retrials are specially



2

Fig. 1. System Model.

critical. As it will be shown later, the precision with which common performance
parameters are estimated can be quite poor. Our proposal makes it possible a
gradual transition from the model in [5] towards the exact model.

The rest of the paper is structured as follows. Section 2 describes the exact
model and defines the performance parameters, comparing it with the appro-
ximation proposed in [5]. Section 3 introduces the novel approximation of the
Markov model and Section 4 presents its numerical evaluation. Finally, a sum-
mary of the paper and some concluding remarks are given in Section 5.

2 System Model

As in [5], the system under study is a mobile cellular network with customer
retrials. This system can be modeled by Fig. 1, where a group of M users contend
for C servers, requesting an exponentially distributed service time with rate µ.
When a user accesses the system and finds all servers busy, it joins the retrial
orbit and retries after an exponentially distributed time with rate µr. The retry
is successful if it finds a free server. Otherwise, the user returns to the retrial
orbit with probability (1 − Pi) or leaves the system with probability Pi. The
implicit assumption of geometric distribution for the number of retrials is a
first order approximation to more exact models like the one proposed in [6].
The arrival process is modeled as an state-dependent Poisson process with rate
λ(k, m) = (M − k−m)λ, being λ the individual user arrival rate when idle, and
k (m) the number of users in service (in the retrial orbit).

The most common performance parameter used in queueing systems is the
blocking probability, which is defined as the probability of having all servers oc-
cupied. Notwithstanding, other performance parameters can describe the beha-
viour of retrial systems more accurately. That performance parameters are the
immediate service probability (Pis), the delayed service probability (Pds) and the
non-service probability (Pns). Obviously, it must be met that Pis+Pds+Pns = 1.

The computation of such performance parameters can be done in terms of
the next rates. Let us denote by Ro the mean offered user rate, by R1,s the mean
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Fig. 2. Exact Markov model.

first attempt successful rate and by R1,f the mean first attempt failure rate. It is
obvious that, Ro = R1,s + R1,f . Let us also denote by Rr the mean retrial rate,
by Rr,s the mean successful retrial rate, and by Rr,f the mean failure retrial
rate. It is also obvious that, Rr = Rr,s + Rr,f . Finally, let us denote by Rab the
mean abandon rate, which can be expressed as Rab = PiRr,f . The performance
parameters are defined by the following expressions

Pis =
R1,s

Ro

; Pds =
Rr,s

Ro

; Pns =
Rab

Ro

(1)

2.1 Exact Markov model

The retrial system described in Fig. 1 can be modeled as a Markov process with
the state space defined as S := {(k, m) : 0 ≤ k ≤ C; 0 ≤ m ≤ M − C}, where k
is the number of occupied servers and m the number of users in the retrial orbit.
The state-transition diagram is shown in Fig. 2.

The infinitesimal generator matrix (2) presents a tridiagonal structure whose
elements are also matrices. This is the classical structure of a QBD process [7].

Q =





















D0 L0 . . . 0 0
M1 D1 . . . 0 0
0 M2 . . . 0 0
...

...
. . .

...
...

0 0 . . . LM−C−2 0
0 0 . . . DM−C−1 LM−C−1

0 0 . . . MM−C DM−C





















(2)
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where Mm, Dm and Lm, are square matrices with dimension (C + 1)(C + 1).
As an example, for C = 5 we have

Mm =















0 mµr 0 0 0 0
0 0 mµr 0 0 0
0 0 0 mµr 0 0
0 0 0 0 mµr 0
0 0 0 0 0 mµr

0 0 0 0 0 mµrPi















Lm =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 λ(5, m)















Dm =

















∗ λ(0, m) 0 0 0 0
µ ∗ λ(1, m) 0 0 0
0 2µ ∗ λ(2, m) 0 0
0 0 3µ ∗ λ(3, m) 0
0 0 0 4µ ∗ λ(4, m)
0 0 0 0 5µ ∗

















The asterisks that appear in Dm are the negative values that make the sum of
every row of Q equal to zero.

The stationary state probability vector π can be obtained by solving πQ = 0

with the normalization condition πe = 1. Note that e is the common all ones
transposed vector.

The blocking probability can be computed as

BP =

M−C
∑

m=0

π(C, m)

And the rest of the performance parameters can be determined by using the
following expressions

Ro =
C

∑

k=0

M−C
∑

m=0

λ(k, m)π(k, m)

R1,s =

C−1
∑

k=0

M−C
∑

m=0

λ(k, m)π(k, m)

R1,f =

M−C
∑

m=0

λ(C, m)π(C, m)

Rr =
C

∑

k=0

M−C
∑

m=0

mµrπ(k, m)

Rr,s =

C−1
∑

k=0

M−C
∑

m=0

mµrπ(k, m)

Rr,f =

M−C
∑

m=0

mµrπ(C, m)

2.2 Previous approximate Markov models

In [5] a boolean variable is defined to indicate the presence (’1’) or absence
(’0’) of blocked users with option to retry. Then, the approximation is done
by aggregating all the columns of the exact model beyond the first one, i.e.
aggregating states depending on the presence or not of users in the retrial orbit.

We evaluated the error introduced by this approximation in a mobile cellular
network scenario, which parameters are similar to the ones used in [5], being



5

M 120 users
C 30 servers
µ 1/180s−1

ρ (ρ = λ
λ+µ

) 0.14 — 0.44

µr 0.1s−1

Pi 0.5

The results for the exact Markov model are presented in Fig. 3(a), where we
show the evolution of the different performance parameters as ρ increases. As
can be seen, retrials become important when the system is overloaded, i.e. when
the blocking probability is, for example, over 10% (ρ ≃ 0.22).

In Fig. 3(b) we evaluate the relative error in the performance parameters
when using the approximate methodology, defined by | Γ exact−Γ approx | /Γ exact,
where Γ ∈ {BP, Pis, Pds, Pns}. As shown, the blocking probability computed by
the approximate model is close to its exact value. However, the relative error in
the rest of the performance parameters is not negligible when the mean number
of users in the retrial orbit is significant, i.e. in overloaded systems.
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(b) Relative errors respect to the exact.

Fig. 3. Results of the exact model and relative errors of the approximate model.

3 Novel approximate Markov model

We propose a novel approximate Markov model that is able to improve the accu-
racy of the model proposed in [5], with a relatively small additional computation
cost. This novel model can be considered a generalization of [5], being the ag-
gregation done when there are Q or more users in the retrial orbit. The value
of Q is tunable from Q = 1 (as proposed in [5]) to Q = M − C (exact model),
increasing both accuracy and computation cost as we increase Q.

The generic definition of the state space of that Markov process is S :=
{(k, m) : 0 ≤ k ≤ C; 0 ≤ m ≤ Q}, where k is the number of occupied servers and
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Fig. 4. Approximate Markov model.

m (when m < Q) is the number of users in the retrial orbit. The set of states
(k, Q) corresponds to the situation where Q or more users are in the retrial orbit.
Fig. 4 shows the state transition diagram of the proposed approximate model.
The first Q − 1 columns are exactly the same as the first Q − 1 columns in
Fig. 2. For column Q we approximate the new users arrival rate by λ(k, Q) =
(M − k − m)λ, where m denotes the average number of users in the retrial
orbit when it holds Q or more users. When a user in the retrial orbit executes
a successful retrial, then the number of users in the orbit can drop below Q
with probability (1 − p) or not with probability p. Therefore, the retrial rate
in states (k, Q) could be split in two contributing rates α and β. The first one
corresponds to transitions from (k, Q) to (k + 1, Q − 1) and is approximated
by α = mµr(1 − p). The second one corresponds to transitions from (k, Q) to
(k + 1, Q), and is approximated by β = mµrp. Parameters m and p must be
conveniently estimated from the model.

The infinitesimal generator of the proposed model Q presents the same struc-
ture as the exact model infinitesimal generator changing the limits from (M −C)
to Q. Matrices MQ and DQ are different from those defined in the exact model.
As an example, for C = 5 we have
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MQ =

















0 α 0 0 0 0
0 0 α 0 0 0
0 0 0 α 0 0
0 0 0 0 α 0
0 0 0 0 0 α
0 0 0 0 0 αPi

















DQ =

















∗ λ(0, m) + β . . . 0
µ ∗ . . . 0
0 2µ . . . 0
0 0 . . . 0
0 0 . . . λ(4, m) + β
0 0 . . . ∗

















The rates defined in Section 2 can now be rewritten as

Ro =

C
∑

k=0

Q
∑

m=0

λ(k, m)π(k, m)

R1,s =

C−1
∑

k=0

Q
∑

m=0

λ(k, m)π(k, m)

R1,f =

Q
∑

m=0

λ(C, m)π(C, m)

Rr =

C
∑

k=0

Q−1
∑

m=0

mµrπ(k, m) + mµr

C
∑

k=0

π(k, Q)

Rr,s =

C−1
∑

k=0

Q−1
∑

m=0

mµrπ(k, m) + mµr

C−1
∑

k=0

π(k, Q)

Rr,f =

Q−1
∑

m=0

mµrπ(C, m) + mµrπ(C, Q)

Parameters p and m can be estimated as described below. Balancing the pro-
bability flux crossing each vertical cut of the state transition diagram produces
the following set of equations

λ(C, 0)π(C, 0) = µr

CX
k=0

π(k, 1) − µrπ(C, 1) + µrPiπ(C, 1)

λ(C, 1)π(C, 1) = 2µr

CX
k=0

π(k, 2) − 2µrπ(C, 2) + 2µrPiπ(C, 2)

. . .

λ(C, Q − 1)π(C, Q − 1) = mµr(1 − p)
CX

k=0

π(k, Q) − mµr(1 − p)(1− Pi)π(C, Q)

(3)

Summing them we obtain

Q−1X
m=0

λ(C,m)π(C,m) =

Q−1X
m=0

mµr

C−1X
k=0

π(k,m) + Pi

Q−1X
m=0

mµrπ(C,m)

+ mµr(1 − p)
CX

k=0

π(k, Q) − mµr(1 − p)(1 − Pi)π(C,Q)

This equation can be rewritten as�
R1,f − λ(C, Q)π(C,Q)

�
=

�
Rr,s − mµr

CX
k=0

π(k, Q) + mµrπ(C,Q)

�
+

+
�
Rab − mµrPiπ(C, Q)

�
+ mµr(1 − p)

CX
k=0

π(k,Q) − mµr(1 − p)(1 − Pi)π(C, Q)
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Given that R1,f = Rr,s + Rab and after some algebra we get

λ(C, Q)π(C,Q) = mµrp

CX
k=0

π(k, Q) − mµrp(1 − Pi)π(C, Q) (4)

From (3) and (4) we get

p =
λ(C, Q)π(C,Q)

λ(C, Q − 1)π(C, Q − 1) + λ(C,Q)π(C,Q)
(5)

m =
λ(C, Q − 1)π(C, Q − 1) + λ(C, Q)π(C, Q)

µr[
∑k=C−1

k=0
π(k, Q) + Piπ(C, Q)]

To find the values of p and m an iterative procedure must be followed. Star-
ting with p = 0 and m = Q the stationary state probabilities π(k, m) can be
computed and the next values for p and m obtained. The procedure is repeated
until the relative precision is less than, for example, 10−4. In [5] the convergence
of the iterative procedure was assumed. We evaluated a wide range of scenarios
with different configuration parameters and the procedure converged in all cases.

4 Numerical Evaluation

This section has a two-fold objective. One is to evaluate the accuracy of our
approach and the other is to evaluate the computation cost savings that can be
obtained when referring to the exact model. The parameters used in the scenario
under study are the ones presented in Section 2.

4.1 Accuracy

In this section, we study the relative error in the performance parameters for
approximate models with increasing complexity, i.e. with an increasing Q value.

In Fig. 5 we plot the relative error in the performance parameter values
for different loads. In general, the relative error in all performance parameters
decreases as we get closer to the exact model, i.e. as Q increases. Note again
that using Q = 1 might not be a good choice because the relative error in Pis,
Pds and Pns is not negligible.

It can be noted that the degree of success of approximations in systems with
retrials is mainly dependent on the offered load. The reason of this behavior is
that as more load is offered more users will be held in the retrial orbit. There-
fore, using higher values for Q seems an intuitive choice. However the value of
Q required for a given precision is much lower than (M − C), that would cons-
titute the exact solution. For example, in the worst scenario studied (ρ = 0.44),
with Q = 12 we can get a relative error of less than 10−2 in the worst perfor-
mance parameter while reducing the number of states more than 85%. In not so
overloaded scenarios, the state space reduction is even higher.

As a conclusion, a rule of thumb to determine a suitable value for Q could be
to try with a value around Q ≃ 0.15(M −C), independently of the system load,
although lower values would be probably enough. We have checked this rule in
several scenarios and we found that it was a good choice in all of them.
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Fig. 5. Relative errors respect to the exact.

4.2 Computation Costs

In this section we compare the computation costs, measured in floating-point
operations (flops),1 required to solve the exact and approximate models. Two
different algorithms have been used, the GJL’s proposed by Gaver, Jacobs and
Latouche in [8] and the Servi’s algorithm proposed in [9]. They provide the same
solution but they need a different number of flops.

The scenario considered uses a load of ρ = 0.22, which is a typical overloaded
scenario. For this scenario it is sufficient to consider Q = 6, as can be shown
in Fig. 5. Fig. 6(a) shows the cost of each solving algorithm when applied to
both the exact and the approximate models with a required relative precision
of 10−4 for the computation of m and p. It is clear that the Servi’s algorithm
outperforms the GJL’s algorithm for the range of Q values of interest. Note that

1 The numerical results and their associated computation cost have been obtained
using Matlab. For this product, sums and subtractions require 1 flop if operators are
real and 2 flops if complex, products and divisions require 1 flop if the result is real
and 6 flops otherwise.
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Fig. 6. Results of the exact model and relative errors of the approximate model.

the value of Q at which the costs of the approximate and exact models become
equal is less than M − C, and from this point on the cost of the approximate
model is higher than the cost of the exact model. This is due to the fact that
the approximate model has an additional overhead associated to the iterative
computation of m and p.

For Servi’s algorithm, Fig. 6(b) displays the ratio of the costs of solving
the approximate and the exact model. As shown, computation costs savings
of approximately 99.6% are possible for Q = 6, which constitute a substantial
performance gain while guaranteeing excellent precision.

Moreover, additional savings can be obtained when using a smaller precision
for the estimation of m and p. Fig. 7(a) shows the variation of the relative
error of the performance parameter which exhibits the highest error (Pds) as
a function of Q. It is clear that for values of Q higher than 6, it is enough to
use rough estimations of m and p to achieve a negligible relative error for the
values of the performance parameters. Fig. 7(b) shows the ratio of the costs of
solving the approximate and the exact model as a function of Q. As observed,
the computation cost can additionally be reduced by a factor of 2 for typical
values of Q when using rough estimations of m and p.

5 Conclusions

We have proposed a novel methodology to determine the value of typical per-
formance parameters in systems with retrials like mobile cellular networks. In
these systems, repeated calls can have a negative impact on the performance
and therefore its evaluation should not be neglected in the phases of design and
planning. When the computation of the exact model might not be feasible due
to the explosion of the state space, approximate methodologies are needed.
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Fig. 7. Effect of using different precisions for the estimation of m and p.

Our approximation methodology substantially improves the precision of pre-
vious approximations like [5], when estimating critical performance parameters.
The computation cost can be reduced by two orders of magnitude when compa-
ring to the exact model for a typical overloaded scenario. Additionally, it requires
only a very small computation cost increase when compared to the model of [5].

We have noted that relative errors are very sensitive to the load offered to
the system, being higher as load increases. We have shown that with a state
space reduction of 85% respect to the exact model, our methodology is able to
achieve accurate solutions, even in overloaded scenarios.

At present authors are extending this model by considering several retrial
orbits. Here, the proposed methodology will allow to handle the state space
explosion.
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